NREL’s Integrating PV in Distributed Grids Workshop: Solutions and Technologies

A View from Hawaii

Thursday, October 22, 2015
Ken Fong, P.E.
Manager, Transmission & Distribution Planning
Hawaiian Electric Company
Our Vision

Cost-effective clean energy
- Achieve more than 65% Renewable Portfolio Standard (RPS) by 2030
- Meet Hawaii’s goal of 100% RPS by 2045
- 20% bill reduction

Growing and equitable rooftop solar
- Accommodate growing rooftop solar
- Equitable for all customers

Modern grid
- Smart infrastructure
- Two-way flow of electricity and information
- Energy storage

Innovative energy solutions and services
- Community-based renewables, electrification of transportation, TOU, DR, microgrids, etc.
Hawaiian Electric: 3 Electric Utilities, 5 Separate Grids

Maui Electric
Serves islands of Maui, Molokai, and Lanai
Customers: 68,000
Generating capability: 284 MW
Peak Load (Maui): 190 MW

Hawaiian Electric
Serves island of Oahu
Customers: 297,000
Generating capability: 1,756 MW
Peak Load: 1,150 MW

Hawaiʻi Electric Light
Serves island of Hawaii
Customers: 81,000
Generating capability: 293 MW
Peak Load: 190 MW

Kauaʻi Island Utility Cooperative
7.3%*

Hawaiian Electric
13.0%*

Maui Electric
12.0%*

Hawaiʻi Electric Light
10.0%*

Percentage of Customers with PV
* As of 06/30/15
** As of 12/31/13
National data courtesy of Solar Electric Power Association
Hawaiian Electric Has a Diverse Mix of Renewable Energy Resources, Including Distributed Solar

Hawaiian Electric Companies RPS of 21.3% for 2014

- Customer-Sited, Grid-Connected solar, 27%
- Biomass (including municipal solid waste), 23%
- Wind, 30%
- Geothermal, 13%
- Hydro, 3%
- Biofuels, 2%
- Utility-scale Photovoltaic and Solar Thermal, 2%
We Have Experienced an Exponential Growth in Photovoltaics on Our System
PV Systems and Inverters are Becoming a Growing Part of Our Distribution System

<table>
<thead>
<tr>
<th>Company</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>HECO</td>
<td>59,000</td>
</tr>
<tr>
<td>HELCO</td>
<td>52,000</td>
</tr>
<tr>
<td>MECO</td>
<td>30,000</td>
</tr>
<tr>
<td>Total</td>
<td>141,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Company</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>HECO</td>
<td>32,000</td>
</tr>
<tr>
<td>HELCO</td>
<td>24,000</td>
</tr>
<tr>
<td>MECO</td>
<td>12,000</td>
</tr>
<tr>
<td>Total</td>
<td>68,000</td>
</tr>
</tbody>
</table>

Approximate numbers
Variable Generation is Reducing Conventional
At The System Level, Reliability Levels are Lower Than in the Past

Today a large generator trip or system fault during peak PV periods results in:
• Loss of system inertia due to reduction in rotating generation
• Loss of “legacy” PV which acts like a secondary generation loss
• Reduced effectiveness of UFLS due to rooftop PV
• Potential of massive load shedding (3-4 of 5 blocks of UFLS)
• Faster rate of change of frequency
Battery Energy Storage System for Fast Frequency Response
BESS Helps with Transmission Line Fault Event (Overfrequency)

 Fault Occurs @ 1 Second

Frequency Nadir of ~57.6 Hz

Stage 1 @ 58.9 Hz
Stage 2 @ 58.7 Hz
Stage 3 @ 58.4 Hz
Stage 4 @ 58.1 Hz
Stage 5 @ 57.8 Hz

300 MW PV Trips on O/F @ 60.5 Hz

with battery
Evolution of PV Integration for Hawaiian Electric

15% of Circuit Peak Load (Pre-2013)

50%, 75%, 100%, 120% of DML Representative Studies (2013)

250% of DML Transient Overvoltage (2014)

Hosting Capacity Advanced Inverters (2015)

- Control
- Visibility
- Grid Management
Hawai`i is Leading the Nation in Implementing Solutions for the Integration of Distributed Solar

Distribution Level
- Steady State
 - Thermal Capacity Over Load
 - Over Voltage issues
 - Primary
 - Secondary
 - Imbalance across phases
- Protection
- Dynamic
 - Voltage Flicker
 - Voltage Regulation Impacts
 - Islanding
 - Load Rejection Over Voltage
 - Ground Fault Over Voltage

System Level
- Steady state
- Transient stability
Testing at NREL Provided an Opportunity to Perform Lab Tests in a Real World Environment
At the Distribution Level, Circuit “Hosting Capacity” Method Used to Proactively Plan for and Integrate DER

Hosting Capacity: The amount of DER (PV) that can be accommodated on a circuit without adversely impacting operations, power quality, or reliability.

Heat Map Illustrative of Overvoltages Caused by High Amounts of Reverse Flow
We Are Working Through Rooftop PV Challenges

Cannot be Measured
- Rooftop PV output can only be estimated

Uncontrollable
- Cannot be turned on or curtailed

“Legacy” PV
- ~60 MW of PV generation trips offline at 59.3 Hz
- ~175 MW of PV generation trips offline at 60.5 Hz

Underfrequency Load Shed Schemes
- Decreases effectiveness of UFLS
Hawaiian Electric Company’s Technical Plan

- **System Level Limit**
 System level screens for each unique island grid balancing system level reliability, safety, and cost-effective service to all customers

- **Hosting Capacity**
 Circuit level hosting capacities unique to each circuit to enable efficient interconnection process

- **Advanced Inverters**
 Early implementation and establishment of advanced inverter standards (fixed power factor, volt-watt, frequency-watt, communications, etc.) to cost-effectively and safely integrate distributed energy resources
Ride-through Standards Were Established to Assist During System Disturbances

Low/High Frequency Ride-Through

- **MUST TRIP REGION**
- **MUST STAY CONNECTED**

Inverter will ride-through system contingencies (i.e. loss of large load or generating unit)

Low/High Voltage Ride-Through

- **MUST TRIP REGION**
- **MUST STAY CONNECTED**

Inverter will ride-through system or circuit disturbances (i.e. short circuit faults)
Adoption of Advanced Inverter Voltage Functions to Mitigate Voltage Issues

Volt-Watt

Mitigates secondary high voltage by reducing real power as a function of voltage.

Fixed Power Factor

Provides voltage support; mitigate high voltages. May increase system losses.

Dynamic Volt-Var

Circuit voltage optimization
Advanced Inverters for System Support

Frequency-Watt

Gradually raises the inverter power output to coordinate with the ramping capabilities of the bulk generating system. Mitigates frequency swings during system restoration.

May assist in over-frequency due to loss of load/excess energy.

Remote Connect/Disconnect

Utility sends command to inverter to disconnect or reconnect system. To be used during system emergencies or system restoration.

Communications

- **Remote Configurability**
- **Measurement/Visibility**

Source: EPRI Report 3002001246
Fixed Power Factor Can Mitigate Localized High Voltage and Reduce Voltage Fluctuations
The Next Challenge: Real World Overvoltage Events
Demonstrate that DER Systems Can Cause Overvoltage

Solar Peak – Voltage rise

Circuit voltage may rise above 105% of nominal during the solar peak

Evening peak – Voltage ok
Advanced Inverters Used to Manage Overvoltage Events

Blue = KW flow through service transformer
Red = Voltage measured at the service transformer
Lessons Learned

• Rooftop solar is a customer choice
• Consider DER as a grid asset – how do you extract the greatest value?
• It is an exercise in volume
• Get ahead of the curve
Mahalo!