Alstom Microgrid System for Philadelphia Navy Yard

Dr Jayant Kumar
Global Smart Grid Program Director
Jayant.s.kumar@alstom.com
+1 425 985 5294

NREL – Advanced Grid Technology Workshop Series
July 7 - 9, 2015
ALSTOM Microgrid System for Philadelphia Navy Yard
PIDC – Owner and Manager of Philadelphia Navy Yard

REAL ESTATE
PIDC acquires, improves, plans, manages, leases, and sells real estate to support the next wave of industrial and commercial activity in Philadelphia.

FINANCING
• PIDC offers a wide range of loans, tax-exempt financing, and technical assistance to businesses, developers, and non-profits of all shapes and sizes.

KNOWLEDGE & NETWORKS
• PIDC brings together the public and private sectors in order to energize growth. We build relationships with clients and partners who are dedicated to Philadelphia’s success.
ALSTOM Microgrid System for Philadelphia Navy Yard
PIDC – Owner and Manager of Philadelphia Navy Yard

- Centralized location for regional workforce of more than 3 million employees

- Access to:
 - Major highways
 - Intermodal freight system
 - International Airport
 - Center City, University City, and 30th Street Station
 - Sports Complex
ALSTOM Microgrid System for Philadelphia Navy Yard
Philadelphia Navy Yard - Today

- More than 11,500 employees
- 145 companies; 3 Navy activities
- In excess of 7.0 million SF occupied
- $750+ million of private investment
- $150+ million of publicly-funded infrastructure improvements
- Office, R&D, and industrial campus
ALSTOM Microgrid System for Philadelphia Navy Yard
Philadelphia Navy Yard @ Full Build Out

- 30,000 employees
- 1,500 residential units
- 15+ million SF
- $4 billion of investment
- $11 billion of local and state impact annually
- $275 million of state and local tax revenue annually
ALSTOM Microgrid System for Philadelphia Navy Yard
Current Electric Capacity

- Approximately 98% of the total electric usage is currently purchased externally from Constellation Energy and delivered to The Navy Yard by PECO

- PIDC’s electric grid currently has capacity of 34 MW via two substations – SS93 and SS664

 - SS93 primarily serves the Navy, Shipyards and Urban Outfitters and has on high demand days been exceeding its capacity
 - SS664 primarily serves the Corporate and Commerce Centers and at peak is running at 53% of capacity
ALSTOM Microgrid System for Philadelphia Navy Yard

ENERGY MASTER PLAN - Goals

• The Navy Yard Energy Master Plan completed (co-terminous with the real estate 2013 Update) a comprehensive energy, infrastructure, technology, and business plan that has become the guide to address the future of PIDC’s unregulated electric distribution system with the following goals:

 • Goal 1: Provide a competitively priced energy supply to all customers
 • Goal 2: Provide a platform for customer engagement and energy choice
 • Goal 3: Attract a Continuing Diverse Base of Businesses to The Navy Yard
 • Goal 4: Attract Energy Innovation & Testing through growth of TNY Smart Energy Campus
 • Goal 5: Maintain Sustainable Self-Funding Business Models for Continuing Development

• It establishes an overall approach for addressing the existing and rapidly increasing energy requirements at the site which not only includes electricity, but also the expanding use of natural gas, renewables and the marketplace’s growing interest in improved resiliency (ie: grid independence)
The Five Point Action Plan

- **Infrastructure**: Capacity, Generation/Supply, Technology - Microgrid
- **Business Model**: Forecasts, Tariffs, Procurement, O & M, Capital
- **Building Owner Opportunities**: DG, EE, DR – Programs & Partnership
- **Test Bedding Outreach and Protocols**: Energy Innovation Campus
- **Carbon Reduction and Sustainability**: Reduce Carbon Intensity
ALSTOM Microgrid System for Philadelphia Navy Yard

ENERGY MASTER PLAN – Key Highlights

- Rapid Growth
- Vintage 1930s – 2 primary substations
- PJM → PECO → 13.2 KV Supply
- Current - 25 MW Peak Load
- Ambition of 10+ MW DER with 50+ MW

Customer Ranking 2010-2011 (Usage)

- NAVY 33%
- AKER 18%
- TASTYKAKE 11%
- URBAN OUTFITTERS 7%
- APPTECH 7%
- US MARITIME 6%
- PHILA SHIP REPAIR 4%
- CRESCENT 3 2%
- OTHER 12%

The Navy Yard - Peak Demand Forecast

- Projected time when load exceeds current capacity
- 34 MW Current Capacity

Year:
- 2009
- 2010
- 2011
- 2012
- 2013
- 2014
- 2015
- 2016
- 2017
- 2018
- 2019
- 2020
- 2021
- 2022
ALSTOM Microgrid System for Philadelphia Navy Yard
ENERGY MASTER PLAN – Implementation Approach

Business as Usual – 100% Utility Fed
- All PECO supply
- No On-site generation (DG)
- No proactive EE or DR effort
Utility Demand - 82 MW

On-Site DG

Grid Programs:
- Natural gas DG
 - 6 MW Peak Reduction
 - 3 MW CHP (data center)
- 1 MW Solar PV
- 600 KW Fuel Cell
Utility Demand - 72 MW

Demand Response & Energy Efficiency

Customer programs:
- 20% EE goal by 2022
- Navy DOD mandates
- B-T-M Demand Reduction
Utility Demand - 60 MW

Cumulative usage decrease – over 61,000 MWh
ALSTOM Microgrid System for Philadelphia Navy Yard

ENERGY MASTER PLAN leads to Multiple Microgrids
ALSTOM Microgrid System for Philadelphia Navy Yard

ALSTOM – PIDC - DOE Project

Project - Overall Objectives & Methodology

<table>
<thead>
<tr>
<th>Project / Community Objective</th>
<th>DOE Objective</th>
<th>Project Methodology and RD&SD scope of work</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIDC service reliability objective</td>
<td>DOE (98%) Grid Resilience</td>
<td>PIDC - Network 6MW DG and 1 MW solar/storage and support islanded operation</td>
</tr>
<tr>
<td>PWD service reliability objective</td>
<td>PWD - Network CHP & BIO-Gas Plant and support islanded operation</td>
<td>RDSD for MG Ops-Planning, Islanding Reconnection Protection DIspatch</td>
</tr>
<tr>
<td>PIDC and PWD Sustainability Objective</td>
<td>DOE (20%) Emission Reduction</td>
<td>PIDC – Operate 1 MW community solar / 300 KW storage in the community microgrid</td>
</tr>
<tr>
<td>PWD – Operate Biogas plant together with CHP</td>
<td>RD&D for MG Ops-Planning, Portfolio Dispatch Ops & Control</td>
<td></td>
</tr>
<tr>
<td>PIDC Capacity Expansion Objective</td>
<td>DOE (20%) System Energy Efficiency</td>
<td>PIDC – Optimize import and local generation consisting of 6MW DG, 1 MW solar, 600 KW Fuel cell, 300KW storage, and 3 KW CHP</td>
</tr>
<tr>
<td>RD&D for MG Ops-Planning, Portfolio Dispatch Ops & Control</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ALSTOM Microgrid System for Philadelphia Navy Yard
ALSTOM – PIDC - DOE Project

Project - Technical Objectives

C1: MG Islanding Management Module Based on Voltage & Frequency Ranges

<table>
<thead>
<tr>
<th>Voltage (V) range in per unit (pu)</th>
<th>Maximum islanding time in seconds (s)</th>
<th>Frequency (f) range in Hertz (Hz)</th>
<th>Maximum islanding time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V < 0.5</td>
<td>0.16</td>
<td>f > 60.5</td>
<td>0.16</td>
</tr>
<tr>
<td>0.5 ≤ V < 0.8</td>
<td>2</td>
<td>f < {59.8-57.0} (adjustable set point)</td>
<td>Adjustable 0.16 to 300</td>
</tr>
<tr>
<td>1.1 ≤ V < 1.2</td>
<td>1</td>
<td>f < 57.0</td>
<td>0.16</td>
</tr>
<tr>
<td>V ≥ 1.2</td>
<td>0.16</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C2: MG Resynch & Reconnection Management Module Based on ANSI/NEMA/IEEE 1547

<table>
<thead>
<tr>
<th>Microgrid rating (MVA)</th>
<th>Frequency difference (Δf, Hz)</th>
<th>Voltage difference (ΔV, %)</th>
<th>Phase angle difference (Δθ, °)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5-10</td>
<td>0.1</td>
<td>3</td>
<td>10</td>
</tr>
</tbody>
</table>

C3: Frequency and Voltage Management Module (Islanded Ops) Based on ANSI 84.1-2006

C4: Microgrid Protection Management Module (Islanded Ops) Based on IEEE1547
- Adaptive Protection for Islanding Ops
- Fault Detection & Clearing Islanding Ops

C5: Microgrid Portfolio Optimization & Dispatch Management

C6: Microgrid – System Simulation - Utility Interface & Grid Resiliency Management
ALSTOM Microgrid System for Philadelphia Navy Yard
ALSTOM – PIDC - DOE Project

ALSTOM Microgrid System Components

1. Manned Microgrid (microgrid NOC)
 - ADMS / IDMS DOTS
 - PNNL GridLAB-D

3. Unmanned Microgrid (substation)
 - Microgrid Controller Systems (MGCS)

Field Equipments
- DER – DG/ES DR
- S/S Relays SA – DA Devices
- Smart Meter

Application Logic (Higher Level Applications)
5. Operating Plan Scenario Study & DG Monitoring
6. Grid Resilience - DOTS-GridLAB-D Simulation Study

ANSI / IEEE1547 Based
1. Islanding
2. Synchronization
3. Volt-Freq. Mgmt
4. Protection
ALSTOM Microgrid System for Philadelphia Navy Yard
ALSTOM – PIDC - DOE Project
Microgrid Topology – GridSTAR Picogrid

GridSTAR Microgrid

SS664
F-1392
F-1391

Chapel
EV Station
Energy Storage
Solar Training
ZNE House
Building 101

New Switch [Fault interrupting]
ALSTOM Microgrid System for Philadelphia Navy Yard
ALSTOM – PIDC - DOE Project
Microgrid Topology – Substation Level Minigrid

Critical Loads

- Shipbuilding facilities – high degree of automation – Avg load – 3 MW; Pk load 5MW
- "mission critical" 2500 employees – Avg load – 6 MW; Pk load 8MW
- Central fire pump station – Avg load – 50kW; Pk load 300kW
- 9-building campus 2000 employees – Avg load – 1.5 MW; Pk load 2.3MW
- Large manufacturing and baking facility – Avg load – 1.3 MW; Pk load 2.4MW

PCC SUBSTATION 602
NON-CRITICAL FEEDERS
TO ALTERNATE SOURCE

AKER
Urban
Navy
River Water Pumps
TASTYKAKE
PV & Storage

FUTURE 2 MW Storage
PCC

SEVEN

PCC

SUBSTATION 93

PICO

NAVY YARD
ALSTOM Microgrid System for Philadelphia Navy Yard
ALSTOM – PIDC - DOE Project

Microgrid Topology – Multiple Microgrids

[Diagram showing various substations and grid elements]
ALSTOM Microgrid System for Philadelphia Navy Yard
ALSTOM – PIDC - DOE Project

Vision & Pathway
ALSTOM Microgrid System for Philadelphia Navy Yard
ALSTOM – PIDC - DOE Project

ALSTOM Micorgrid Center of Excellence

Microgrid Controller Initiative
ISO MARKET

The Navy Yard (TNY) Microgrid
(Approx. 15% Solar Storage)

DISTRIBUTION UTILITY

Micro Grid Control Room Technology Platform
Smart Digital Substation Platform
Microgrid Systems Design
Grid Modernization Architect

Invention of GridSTAR EC
A Micro Grid Test Bed
Research & Development of Smart Grids & Power System Technology
Work Force Training

Program Management of TNY Grid Modernization
THANK YOU!

Dr Jayant Kumar
Global Smart Grid Program Director
Jayant.s.kumar@alstom.com
+1 425 985 5294

NREL – Advanced Grid Technology Workshop Series
July 7 - 9, 2015