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2 I How can optimization be used to find

Thought exercise: How can an optimization
of this floating horizontal-axis wind turbine
(HAWT) identity a vertical-axis wind turbine
(VAWT) as an optimal system?

* You could let the tower height vary to
unrealistic design values to reveal trends of

system levelized cost of energy (LCOE) vs.
tower height

* Then you could identify the sensitivities of the

rotor and drivetrain mass and center of gravity to
the resulting cost

* You could let the nacelle tilt angle vary up to

90 degrees and use precone and prebend to
emulate a V-VAWT rotor architecture

¢ This would be very inefficient and the optimizer

would have to pass through regions of degraded
performance

radically new designs?




31 Floating Offshore Wind Energy in the U.S.

* Floating offshore wind plants have
more components than land-based
machines

* There are strong relationships
between design variables which affect
the cost of other components

* Turbine costs represent 65% of wind
plant costs for land-based sites

compared to around 20% for floating
offshore sites

* Platform costs now represent the AT Componants
largest single contributor to LCOE ® Biade Pitch System
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* Vertical-axis wind turbines have been
studied as a potential solution for
tloating offshore wind energy which
have several benefits, including:

* Lower center of gravity, which reduces
platform costs

* Improved efficiency over HAWTs at
multi-MW scales

* Reduced O&M costs through removal
of active components and platform-level
placement of drivetrain

A

. High HAWT
""\ C.G. increases
\, substructure

\ costs

\

\
A

/ "'\,.
/  Lower VAWT \
[/ C.G. decreases ""-\.

substructure
costs

\

VAWT
insensitivity to
wind direction

allows for

large rotors
&=

VAWT simplicity and
accessible drivetrain
reduce O&M costs

VAWT Components
1 Gearbox

2 Generator




41 Levelized Cost of Energy Design Objective

* Energy generation sources have traditionally
been selected based on an LCOE comparison
with alternative sources

Offshore Wind Plant
Annual Costs

Turbine (Turb)
Costs

* Annual expenses include capital costs and
operational expenses, which become
significant for offshore systems

* VAWT rotor
¢+ Drivetrain
* Platform/mooring

* The relatively low cost of the turbine suggests
that a more expensive turbine system than would
be considered for land-based applications might
be optimal for a system LCOE by reductions in
the platform costs

* Energy production divides the entire cost
formula, however a larger rotor also results in
a larger drivetrain and platform which
increases the system capital expenditures

* The sensitivities of the sub-component

relationships with cost must be understood to
produce the optimal system
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5 1 Levelized Cost of Energy Design Objective

* The solution for LCOE minimization is to
reduce the system costs and increase energy
capture

* The 1deal wind energy system would
eliminate all mass and cost that is not directly
capturing energy from the wind

* This objective is even more significant for
floating offshore sites where increased mass
above the water level must be supported by
larger and more expensive floating platforms

* Based on this objective...

Offshore Wind Plant
Annual Costs

Turbine (Turb)
Costs
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* VAWT rotor
¢+ Drivetrain
* Platform/mooring

* Development
* Engineeringand

management

* Portandstaging
* Electricalinfrastructure
¢ Assemblyand

installation

* Commissioning
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s | A more optimal turbine design for floating offshore sites!?

...the futurer?




71 A more optimal turbine design for floating offshore sites?

...the futurer?
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¢ I Traditional Offshore Wind System Design Process

How will we know using the traditional, de-coupled approach for design?

How will we know 1if we over-constrain our solution space, or if we don’t try to
gain understanding from the observed trends to consider new approaches?

Turbine Platform & Balance of
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Wind Plant
Annual
Energy
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Maintenance Wind Plant
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Cost of
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9 | The Sandia 5 MWV floating offshore VAWT project
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10 I Vertical-Axis Wind Turbine Rotor Architecture Optimization

* The optimal VAWT rotor architecture was
unknown at the beginning of the project

* Darrieus and V-VAWT architectures with
exponents ranging from V’ to ‘U’-shaped
rotors were studied with variable blade
number and rotor solidity to compare
designs

* The rotor with the greatest potential to
reduce turbine-platform LCOE was
determined to be the Darrieus design due
to its lowest mass and cost, where loads
are carried mostly axially as opposed to
being carried through bending moment

.
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11 1 Optimal Platform Design Studies

* Floating platform design and
analysis was performed to
determine the optimal floating
platform architecture for LCOE
and performance

* 6 platforms covering the range
of tloating system stability
mechanisms were studied and
compared

* A tension-leg platform with
multiple columns was the lowest
cost option per Stress
Engineering Services

* Performance benefits from the
small roll/pitch motions include
increased energy capture and
reduced inertial loading on the
turbine

#2: Classic Spar

#1: Four-column Semi-submersible

Buoyancy

3 Ring Pontoon

Ballast

A5 Multi-cellular Tensicn Leg Platform

Mooring




12 I Coupled Platform Design Iterations

* The final platform design was
determined through coupled
aero-hydro-elastic simulations

of the VAWT-TLP system
performed at Sandia

Perform
aero-hydro-
elastic load
simulations

* The platform would be
redesigned by Stress
Engineering Services (SES) in
response to the dynamic loads

* Cost estimates were provided
by SES using industrial cost
data

Iterate platform
design, generate
new platform
properties




13 ‘ Dynamic Controls Optimization of the Coupled Models

(rotor-platform interaction)

(water-body interaction)

xl — fl(xll X2,X3,U )

(air-rotor interaction)
x3 = f3(x3,%1)

Xy = fo(xz,%1)

4 N

Coupled dynamic model

X1 1(xq, %2, x3,u)
3:51 = f2(x2,x1)
X1

\

f3(x3,%1)
%

Objective:
Optimize the control input u to maximize power

Constraints:
S.T. limitations in torque and RPM




14 1 Dynamic Controls Optimization of the Coupled Models

* The dynamic controls optimization
routines were used to exploit design
margin in the platform at low wind

speeds

* Rotor torque and rotational speed were
allowed to vary, subject to the maximum
resultant roll/pitch overturning moment
of the platform

* The objective function results in a
16.1% increase in annual energy
production over the typical constant
rotational speed control strategy at a

given wind speed for the VAWT
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15 1 Dynamic Controls Optimization of the Coupled Models

N
— — — Conslant w
Cptimal Control | 4
* The maximum energy production | |z Gonirol Limits
objective function optimized towards a
bang-bang, or hysteresis, controller
 This results in latger torque variations, ~ Sp-iel — T —

which would effect generator cost and
mass 20

¢ This operation could result in a very
different electrical conversion mechanism
than electrical generators

Torque (Nm)

* As an alternative use case, the controls
objective could be used to reduce the
variation in loads which may have a larger
system reduction on LCOE

Fower (MW)

Rotor Azimuth (rad)




16 I Floating Offshore VAWT Levelized Cost of Energy Analysis
Baseline  Upper-bound Projected near-  Project mid- Projected
LCOE LCOE term LCOE term LCOE longer-term
* Cost components were each LCOE
estimated using the most t]fU.Sth AEP Baseline Baseline 16.1% increase Advanced 47’.% increase
] . from advanced controls in energy
analysis and references available controls capture
Rotor costs Baseline Baseline Rotor material ~ Reduction from  78.2% increase
° ~ : optimization  low-cost carbon  in rotor cost
LCOE near-term value 1s most fiber
representaﬁve Of current Platform Most-likely Upper-bound 13.6% 25% reduction Mid-term
. . . and value estimate reduction for for mid-term optimization
estlmates, and 18 muCh hlgher mooring optimal system  optimization
_ ” platform
than fO]f land baSCd Wlﬂd energy Installation  Most-likely Upper-bound 15.3% 25% reduction Mid-term
value estimate reduction for for mid-term optimization
° T@ChﬂOlOgy advances to the the improved optimization
: installati
platform, rotor structural design, mstaration
} . ’ procedure
and reductlons in Operatlons and o&M Baseline Baseline Baseline 19% reduction  Elimination of
. direct costs by eliminating  jack-up vessel
maintenance reduce the LCOE jack-up vessel charters
charters
to as low at $135/MWh | velired e
. cost of 274 323 213 (FCR=10.3%) 110
* The preferred design energy 135 (FCR=7.9%)
: 1V 'R=7.9%
methodology considers all of the —5PMWL ER=TOH)
system design tradeoffs that 13%

22%
3%

affect the final performance and
cost, where design decisions are
all made in parallel and influence

the design of other components
41%
LCOE = $213/Mwh

37%

37%
LCOE = $176/MWh

LCOE = $135/MWh

31%

1%
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17 1 Component Design and System Tradeoffs

The components of a floating offshore wind system do not operate independently,
and they should not be designed independently.

Some example relationships between the component designs include:

System component System Implications

Wind turbine rotor Decrease rotor mass » Increases rotor cost (using carbon fiber)
= Reduces platform costs with lower turbine-drivetrain
center of gravity and mass moments of inertia

Drivetrain Use a high efficiency = Increase AEP, which divides entire annual expenses in
generator LCOE calculation
= Increase cost and mass of drivetrain
» Likely results in platform cost increase

Floating platform Platform architecture = Design architecture selected will result in larger or
selection smaller motions
= Platform motions can result in significant inertial
loads added to the turbine tower and blades
= If the platform is unstable in high winds it will require
additional control, reducing reliability and AEP

Turbine controls Optimize for power = Increases AEP, divides full annual expenses
» Increases variation in loads, could result in mooring
or drive bearing fatigue concerns

Turbine reliability Over-design system to » Increases turbine and drivetrain costs
account for probabilistic = Results in a more reliable turbine, which reduces
failures of components operations and maintenance costs and downtime




18 I System Optimal Co-Design Process

System Controls

Turbine
Structure

Q.CZ = fz(Xz, ey X ...,U,z,pz)

Turbine = )

Aerodynamics : :
X, = fl(xl, vy X ...,ul,pl) Drlvetra] n

c1 = g1(p1) X3 = f3(x3, .0, Xj oo, Us, P3)
c3 = g3(p3)

Wind plant LCOE
optimization

Annual Energy
Production Platform &

fapp (X1, o) X w00

Operation & Mooring

Xy = f4 (X4 o) Xj ooy Ug, D)

Maintenance o= )

X'5 = fs(xs, ey X ...,U5,p5)
¢s = gs(ps)

X = F (01, ) Xy U ooy Wi P2 P) Coupled dynamic-cost model
C= g(plr ""pn)

Optimal design (pq, ..., p,)*: arg min LCOE
(pl'---:pn)

fi(...): dynamic model of i-th subsystem
gi(p;): cost model of i-th subsystem, as function of the set of parameters p;
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