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1. Control Co-Design (CCD) Sequential

Aerodynamics

Each step limits
the next one

The increasing complexity of technology has
changed the way we study engineering.

Engineering careers are now much more specialized. Mechanical/
Structural

* New engineers: - have a deeper knowledge of some aspects
- at the cost of a much narrower picture!!

 (Consequences:

- Sequential way of working in industry ———

- Control = algorithms/circuits to
regulate existing systems

————
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Control Co-Design

Control
Engineering

Stable, but

slow dynamics.

It failed

Wright brothers, 1903
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8 Sub-system interactions

Standards/
Certification

‘ A(;peration &
aintenance

Economics/
Business

Manufacturing

Aerodynamics /
Hydrodynamics

Control Co-Design.
Incorporating
control concepts
from the start!!!




Control Co-Design

Five Inputs:
i1toi5

Three Areas:
Al to A3

Garcia-Sanz M. (2019).
Control Co-Design: an
engineering game
changer. Advanced
Control for Applications,
Wiley, Vol. 1, Num. 1.
https://doi.org/10.1002/a
dc2.18
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2. New Metric Space

Garcia-Sanz M. (2019). A Metric Space with
LCOE Isolines for Research Guidance in Wind
and Hydrokinetic Energy Systems. Wind Energy,
L CO E Wiley;1-21. https://doi.org/10.1002/we.2429.

Wind projects are calculated in terms of the Levelized Cost Of Energy (LCOE),
as dollars per MWh, or cents of dollar per kWh, and is a function of:

 the capital expenditures or CapEx of the turbine (in S), which includes the cost of the blades, nacelle, tower,
electrical generator, gearbox, pitch and yaw systems, power electronics, floating platform, mooring system,
anchor system, etc.;

* the fixed charge rate or FCR (in 1/year), which includes the cost of money, taxes and amortization;

» the operation and maintenance expenditures or OpEx (in S/year);

* the annual energy production or AEP (in kWh), which depends on the site wind characteristics.

LCOE =

FCR (Xk=1CapEx(k)) + Xk=10pEx(k) | $/year
w=1AEP (k) ~ |kWh/year

GUrpa-e



LCOE dependences

LCOE cost of steel dependence
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LCOE site dependence

Weibull probability distribution
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New metric space: first metric

M, = f; (efficiency)

Based on internal properties

where:

%

k=1 Pe1 (k)
1]3=1 Pwl (k)

M1=

at Vl

= > (w600 ui)
k=1

R

1
Pe1(k) =5 p Ar(k) Cp(k) (k) vy

1
Py, (k) = 2 p Ar(k) V13
Ar (k)

k) =
W) = S A ®

Cp (k) = Cpmax(k)
u(k)

\

\J

= (1 - Lg (k)) (1 - Ldt(k)) (1 - Lw(k)) (1 - Le(k)) (1 — L, (k)) Av(k)

GUrpa-e

n = number of WTs in the farm,
p=1.225 kg/m3 is the density of the air,
A,(k) = T R? is the swept area of the k WT rotor in m?,

V, is the selected undisturbed upstream below-rated
wind velocity (for example = 8 m/s),

Co(k) = aeropdynamic efficiency of k WT,

(k) = efficiency of k WT, including (all in per unit):

L,: generator losses,

L, drive-train (gearbox and power electronics)
losses,

L. : wake effect losses due to the aerodynamic

w
interaction of turbines in the farm,

L.: electrical losses (substation and electrical

lines, intra-wind-farm and farm-to-shore),
L,: other losses,

A,: wind turbine availability.



New metric space: second metric

M. = area
2= /2 mass—eq

he1 Ar (K)
M. = k=1
{ L XRe Meq(K) ]

Meq () = ) my(k)
j=1

m; (k) = fi (k) (1 + fonj () + £1500) ) me; ()

GUrpa-e

Based on internal properties

where:
— n = number of WTs in the farm
— A, (k) = TR? is the swept area of the kK WT rotor in m?,

— f, = material factor = cost original material ($/kg) / cost
steel of reference (S/kg)

— f,, = manufacturing factor = cost manufacturing of
component (S/kg) / cost original material of the
component (5/kg)

— f; = installation factor = cost installation of component
(S/kg) / cost original material of the component ($/kg)

— m_ = mass of each major component of the FOWT (kg)

— z = number of main components of the k WT
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New metric space: WT technologies
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Ar/Meq, [m2/Kg]

M2

New metric space: research guidance
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3. ARPA-E
ATLANTIS Program

Aerodynamic Turbines
Lighter and Afloat with
Nautical Technologies and
Integrated Servo-control

Program Director Dr. Mario Garcia-Sanz

Application of Control Co-Design
methodologies
that integrate dynamics and control
engineering at the start of the design
process, enabling optimal FOWT solutions
that are not achievable otherwise.

Floating Offshore Wind Turbines (FOWT)

Qil"°| )\i"e https://arpa-e.energy.gov/?g=arpa-e-programs/atlantis

CHANGING WHAT'S POSSIBLE



https://arpa-e.energy.gov/?q=arpa-e-programs/atlantis

ATLANTIS Program: U.S. resources e

5000~ m Gross-10,800 GW W Gross - 44,378 TWh/year

= — 20,000 ) -
% W Technical - 2,059 GW T m Technical - 7,203 TWh/year
A Y | % 400,0 ............. e men i e S i e g
; g ‘:?; 15,000
e o
g Iy}
Q —
5 % 1071 1,0 B .
8 2000 1853 1872 g 7312
§ § 6,376
% 1,090 & -y

245

North  South Great Gulfof Pacific North  South Great Guif of Pacific
Atlantic Atlantic Lakes Mexico Atlantic Atlantic Lakes Mexico

U.S. floating offshore wind resource
(Technical resources)

* water depth < 1,000 m, wind speed >7 m/s
* excluding ice regions, competing-use and environmental

 array power density of 3 MW /km?
Total technical offshore = 7,203 TWh/year

6.4-7.0 * Total floating (>60m) = 4,178 TWh/year > U.S.
7.0-7.5 electricity consumption = 3,911 TWh/year (2017)
2580 ‘which requires a small part of the gross resource area
8.0-8.8

National Offshore Wind Strategy: Facilitating the Development of the Offshore Wind Industry in the United States.
8.8-11-1 U.S. Department of Energy (DOE) and the U.S. Department of the Interior (DOI). September 2016 12
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ATLANTIS Program: Control Co-Design

Floating Offshore Wind Turbines (FOWT)

Key aspect: [.. Aerodynamics .\
\ T Rotor . Wind 150m
Dynamic el r /
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Mooring system

-50m

More dynamic coupling = More need of Control Co-Design!!!

7\

Control Co-Design
= Radical mass
reduction

Copying the land-based solution for
floating offshore!!!!

/

= Colossal Mass to stabilize system
(~70% of CapEx is Floating Platform)

Qi Q[jd . @ , |

CHANGING WHAT'S POSSIBLE



ATLANTIS Program: Objective in Metric Space Floating Offshore Wind Turbines (FOWT)
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ATLANTIS Program: Areas Floating Offshore Wind Turbines (FOWT)

Aero*-Hydro*-Servo*-Elastic*- C 1Go.Des ———
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Control systems
Grid connection

Full-scale FOWTs




ATLANTIS Program: Projects

ARCUS Vertical-Axis Wind Turbine.
Sandia Lab, Keppel, ABS

A Low-Cost Floating Offshore Vertical Axis
Wind System. U.T. Dallas, Aquanis, UIUC,
VLO, XFlow, NREL

Ultra-light Concrete Floating Offshore Wind
Turbine with NASA-developed Response
Mitigation Technology.

U. Maine, NASA, NREL, HOE, ABS

Design and Develop Optimized Controls for a
Lightweight 12 MW Wind Turbine on an
Actuated Tension Leq Platform. GE, Glostein

USFLOWT: Ultra-flexible Smart Floating
Offshore Wind Turbine.
NREL, CSM, CU, UIUC, Sandia Lab

AIKIDO - Advanced Inertial and Kinetic
enerqy recovery through Intelligent (co)-
Design Optimization.

Otherlab, Bronberg

\.il D| )Li" & Al.New FOWT Designs A2. Enhanced Computer Tools
CHANGING WHAT'S POSSIBLE

Wind Energy with Integrated
Servo-control (WEIS): A Toolset to
Enable Controls Co-Design of
Floating Offshore Wind Energy
Systems.

NREL, UIUC

Model-Based Systems
Engineering and Control Co-
Design of Floating Offshore Wind
Turbines. UCF

A Co-Simulation Platform for Off-
Shore Wind Turbine Simulations.
U.Mass.Am., Sandia Lab

Computationally Efficient
Atmospheric-Data-Driven Control
Co-Design Optimization
Framework with Mixed-Fidelity
Fluid and Structure Analysis.
Rutgers U., U.Mich., NREL,
Brigham Young U., DAR

Floating Offshore Wind Turbines (FOWT)

The Floating Offshore-wind and
Controls Advanced Laboratory
(FOCAL)

Experimental Program.

NREL, U.Maine, DNV-GL

Scale Model Experiments for
Co-Designed FOWTs Supporting
a High-Capacity (15MW)
Turbine.

WS Atkins, MARIN, ABS,

NREL, NASA

DIGIFLOAT:

Development, Experimental
Validation and Operation of a
DIGItal Twin Model for Fullscale

A3. Physical Experiments

FLOATing Wind Turbines.
Principal Power, Akselos, ABS,
EDP, NSWC, UBC, UW

50 Mmw
Segmented
Ultralight
Morphing Rotors
for Wind Energy.
UVA, NREL, CSM,
CU, UIUC, Sandia
Lab

Megawatt-scale
Power-Electronic-
Integrated
Generator with
Controlled DC
Output. UIUC

Active
Aerodynamic Load
Control for Wind
Turbines. Aquanis,
U.T. Dallas, Sandia
Lab, TPI

A4. Extra Components
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THANKS!!

mario.garcia-sanz@haqg.doe.qgov
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