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AI/ML Achieving Wind Energy Goals 

AI/ML in Wind 
Biden administration goal: 100% carbon-free electricity by 2035 

Artificial intelligence and machine learning (AI/ML) provide 
new pathways to improve planning, design, and controls 
that can help achieve 2035 goals. 
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A New AI/ML Modeling Paradigm 

• High fidelity modeling (HFM) codes are often too expensive for design, optimization, 
or controls 

• Existing reduced order models are inaccurate for nonlinear dynamics arising in large 

• 

and flexible turbines 

AI/ML models trained on HFM data 
encode HFM accuracy at low cost 

Expensive CFD design loop 

HFM data used to train ML model Accelerated ML design loop NREL | 3 
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AI/ML Themes in Computational Workflows

Forward Process
• Problem formulation
• Numerical model
• Physical experiment
• Surrogate modeling
• Hybrid physics + data

Outer Loop Problems
• Controls/decision-making
• Inference 
• Uncertainty quantification
• Sensitivity analysis
• Optimization

Domain Data
• Data representation 
• Dimension reduction 

and data compression
• Sampling and 

experimental design
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Unsupervised: !, #, $ → &
Supervised: !, #, $ → #

Supervised: [&, #] → !
Supervised: [&, #] → #

Unsupervised: [&, #] → $

Categories of Scientific AI/ML Models

Supervised Learning
• Learns input/output maps
• Can encode problem physics
• Performance (usually) scales 

with amount of training data

Reinforcement Learning
• Sequential decision making to 

maximize a reward
• Exploration/exploitation
• Model-based or model-free

Unsupervised Learning
• Finds structure in untagged data
• Data compression, anomaly 

detection, pattern recognition
• Sampling and generative models

Insight Prediction Action
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AI/ML in a Multifidelity Context

AI/ML model in a 
multifidelity hierarchy

Training AI/ML model 
with multifidelity data

AI/ML to enhance a 
model’s fidelity
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Successful AI/ML Applications Across Wind Lifecycle

• Case Study: Resource Assessment

• Too many others to cover today

• Case Study: Blade Design

Grand challenges in the science of wind 
energy.  Veers et al, Science, 2019.

{



Example #1
Inverse Blade Design

Collaborators: Ganesh 
Vijayakumar, Andrew Glaws, 
Zach Grey, Olga Doronina, Bum 
Seok Lee, James Baeder
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Wind Turbine Blade Design

• Wind turbines are becoming taller and larger.

• Linearized blade element momentum (BEM) techniques 
fail to capture 3D nonlinear aerodynamics.

• Design optimization with 3D unsteady 
CFD is expensive, even with adjoint 
gradient capability.

• Can we solve this as an inverse problem 
with AI/ML?
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Inverse Design Problem

Identify candidate airfoils with ±20% of a 
baseline airfoil which satisfy the following 
performance criteria

Re = 9×10!
𝐶" < 0.017
𝐶#/𝐶" > 80
𝛼$%&'' − 𝛼 > 3∘
𝑡/𝑐 )&* > 24%

Stall margin

Airfoil polars with desired performance

Stall margin

Strategy: Train an AI/ML 
surrogate model for HFM CFD 
that is invertible by construction.

This allows for rapid generation 
of new shapes for different 
performance criteria.
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Invertible Neural Network Design

Unsupervised: !, #, $ → &
Supervised: !, #, $ → #

Supervised: [&, #] → !
Supervised: [&, #] → #

Unsupervised: [&, #] → $
Activations functions in each layer are 
constructed with closed form inverses

𝐟+,, 𝐱;𝚯 = 𝐟
𝐳

The INN learns a bijection
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Training Data 

• Airfoil shapes are defined using the Class-Shape Transformation (CST)
– 20 parameters per airfoil from a Bernstein polynomial expansion

• High fidelity forward model: Hamiltonian CFD solver (HAM2D) from UMD

𝐱 =
𝐂𝐒𝐓-../0
𝐂𝐒𝐓'1234

𝛼
,   𝐲 = Re ,   𝐟 =

𝐶"
𝐶#/𝐶"

𝛼$%&'' − 𝛼
𝑡/𝑐 )&*

,   and   𝐳 = latent variables

• Design space defined by ±20% perturbation about a baseline airfoil (DU25)
– Re ∈ 3×10!, 6×10!, 9×10!, 12×10! , 𝛼 ∈ [−4∘, 20∘]

• 801 perturbed shapes w/ sweeps across Re and 𝛼 → 80,100 total CFD runs



NREL    |    13

2D Airfoil Results

INN Validation Errors 𝐶! 𝐶"/𝐶!

Baseline
Mean 16.1% 4.2%

Std. Dev. 10.1% 3.7%

Updated
Version

Mean 3.1% 6.1%

Std. Dev. 2.1% 1.5%

𝑒𝑟𝑟 = 100×
𝑓!"" − ̅𝑓

̅𝑓

100 unique shapes all satisfying criteria

A. Glaws, R. King, G. Vijayakumar, S. Ananthan, Invertible Neural 
Networks for Airfoil Design. AIAA Journal, 2022.
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Airfoil Parameterization

• CST parameterization flaws: disjoint design space and unphysical perturbations
• Parameterization with Grassmann manifolds allows shapes to be sampled and 

smoothly deformed independent of affine transformations or rotations.
• Principal geodesic analysis (PGA) basis r=4 instead of 20 CST parameters

CST Perturbations

Principal Geodesic Perturbations

Principal geodesics in 
Grassmann space

Doronina, Olga A., Zachary J. Grey, and Andrew Glaws. "Grassmannian Shape 
Representations for Aerodynamic Applications." arXiv:2201.04649 (2022).
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Airfoil Parameterization

• 3D blades now represented as curves on a 
Grassmann manifold

𝜂

Nominal cross 
sections at a 

specific 𝜂

Grassmannian 
interpolation & 
affine splines

New cross 
sections in 

physical space
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Aerodynamic
and/or

Structural
Metrics

Airfoil/Blade Shapes

Aerodynamic
and/or

Structural
Metrics

Airfoil/Blade Shapes

Induction profile 
 
L/D profile 
 
Stall margin profile 
 
Max t/c profile Tip-speed ratio 

 
Reynolds number 
profile

Outer Blade Section Design

• Designing outboard 60-95% of blade representative of later stages of design

• Goal is to tradeoff some power to increase tip clearance and/or mitigate loads, 
while also demonstrating INN with full 3D blade representation.

• Control variables: twist and chord profiles, plus outer section airfoil shape, while 
minimizing thrust and maintaining power.
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Outer Blade Section Design Results

• All INN-generated shapes 
and profiles meet design 
criteria and reduce loads as 
confirmed by CFD validation 
of INN output

New Shapes

Chord Twist

CTCP
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INN Outcomes

• Dramatic acceleration of airfoil design process, 3D 
blade design underway

• INN tool integrated into WISDEM suite
– https://github.com/NREL/INN-interface

• New conception of 2D and 3D shapes with 
principal geodesics in Grassmann space

• Differentiability of INN enables gradient-based 
shape sensitivity analysis that can inform
manufacturing tolerances

Example: Airfoil design evaluation
• 20 CFD evaluations
• 2 hours each
• 144000 CPU s

• INN-Design cost: < 1s 

Most 
flexibility

Less flexibilityLeast 
flexibility

87% dimension reduction of 3D 
blade parameterization

https://github.com/NREL/INN-interface


Example #2
Super Resolution

Collaborators: Andrew Glaws, 
Brandon Benton, Grant Buster, 
Malik Hassanaly, Julie Lundquist, 
Dave Rosencrans, Karen Stengel, 
and Dylan Hettinger



NREL    |    20

Climate Downscaling Challenge

How will future climate scenarios impact the 
development and operation of renewable energy?

• Global climate models (GCM) use a resolution of ~1 
deg. (~100 km).

• Wind and solar resource assessments require 
resolution of ~2 km.

• Can AI/ML enhance the fidelity of this data?

NOAA GCM

100 km 2 km 



NREL    |    21

Super resolution of climate data

• Super resolution has been effective on natural 
images, can we use it to enhance scientific data?

• Approach: convolutional neural networks (CNN) 
+ generative adversarial networks (GANs)

Ledig et al. 2017

https://sthalles.github.io/intro-to-gans/

https://www.gfdl.noaa.gov/climate-model-downscaling/
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Using SR to Downscale GCM Data

HFM Training data: NREL’s Wind Integration 
National Database Toolkit (WTK) based on WRF

Application deployment: NCAR’s Community 
Climate System Model (CCSM) used in CMIP5 
IPCC studies

Process
1. Train super resolution networks on 

coarsened WTK/NSRDB data. 

2. Apply the trained CNNs to super 
resolve CCSM wind/solar data.
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Testing the Trained Super Resolution Model

• Coarse 100km resolution wind data à WIND Toolkit 2 km resolution
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Quantifying Improvements in Generated Fields

• Adversarial training produces quantifiable improvements in physical quality 
– Correct turbulent statistics 
– DNI & DHI semivariogram improved

• Perception/distortion tradeoff
– Adversarial training increases MSE

Mean Squared Error on Test Set

K.Stengel, A. Glaws, D. Hettinger, and R. King.  PNAS, 2020
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Evaluating on Global Data
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Spatiotemporal Super Resolution

Goal: extend methods for enhancing spatial resolution of climate data to temporal domain

Approach: Challenges:
• Significant increase in enhanced details
10 × 10 × 24 SR          5,788 9: .;*/'$

< =: .;*/'
• Memory constraints require smaller 

batch sizes
• Single spatio-temporal discriminator

Daily -> hourly or

hourly -> 5 minute



NREL    |    27

Spatiotemporal SRGANS

Simultaneous 24x temporal and 10x spatial 
resolution enhancement

GANs learns advection 
which leads to more 
accurate wind ramp rates
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Spatiotemporal SRGANS

• Latest extensions 
include multiple hub 
heights and multiple 
atmospheric variables, 
plus inclusion of terrain.

• Example: 4x temporal 
and 3x spatial 
enhancement of 
1500km x 1500km 
region replacing 1 layer 
of WRF nested grid

100m wind

10m wind

100m temp

True Low Res True High Res SRGAN Output
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Super Resolution Outcomes

• Open source spatio-temporal super resolution tool: 
https://github.com/NREL/sup3r

• Applicable to arbitrary sized input domains (local/regional/global), and up to 
50x spatial and/or 24x temporal enhancement

• Can enhance multiple atmospheric variables simultaneously and at different 
heights for operational forecasting or long term planning applications

• Super resolution capability is being used in many other ongoing climate 
scenario and forecasting studies at NREL, e.g. hurricanes, flood risk, sea level 
rise, land use changes, etc.

https://github.com/NREL/sup3r


Thanks!

ryan.king@nrel.gov

mailto:ryan.king@nrel.gov
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