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What is urban air mobility?
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Advanced air mobility

Urban air mobility Air travel for 
underserved 

marketsAir travel in 
urban areas

Package 
delivery

Enabled by advances in electric propulsion, 

batteries, autonomy, advanced manufacturing

  [NASA]



150 mph cruise


Up to 5 people


100 km range


4000~7000 lb

Electric vertical takeoff and landing (eVTOL) aircraft
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There are many open questions in vehicle design
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[Vertical 

Flight Society]

Archer 
Aviation

Overair

Bell

Jaunt Air 
Mobility

Challenges:


‣ Diverse set of possible 
design configurations


‣ Large uncertainties on 
technological 
assumptions


‣ Operating parameters 
are also changing


‣ Traditional design 
methods that rely on 
existing designs are not 
applicable to eVTOL 

Need: highly automated, physics-based design tools based on full-configuration simulation



We can address this gap using 

large-scale multidisciplinary design optimization (MDO)
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Review of sensitivity analysis methods


Novel methodology for system modeling


Demonstration on UAM air taxi design problem

Outline



In engineering design, optimization problems are solved using 
either gradient-based or gradient-free optimizers
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Gradient-based optimizer 

(SNOPT)


41 iterations

Gradient-free optimizer 

(ALPSO)


1340 iterations



Gradient-based optimization is the only option 

for large-scale problems
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Figure 1.2: Plot showing how the number of function evaluations required to opti-
mize the multi-dimensional Rosenbrock function scales with the number
of design variables. The gradient-free optimizers (ALPSO, NSGA2) scale
quadratically or worse, while the gradient-based optimizers (SNOPT,
SLSQP) scale linearly with finite-di↵erence derivatives (FD), and better
than linearly with analytic derivatives (AN).

optimization, initially with the approach of Jameson [14] and later with the optimiza-

tion of full aircraft configurations [15, 16, 17]. It has also been successfully applied

to the multidisciplinary optimization of aircraft aerodynamics and structures simul-

taneously using a coupled adjoint approach [18, 19].

Gradient-based optimizers can never guarantee convergence to the global opti-

mum. However, guaranteeing the global optimum is not a realistic goal for large-scale

optimization problems. Even as a local optimizer, a gradient-based optimization al-

gorithm is still useful because it is able to find feasible designs that can improve upon

one selected using experience and human intuition, if this design is used as the initial

point for optimization. The argument is that a local optimum for a problem that

closely represents reality may be more useful than the global optimum of a problem

based on lower-fidelity models.

1.3 The limitations of gradient-based optimization

In Sec. 1.1, it was argued that numerical optimization can maximize the value

of computational models in an engineering design process, especially as the accuracy

of the models improve. Large-scale optimization adds even more value because its

results are likely to be more unintuitive, whether it yields a useful design or reveals
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[Hwang, PhD dissertation, 2015]

Gradient-free optimizers

Gradient-based 


optimizers

Adjoint sensitivity analysis



Model structure and nomenclature

Sensitivity analysis methods—review
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Unified derivatives equation (UDE)Cost is O(n)

Cost: ~1 nonlinear solution 
of R(x,y)=0

Cost: ~1 linear solution



The combination of AD and the adjoint method

yields maximum efficiency and some automation 
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Algorithmic differentiation (AD)

Compute these Jacobians 

of partial derivatives using AD

‣ Pro: Inherits advantages of both AD 
and the adjoint method


‣ Con: Still some implementation effort 
required when system models are 
assembled or reconfigured



The UDE eliminates implementation effort for 

sensitivity analysis when system models are assembled

11

Optimizer

States

R(x, y) = 0

Functionals

f = F(x, y)
c = C(x, y)

x x

y

f , c

Optimizer

States

y = Y(x)

Functionals

f = F(x, y)
c = C(x, y)

x x

y

f , c

Optimizer

Discipline 1

R1(x, y1) = 0

Discipline 2

R2(x, y1, y2) = 0

Functionals

f = F(x, y1, y2)
c = C(x, y1, y2)

x x x

y1 y1

y2

f , c

Optimizer

Discipline 1

R1(x, y1) = 0

Discipline 2

R2(x, y1, y2) = 0

Functionals

f = F(x, y1, y2)
c = C(x, y1, y2)

x x x

y1

y2

y1

y2

f , c

Optimizer

Discipline 1

y1 = Y1(x, y2)

Discipline 2

y2 = Y2(x, y1)

Functionals

f = F(x, y1, y2)
c = C(x, y1, y2)

x x x

y1

y2

y1

y2

f , c

Optimizer

Disc. 1

Disc. 2

Disc. 3

Disc. 4

Disc. 5

Disc. 6

Disc. 7

Functionals

f = F(x, y)
c = C(x, y)

x x x x x

y1 y1 y1

y2 y2 y2 y2

y3 y3 y3

y4 y4

y5

y6 y6

y7

y1

y2

y4

y5

y7

f , c

System model (grey boxes) can 
have multiple adjoints (red boxes)

R(u) = 0

Formulate as 
a nonlinear 

system

Apply the 

inverse function 

theorem

∂R
∂u

T du
dr

T
I

∂R
∂u

du
dr

= =

[Hwang and Martins, ACM TOMS, 2018]

UDE

‣ Con: Significant up-front implementation 
effort required to compute partial derivatives



Sensitivity analysis methods—Pareto front
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Review of sensitivity analysis methods


Novel methodology for system modeling


Demonstration on UAM air taxi design problem

Outline



OpenMDAO (UDE) makes computing derivatives easier

but the current bottleneck is computing partial derivatives
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New system modeling methodology

We resolved this via a new methodology for system modeling 
that fully automates adjoint-based sensitivity analysis
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Front-end Middle-end Back-end

Code written by 

engineer in CSDL

Generates graph representation 
from CSDL code

Performs graph 
transformations

Generates executable code 
from graph representation

Executable code in 
output language

CSDL is a new algebraic 
modeling language

Model represented as a 

directed acyclic graph

Automatic code generation paradigm used in 
AD and PDE solution frameworks (FEniCS)



CSDL enables this new methodology for system modeling
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The computational system design language (CSDL) is an 
algebraic modeling language for large-scale MDO.


Characteristics:


‣ An embedded domain-specific language (a subset of Python; 
intended for system modeling)


‣ Designed to be expressive (easy to use as CSDL code looks 
like ordinary Python code)


‣ Large standard library of operations (see right)


‣ Extensive support for tensor algebra to encourage 
vectorization (to minimize the number of operations)


‣ It enables a computational graph to be constructed that fully 
describes the model (at the level of fundamental operations)



Adjacency matrices of graphs of CSDL models
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Vortex lattice method Blade element momentum method Pitt—Peters method



Our first back-end that generated OpenMDAO code was slow; 
our second back-end generated optimized Python code
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New system modeling methodology

Front-end Middle-end Back-end

Code written by 

engineer in CSDL

Generates graph representation 
from CSDL code

Performs graph 
transformations

Generates executable code 
from graph representation

Executable code in 
output language

OpenMDAO 
back-end

OpenMDAO 
code

Python

back-end

Fast Python 
code



The second back-end reduces time & memory by >10x

compared to the OpenMDAO back-end
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4.2 Research Thrust 2: Tensorial-grid reduction using computer algebra systems

This research thrust aims to develop theory predicting the speed-up with tensorial-grid reduc-
tion (TGR) and to create algorithms that can achieve the best-case speed-up.

4.2.1 Proposed techniques

We will implement tensorial-grid reduction (TGR) as a graph transformation in the middle-end
of the CSDL-based computer algebra system (§3.2). TGR will reduce the shape of certain variables
in the model and add tensor operations (e.g., using the einsum function in Python’s NumPy library)
to convert arrays between their reduced and non-reduced shapes.

To achieve the maximum benefit of TGR, it is necessary that the computational graph represents
the model in its fully decomposed state. With models broken down to the level of unary and binary
operations, the computational graphs are very large and can expose any bottlenecks present in the
backend (§3.2). The current implementation of the libraries for the CSDL-based computer algebra
system uses, as the backend, the OpenMDAO software framework to leverage its capabilities for
chaining together derivatives from multiple units of code. However, OpenMDAO does not scale
well in time or space as it was not developed to run thousands of simple and fast operations. There-
fore, we will use a new backend that eliminates unncessary overhead and uses efficient algorithms
from graph theory for sorting and other operations. An initial implementation of such a backend
shows an order-of-magnitude improvement (Fig. 8).
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Figure 8: The proposed research will use a new backend for the CSDL-based computer algebra
system that significantly reduces the time and space overhead compared to OpenMDAO.

4.2.2 Preliminary results

Complexity analysis. We present preliminary results that quantify the ideal computation time
reduction due to TGR. We define a vector t 2 RL such that ti is the evaluation time for the scalar
operation (e.g., addition, multiplication, sine) that computes the ith model variable. For each i 2
{1, . . . , N̄}, we define p̄i 2 N as the number of tensor-product quadrature points in the ith random
variable and assume that p̄i > 1. As in §4.1, p̃ is the number of training points used for interpolation.
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Sensitivity analysis methods—Pareto front
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UCSD-led NASA University Leadership Initiative (ULI) project
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‣ Three-year project (2021-2024)


‣ 10 investigators, ~30 students


‣ Peer review board (industry, government)


‣ Investigates low-/mid-/high-fidelity large-scale MDO



NASA ULI (Y1): we developed an aircraft design tool called 
CADDEE within the new system modeling methodology
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We implemented tonal noise models in CSDL
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Visualization of the computational graph  

for a tonal noise model in CSDL

Verification of Gutin—Deming and Barry—Maggliozzi 

tonal noise models in CSDL

Geometry parametrization 

with kinematic relations

Modular interfaces to 

physics-based analyses

Full-mission simulation with 

trim-state and transient segments

Comprehensive Aircraft high-Dimensional DEsign Environment
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Objective Gross weight

Design 
variables

Rotor radii 9 Battery location 1
Blade twist 36 Battery mass 1
Blade chord 10 Motor length 9
Rotor location 2 Motor diameter 9
Wing area 1 Lift rotor speed 8
Wing AR 1 Propeller speed 2
Wing twist 5 Angle of attack 2
Horizontal tail area 1 Tail trim angle 2
Horizontal tail AR 1 Cruise altitude 1
Horizontal tail location 1
Total design variables: 102

Constraints

Trim residual norm 1 Sound pr. level 1
Final state of charge 1 Stall speed 1
Rotor tip clearance 4 Max. motor torque 2
Motor left-right symm. 4 Rotor lateral symm. 4
Final climb altitude 1
Total constraints: 19

NASA ULI (Y1): we demonstrated full-configuration, 

large-scale MDO of an air taxi with only ~30 min runtime
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Design variable Ct. Baseline 
MDO

Full 
MDO

Rotor radii 9 ●
Blade twist 36 ●
Blade chord 10 ●
Rotor location 2 ●
Wing area 1 ●
Wing AR 1 ●
Wing twist 5 ●
Horizontal tail area 1 ●
Horizontal tail AR 1 ●
Horizontal tail location 1 ●
Battery location 1 ●
Battery mass 1 ● ●
Motor length 9 ● ●
Motor diameter 9 ● ●
Lift rotor speed 8 ● ●
Propeller speed 2 ● ●
Angle of attack 2 ● ●
Tail trim angle 2 ● ●
Cruise altitude 1 ● ●
Total design variables: 102

NASA ULI (Y1): we showed that we can perform 

parameter sweeps using the large-scale MDO algorithm

1. Gross mass is reduced ~10% with full MDO (this is the benefit of large-scale MDO)


2. The large-scale MDO algorithm is fast and robust enough for parameter sweeps to 
be completed in a few hours (enables engineer to gain insights about trade studies)



Summary
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We developed a fully automated method for adjoint-based 
sensitivity analysis using a three-stage compiler.


This automation enabled, in one year, the development of:


‣ CADDEE, an aircraft design framework (WEIS)


‣ Set of low-fidelity aircraft models (WISDEM) with V&V


‣ A full-configuration air taxi large-scale MDO algorithm


In year 2: we will add mid-fidelity models (OpenFAST)

Front-
end

Middle-
end

Back-
end

Discipline Analysis Timeline Verification Validation

Aerodynamics

VLM (lifting surface) TC1 AS1 -
UVLM (lifting surface) TC2/3 - PS
BEM, PP (rotors) TC1 AS1 AS2, SPEC
VPM with boundaries (all) TC2/3 SELF PE

Acoustics

Tonal TC1 AS1 PE
Tonal (unsteady freq-domain) TC2 - SPEC
Broadband TC1 PS PE
Broadband (new empirical) TC2/3 - PE

Structures

Regression on M4 structures studio data (weights) TC1 SELF AS2, SPEC
Reissner-Mindlin TC2/3 AS1 -
IMGA TC2/3 AS1 AS2, TBD
ShellMesh TC2/3 AS2 -

Stability & 
Control

S&C analysis TC1 AS1 SPEC
Controller design & closed-loop analysis TC2/3 - PS, PE

Motors Low-fidelity sizing & performance models TC1 AS2 AS2, SPEC
FEniCS EM model TC2/3 AS1/2 SPEC

Batteries

ECM TC1 AS1 EXP
Pack sizing TC1 - SPEC
Thermal model TC2 TBD EXP
Pack topology optimization TC3 TBD TBD

Coupled & 
system-level

CADDEE TC1 - AS2
Aero/structures/acoustics TC2/3 - AS2
TBD TC1/2/3 - SPEC
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Our ongoing work builds on this new methodology

Mid/high-fidelity MDO of air taxi


Years 2 and 3 of NASA ULI

Further development of CADDEE


Explore applications beyond 
aircraft (wind turbines?)

Performance 
model

x
u1
u2

f
Uncertainty propagation using CSDL


Preliminary results show potential for 
10~100x speed up using CSDL graph

New applications of large-scale MDO


CSDL/CADDEE will be used for robotic 
fish (ONR), laser-powered UAVs (DARPA)



These slides include contributions from many people, some of whom are acknowledged below.


Large-scale design optimization (LSDO) lab students: Andrew Fletcher, Victor Gandarillas, 
Alexander Ivanov, Anugrah Jo Joshy, Nicholas Orndorff, Marius Ruh, Darshan Sarojini, Luca 
Scotzniovsky, Mark Sperry, Bingran Wang, Jiayao Yan.


ULI collaborators: Isaac Asher, Jeff Chambers, David Kamensky, Alicia Kim, Seongkyu Lee, Shirley 
Meng, Chris Mi, Andrew Ning, Tyler Winter
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Thank you!

http://lsdo.eng.ucsd.edu  •  http://uli.eng.ucsd.edu

We are grateful for financial support from the following organizations:

http://lsdo.eng.ucsd.edu
http://uli.eng.ucsd.edu
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