

Control Co-Design of Floating Offshore Wind Turbines

The ARPA-E ATLANTIS Program

Prof. Mario Garcia-Sanz

ARPA-E Program Director

U.S. Department of Energy

5th Wind Energy Systems Engineering Workshop Pamplona (Spain), October 3rd, 2019

1. Control Co-Design (CCD)

- The increasing **complexity** of technology has • changed the way we study engineering. Engineering careers are now much more specialized.
- New engineers: - have a deeper knowledge of some aspects ٠ - at the cost of a much **narrower picture!!**

Controller

(microprocessors.

algorithms, circuits)

feedback

Reference

to follow

Sensor

to be controlled

Actuator

<u>Consequences</u>: ٠

CHANGING WHAT'S POSSIBLE

- Sequential way of working in industry
- **Control** = algorithms/circuits to regulate existing systems
- This sequential approach limits the possibilities of the design.

Control at the end

Garcia-Sanz M. (2019). A Metric Space with LCOE Isolines for Research Guidance in Wind and Hydrokinetic Energy Systems. Wind Energy, Wiley;1–21. https://doi.org/10.1002/we.2429.

<u>LCOE</u>

Wind projects are calculated in terms of the *Levelized Cost Of Energy* (*LCOE*), as dollars per MWh, or cents of dollar per kWh, and is a function of:

- the <u>capital expenditures</u> or <u>CapEx</u> of the turbine (in \$), which includes the cost of the blades, nacelle, tower, electrical generator, gearbox, pitch and yaw systems, power electronics, floating platform, mooring system, anchor system, etc.;
- the *fixed charge rate* or *FCR* (in 1/year), which includes the cost of money, taxes and amortization;
- the <u>operation and maintenance expenditures</u> or **OpEx** (in \$/year);
- the *annual energy production* or *AEP* (in kWh), which depends on the site wind characteristics.

$$LCOE = \frac{FCR\left(\sum_{k=1}^{n} CapEx(k)\right) + \sum_{k=1}^{n} OpEx(k)}{\sum_{k=1}^{n} AEP(k)} = \left[\frac{\$/year}{kWh/year}\right]$$

LCOE dependences

LCOE cost of steel dependence

LCOE site dependence

AEP (kWh) = $P_e * h = (0.5 \rho A C_p \mu V^3) * h$

New metric space: first metric

 $M_1 = f_1(\overline{\text{efficiency}})$

$$\mathbf{M_1} = \frac{\sum_{k=1}^{n} P_{e1}(k)}{\sum_{k=1}^{n} P_{w1}(k)} \Big|_{at V_1} = \sum_{k=1}^{n} \left(w(k) C_p(k) \mu(k) \right)$$

$$P_{e1}(k) = \frac{1}{2} \rho A_r(k) C_p(k) \mu(k) V_1^3$$
$$P_{w1}(k) = \frac{1}{2} \rho A_r(k) V_1^3$$
$$w(k) = \frac{A_r(k)}{\sum_{k=1}^n A_r(k)}$$

$$C_p(k) = C_{pmax}(k)$$

$$= (1 - L_g(k)) (1 - L_{dt}(k)) (1 - L_w(k)) (1 - L_e(k)) (1 - L_o(k)) A_v(k)$$

Based on internal properties

where:

- \rightarrow *n* = number of WTs in the farm,
- $\rightarrow \rho$ = 1.225 kg/m³ is the density of the air,
- $\rightarrow A_r(k) = \pi R^2$ is the swept area of the k WT rotor in m²,
- \rightarrow V₁ is the selected undisturbed upstream below-rated wind velocity (for example = 8 m/s),
- $\rightarrow C_p(k)$ = aeropdynamic efficiency of k WT,
- $\rightarrow \mu(k)$ = efficiency of k WT, including (all in per unit):
 - *L_q*: generator losses,
 - *L_{dt}*: drive-train (gearbox and power electronics) losses,
 - L_w: wake effect losses due to the aerodynamic interaction of turbines in the farm,
 - *L_e*: electrical losses (substation and electrical lines, intra-wind-farm and farm-to-shore),
 - L_o : other losses,
 - A_v : wind turbine availability.

(1-)

New metric space: second metric

$$\boldsymbol{M_2} = f_2 \left(\frac{\text{area}}{\text{mass-eq}}\right)$$

$$\boldsymbol{M_2} = \frac{\sum_{k=1}^n A_r(k)}{\sum_{k=1}^n M_{eq}(k)}$$

$$M_{eq}(k) = \sum_{j=1}^{2} m_j(k)$$
$$m_j(k) = f_{tj}(k) \left(1 + f_{mj}(k) + f_{ij}(k)\right) m_{cj}(k)$$

Based on internal properties

where:

- \rightarrow *n* = number of WTs in the farm
- $\rightarrow A_r(k) = \pi R^2$ is the swept area of the k WT rotor in m²,
- \rightarrow f_t = material factor = cost original material (\$/kg) / cost steel of reference (\$/kg)
- $\rightarrow f_m$ = manufacturing factor = cost manufacturing of component (\$/kg) / cost original material of the component (\$/kg)
- \rightarrow f_i = installation factor = cost installation of component (\$/kg) / cost original material of the component (\$/kg)
- $\rightarrow m_c$ = mass of each major component of the FOWT (kg)
- \rightarrow z = number of main components of the k WT

New metric space: WT technologies

New metric space: research guidance

3. ARPA-E ATLANTIS Program

<u>A</u>erodynamic <u>T</u>urbines <u>L</u>ighter and <u>A</u>float with <u>N</u>autical <u>T</u>echnologies and <u>I</u>ntegrated <u>S</u>ervo-control

Program Director Dr. Mario Garcia-Sanz

Application of Control Co-Design methodologies

that integrate dynamics and control engineering at the start of the design process, enabling **optimal FOWT** solutions that are not achievable otherwise.

Floating Offshore Wind Turbines (FOWT)

https://arpa-e.energy.gov/?q=arpa-e-programs/atlantis

ATLANTIS Program: U.S. resources

U.S. floating offshore wind resource (Technical resources)

 water depth < 1,000 m, wind speed > 7 m/s excluding ice regions, competing-use and environmental

 array power density of 3 MW/km² <u>Total technical offshore = 7,203 TWh/year</u>

• <u>Total floating (>60m)</u> = **4,178 TWh/year > U.S.** electricity consumption = 3,911 TWh/year (2017) which requires a small part of the gross resource area

National Offshore Wind Strategy: Facilitating the Development of the Offshore Wind Industry in the United States. U.S. Department of Energy (DOE) and the U.S. Department of the Interior (DOI). September 2016

•

ATLANTIS Program: Control Co-Design

Floating Offshore Wind Turbines (FOWT)

More dynamic coupling = More need of Control Co-Design!!!

Control Co-Design = Radical mass reduction

Copying the land-based solution for floating offshore!!!!

= Colossal Mass to stabilize system (~70% of CapEx is Floating Platform)

ATLANTIS Program: Objective in Metric Space

Floating Offshore Wind Turbines (FOWT)

Floating Offshore Wind Turbines (FOWT)

ATLANTIS Program: Projects

Floating Offshore Wind Turbines (FOWT)

ARCUS <u>Vertical-Axis</u> Wind Turbine. Sandia Lab, Keppel, ABS

A Low-Cost Floating Offshore <u>Vertical Axis</u> Wind System. U.T. Dallas, Aquanis, UIUC, VLO, XFlow, NREL

<u>Ultra-light Concrete</u> Floating Offshore Wind Turbine with <u>NASA-developed Response</u> <u>Mitigation</u> Technology. U. Maine, NASA, NREL, HOE, ABS

Design and Develop Optimized Controls for a Lightweight 12 MW Wind Turbine on an <u>Actuated Tension Leg Platform</u>. **GE, Glostein**

USFLOWT: Ultra-flexible <u>Smart Floating</u> Offshore Wind Turbine. NREL, CSM, CU, UIUC, Sandia Lab

AIKIDO - Advanced <u>Inertial and Kinetic</u> <u>energy recovery</u> through Intelligent (co)-Design Optimization. **Otherlab, Bronberg** Wind Energy with Integrated Servo-control (<u>WEIS</u>): A Toolset to <u>Enable Controls Co-Design</u> of Floating Offshore Wind Energy Systems. **NREL, UIUC**

<u>Model-Based Systems</u> <u>Engineering and Control Co-</u> <u>Design</u> of Floating Offshore Wind Turbines. UCF

A <u>Co-Simulation Platform</u> for Off-Shore Wind Turbine Simulations. U.Mass.Am., Sandia Lab

Computationally Efficient Atmospheric-Data-Driven Control Co-Design Optimization Framework with <u>Mixed-Fidelity</u> Fluid and Structure Analysis. Rutgers U., U.Mich., NREL, Brigham Young U., DAR The Floating Offshore-wind and Controls <u>Advanced Laboratory</u> (FOCAL) Experimental Program. NREL, U.Maine, DNV-GL

<u>Scale Model Experiments</u> for Co-Designed FOWTs Supporting a High-Capacity (15MW) Turbine. WS Atkins, MARIN, ABS, NREL, NASA

DIGIFLOAT:

Development, Experimental Validation and Operation of a <u>DIGItal Twin</u> Model for Fullscale FLOATing Wind Turbines. Principal Power, Akselos, ABS, EDP, NSWC, UBC, UW 50 MW Segmented Ultralight <u>Morphing Rotors</u> for Wind Energy. UVA, NREL, CSM, CU, UIUC, Sandia Lab

Megawatt-scale <u>Power-Electronic-</u> <u>Integrated</u> <u>Generator</u> with Controlled DC Output. UIUC

<u>Active</u> <u>Aerodynamic Load</u> <u>Control for Wind</u> Turbines. Aquanis, U.T. Dallas, Sandia Lab, TPI

16

CHANGING WHAT'S POSSIBLE

A1. New FOWT Designs

A2. Enhanced **Computer Tools**

A3. Physical Experiments

A4. Extra **Components**

THANKS!!

mario.garcia-sanz@hq.doe.gov