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Outline 

◀ Some technical reasons behind the 
falling prices of energy from wind 

Multidisciplinarity and the 
need for MDAO ▶ 

◀ MDAO tools: 
architectures, methods, limits and gaps 

Conclusions and outlook ▶ 
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Design Trends 

Higher tower ⇒ higher wind speed 
because of vertical shear 

Larger swept area ⇒ larger power capture 

Improved capacity factor ⇒ lower CoE 

Reducing specific power, 
i.e. size grows more than power rating 

(Source: IEA Wind TCP Task 26) 

Data for onshore 
turbines ≥ 1MW 
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Why? 

Increasing A 

Decreasing 𝑽𝒓 

𝑃𝑟 

𝑃 

𝑉 
𝑉𝑟 

Rated power: 𝑷𝒓 = 
𝟏 

𝟐 
𝝔𝑨𝑽𝒓 

𝟑𝑪𝑷𝐦𝐚𝐱 
Rated wind speed 𝑽𝒓 = 

𝟑 ൗ𝑷𝒓
𝑨 

𝟏 
𝟐 
𝝔 𝑪𝑷𝐦𝐚𝐱 

Since 𝑪𝑷𝐦𝐚𝐱 
can not be drastically increased, the most effective way to 

decrease 𝑽𝒓 is to reduce specific power (or power loading) ൗ𝑷𝒓
𝑨 

More time spent in region III at full power, increased capacity factor 
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Design Trends & Challenges 

Size 

W
e
ig

h
t 

(C
o
s
t)

 

Grows as size3 

(but AEP only as size2) 
Technological 
innovation 

(source: LM Wind Power) 

Larger machines can not be designed by simple upscaling of smaller ones, 
to avoid cubic law of growth: need for R&D and technological innovation 



 
 
 

      

       

D
e
s
ig

n
 O

p
ti

m
iz

a
ti

o
n
 o

f 
W

in
d
 T

u
rb

in
e
s
 

Some Present and Future Technological 
Innovations that Enable Upscaling 

Each innovation will come with pros and cons 

Systems engineering -the final judge “Nice idea, but does it reduce CoE?” -: 
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1970 2019 

WTS-4 (4 MW) 
Hamilton Standard, 1982 

MOD-5B (3.2 MW) 
Boeing, 1987 

V164 Vestas 
8MW 2016 

9.5MW 2017 

V10 (30 kW) 
Vestas, 1979 

SWT-8.0-154 
Siemens 2017 

(in part from G. van Kuik, TUDelft) 

HALIADE-X 
12MW 220m 

GE 2021 

How Did We Get Here? 

12 MW 

10 kW 



V164 Vestas 
8MW 2016 

9.5MW 2017 

SWT 8.0 154 
Siemens 2017 

HALIADE X 
12MW 220m 

GE 2021 

Boeing, 1987 
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12 MW 

1970 2019 

MOD-5B (3.2 MW) 

10 kW 

V10 (30 kW) 
Vestas, 1979 

- --

Airfoils Add-ons Solidity Shape Materials 
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Multidisciplinarity & Couplings 
and the Need for MDAO 
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- Loads: envelope 
computed from large 
number of Design Load 
Cases (DLCs, IEC-61400) 
- Fatigue (25 year life), 
Damage Equivalent 
Loads (DELs) 
- Maximum blade tip 
deflections 
- Placement of natural 
frequencies wrt rev 
harmonics 
- Stability: flutter, LCOs, 
low damping of certain 
modes, local buckling 
- Complex couplings 
among rotor/drive-
train/tower/foundations 
(off-shore: hydro loads, 
floating & moored 
platforms) 
- Weight: massive size, 
composite materials (but 
shear quantity is an 
issue, fiberglass, wood, 
clever use of carbon 
fiber) 
- Manufacturing 
technology, constraints 

- Generator (RPM, weight, 
torque, drive-train, …) 
- Pitch and yaw actuators 
- Brakes 
- … 

GE wind turbine (from inhabitat.com) 

Pitch-torque control laws: 
- Regulating the machine at 
different set points depending 
on wind conditions 
- Reacting to gusts 
- Reacting to wind turbulence 
- Keeping actuator duty-cycles 
within admissible limits 
- Handling transients: run-up, 
normal and emergency shut-
down procedures 
- … 

- Annual Energy Production (AEP) 
- Noise 
- Transportability 
-… 
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- Loads: envelope 
from large 
Design Load 

Cs, IEC-61400) 
- (25 year life), 

Equivalent 
(DELs) 

- m blade tip 
s 

- ent of natural 
s wrt rev 

- flutter, LCOs, 
low damping of certain 
modes, local buckling 
- Complex couplings 
among rotor/drive-
train/tower/foundations 
(off-shore: hydro loads, 
floating & moored 
platforms) 
- Weight: massive size, 
composite materials (but 
shear quantity is an 
issue, fiberglass, wood, 
clever use of carbon 
fiber) 
- Manufacturing 
technology, constraints 

- Generator (RPM, weight, 
torque, drive-train 
- Pitch and yaw ac 
- Brakes 
- … 

Pitch-torque control laws: 
- Regulating the machine at 
different set points depending 
on wind conditions 
- Reacting to gusts 
- Reacting to wind turbulence 
- Keeping actuator duty-cycles 
within admissible limits 
- Handling transients: run-up, 
normal and emergency shut-
down procedures 
- … 

- Annual Energy Production (AEP) 
- Noise 
- Transportability 
-… 

Warning: 
• Strong couplings 
• Potentially expensive 

(one load assessment: 107÷108 time steps) 



 

     

   

    

      

       

 

Baseline design by INNWIND.EU consortium 

1. Perform purely aerodynamic optimization for max(AEP) 

2. Follow with structural optimization for minimum weight 
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A Simple Example: 
Aero Optimum ≠ Structural Optimum 

Example: INNWIND.EU 10 MW (class 1A, D=178.3, H=119m) 

Dramatic reduction in solidity to improve AEP leads to large increase in weight 

⇨ CoE increases (+2.6%) 

Spar cap ▼ Chord ▼ 

http:INNWIND.EU
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Optimization-Based Design of WTGs 

Requirements for multi-disciplinary optimization tools: 
• Be fast (hours/days) (on standard hardware!) 

Pre-MDAO approach to design: discipline-oriented specialist groups 

Different simulation models 
Lengthy loops to satisfy all 
requirements/constraints 

(months) 

Data transfer/compatibility 
among groups 

• Provide solutions in all areas (aerodynamics, structures, controls, sub-systems) for 
specialists to refine/verify 

• Account ab-initio for all complex couplings (no fixes a posteriori) 

• Use fully-integrated tools (no manual intervention) 

MDAO will never replace the experienced designer! … but greatly speeds 
up design, improves exploration/knowledge of design space 
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Literature 

Integrated tools: 

• ECN: FOCUS (Duineveld, 2008) 

• DTU: 

- HAWTOPT (Døssing, 2011) 

- New design framework by M. McWilliam 

• NREL & Sandia: WISDEM (Dykes et al., 2014) 

• POLIMI & TUM: Cp-Max (with A. Croce, P. Bortolotti & many others) 

- Begin in 2007 thanks to grant from TREVI Energy Spa 

- First presentations to industry from 2008 onwards 

- First conference presentations from 2009 onwards (EACWE 2009) 

- Papers: Bottasso et al., 2012-2015; Croce et al. 2016, Sartori et 
al. 2016, Bortolotti et al. 2016-19 

• Several proprietary tools at various companies 



 

Te
c

h
n

is
c

h
e

 U
n

iv
e

rs
it

ä
t 

M
ü

n
c

h
e

n
 

W
in

d
 E

n
e

rg
y

 I
n

s
ti

tu
te

What Does a Typical MDAO 
Tool Look Like? 



 

 

 

 
 

 

 

 

  

  

2D FEM sectional model 

Blade and tower 
beam models 

Structural design parameters 

Aeroservoelastic multibody 
model 

Aerodynamic design 
parameters 

Constraints: 
• Max tip deflection 
• Ultimate & fatigue loads 
• Natural frequencies 
• Buckling 
• Manufacturing constraints 
• Geometric constraints 
• Noise 
• … 

Optimizer 
min Cost 

wrt design variables 
subject to constraints 

Control systems 

Load & performance analysis: 
• DLCs 
• AEP 
• Campbell 
• Noise 
• … 

Cost model(s) 

Configurational design 
parameters 

Sub-systems 
• Generator 
• Nacelle 
• Cooling 

• Pitch 
• Brake 
• … 



 

 

 

 
 

 

 

 

  

  

2D FEM sectional model 

Blade and tower 
beam models 

Structural design parameters 

Aeroservoelastic multibody 
model 

Aerodynamic design 
parameters 

Constraints: 
• Max tip deflection 
• Ultimate & fatigue loads 
• Natural frequencies 
• Buckling 
• Manufacturing constraints 
• Geometric constraints 
• Noise 
• … 

Optimizer 
min Cost 

wrt design variables 
subject to constraints 

Control systems 

Load & performance analysis: 
• DLCs 
• AEP 
• Campbell 
• Noise 
• … 

Cost model(s) 

Configurational design 
parameters 

Sub-systems 
• Generator 
• Nacelle 
• Cooling 

• Pitch 
• Brake 
• … 

Design variables: 

• Configurational 
• Aerodynamic 
• Structural 
• Materials 

• Sub-systems 
• Controls 
• ... 
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Some design parameters have 
very minor effects on CoE 
Problem may be ill-posed 

Expensive performance analysis has to be 
repeated for each change in each design variable 
Possibly non-smooth load behavior (DLC jump) 

2D + beam models unable 
to capture local 3D effects 

Various possible 
algorithmic flavors: 
• Monolithic 
• Iterative 
• Partitioning of vars 
• Surrogate models 
• Global/local opt 
• … 



 

 

  

  
 

        

“Coarse” level: 2D FEM & beam models 

Automatic 3D CAD 
generation 

“Fine” level: 3D FEM 

Analyses: 
- Max tip deflection 
- Max stress/strain 
- Fatigue 
- Buckling 

Verification of design constraints 
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Automatic 3D FEM meshing Root 3D CAD model Joint & laminate analysis 
- Bolt preload calculation 
- Max stress/strain 
- Fatigue 

Automatic 3D FEM meshing 

(Ref.: C.L. Bottasso et al., Multibody System Dynamics, 2014) 



 

 

  

  
 

        

 
     

    
  

“Coarse” level: 2D FEM & beam models 

Automatic 3D CAD 
generation 

“Fine” level: 3D FEM 

Analyses: 
- Max tip deflection 
- Max stress/strain 
- Fatigue 
- Buckling 

Verification of design constraints 
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Automatic 3D FEM meshing Root 3D CAD model Joint & laminate analysis 
- Bolt preload calculation 
- Max stress/strain 
- Fatigue 

Automatic 3D FEM meshing 

A similar fine-level refinement 
could be used for aerodynamics, 
but apparently not yet reported 

in the literature 

(Ref.: C.L. Bottasso et al., Multibody System Dynamics, 2014) 
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Composite Co-Design 
Idea: 

• Define a parametric composite material model (mechanical properties vs. cost) 

• Identify the best material for each component within the model 

Result: 

• Wind turbine designer: pick closest existing material within market products 

• Material designer: design new material with optimal properties 

Example: INNWIND.EU 10 MW 

▲ 
Redesign of spar caps laminate 
Optimum is between H-GFRP and CFRP 

Redesign of the shell skin laminate 
Optimum is between Bx-GFRP and Tx-GFRP ▼ 

Combined optimum: Blade mass -9.3%, blade cost -2.9% 
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            POLITECNICO di MILANO                                                 POLI-Wind Research Lab  

Case Study 
Results: Optimal blade 3D 

 

 

Three-dimensional view with detail of thick trailing edge and 
flatback airfoils. 

Airfoil Free-Form Co-Design 

Design airfoils together with blade: 

• Bezier airfoil parameterization 

• Airfoil aerodynamics by Xfoil + Viterna extrapolation 
and/or 2D CFD 

Additional constraints: 

CL max (margin to stall), geometry, … 

Appealing for noise-aware design 
Automatic appearance 

of flatback airfoil! 

(Ref. Bottasso et al., J. Phys: Conf. Series, 524, 2014, SciTech 2015) 



 
   

 

 

  
  

 

  

 

 

Understanding and 
measuring the inflow 

Beyond the turbine: 

plant design, 

wind farm control, 

grid integration 

Design: beyond 
BEM 
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Some Open Issues: a Personal View 

Stability analysis 

Uncertainty quantification 

Co-design everything 

• Control systems 

• Materials 

• Airfoils 

• … 
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Conclusions 

MDAO for WTGs: only about 10 years old, but growing strongly, 
gaining acceptance and delivering results 

Work at TUM & POLIMI in collaboration with P. Bortolotti, H. Canet, 
F. Campagnolo, A. Croce, L. Sartori 
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