Recent developments in large-scale multidisciplinary design optimization
(application to urbban air mobility vehicle design)

oth Wind energy systems engineering workshop

BOU|der CO Hover Noise dB(A) Finel SoC Power Profile (kW) Drag Polar (C; vs Cy) Motor Efficiency
) 00 1.0 1.0
80 1000 /
August 31, 2022 | cmmmmes e ; I
) 60 by _ 75C
1.CO
a0 50C
0.75
20 25C
\ 0.80
0 0
0 200 200 100 0 20C0 4000 0.0€ 0.08 C.10 0 2000 4000 6000 8000
lterations lterations Mission time (s) Motor Spzed (RPM)

‘ Pusher Retor Liftnc Rotor

7) s oo

g " 20c0 Rotor Spzed (RPM) Axial Induced Velocity m/s)
Assistant Professor

\‘ & ‘500
. - : £000
500
JACOBS SCHOOL OF ENGINEERING II II I I

UC San Diego

Mechanical and Aerospace Engineering 0
L ~< \/ < q.Qq-



What is urban air mobility?

Advanced air mobllity

Urban air mobillity Air travel for

underserved

Alr travel in | Package

| markets
urban areas | delivery

Enabled by advances in electric propulsion,

patteries, autonomy, advanced manufacturing
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Electric vertical takeoff and landing (eVTOL) aircratft

150 mph cruise
Up to 5 people
100 km range

4000~ 7000 Io




There are many open questions In venhicle design
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We can address this gap using
large-scale multidisciplinary design optimization (MDO)

10s or more Use computational models involving Apply numerical
design variables multiple disciplines optimization algorithms
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Outline

» Review of sensitivity analysis methods

Novel methodology for system modeling

Demonstration on UAM air taxi design problem



IN engineering design, optimization problems are solved using
either gradient-based or gradient-free optimizers
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Gradient-based optimization is the only option
for large-scale problems
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Sensitivity analysis methods —review

Cost: ~1 nonlinear solution

Model structure and nomenclature Algorithmic differentiation (AD) of R(x,y)=0
d =y df 0T,
8 y € R* f 2 7 where t; = Ti(x, 1y, ..., 1;,_y)
dx; = dt; ox;
X E R”—T[R(x V) = OHF(x y)]—qfe R J=
5 Adjoint method Cost: ~1 linear solution
df OF . OR oR" oF !
F(x) - — with — w =
dx  0x v 0X ! 0y v oy
Cost is O(n) Unified derivatives equation (UDE)
Finite-difference 4/ F(x + he;) — F(x) L e R LI x — x*
method dx; h u= Y|, Rw)=| —RxY)
) - f—F(x,y)
Complex-step ~ df _ ImlF(x+ihe)] —n oR" du”
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The combination of AD and the adjoint method
vields maximum efficiency and some automation

Algorithmic differentiation (AD)
df _ <u df 9T
dxl' i=1 dlf] a.xl'

Where t] — ]}(X, tla KX l}'-l) :
» Pro: Inherits advantages of both AD

and the adjoint method
Adjoint method

df » Con: Still some implementation effort
. : W @ with @ W= % required when system models are
\ / assembled or reconfigured

Compute these Jacobians
of partial derivatives using AD
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The UDE eliminates implementation effort for
sensitivity analysis when system models are assembled

[Hwang and Martins, ACM TOMS, 2018]

Formulate as

a nonlinear
system
UDE
OR du aRT duT
R(u) =0 =] =— —
ou dr ou dr
Apply the
iINnverse function
theorem
System model (grey boxes) can » Con: Significant up-front implementation

have multiple adjoints (red boxes) effort required to compute partial derivatives
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Sensitivity analysis methods —Pareto front

Finite- Complex-
difference step
O(n) nonlinear ®

solutions
AD: reverse-mode

algorithmic differentiation

Computation
COst

O(1) nonlinear
solution

AD +
adjoint A gioint
UDE °

Novel methodology
for system modeling

O(1) linear
solution a

Derivation of the

No effort - .
. adjoint equations
Implementation effort
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Review of sensitivity analysis methods

» Novel methodology for system modeling

Demonstration on UAM air taxi design problem



OpenMDAO (UDE) makes computing derivatives easier
out the current bottleneck Is computing partial derivatives

Step (1): Each component of the model
provides its partial derivatives

Optimizer [
A
R 2
Comp. 1

Step (2): The modeling framework so

Eqg. () to compute the total derivat
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We resolved this via a new methodology for system modeling
that fully automates adjoint-based sensitivity analysis

|

Generates graph representation
from CSDL code
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CSDL is a new algebraic
modeling language

Model represented as a
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Performs graph
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Automatic code generation paradigm used in
AD and PDE solution frameworks (FENICS)
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CSDL enables this new methodology for system modeling

The computational system design language (CSDL) is an
algebraic modeling language for large-scale MDO.

Characteristics:

» An embedded domain-specific language (a subset of Python
iIntended for system modeling)

» Designed to be expressive (easy to use as CSDL code looks
like ordinary Python code)

» Large standard library of operations (see right)

» Extensive support for tensor algebra to encourage
vectorization (to minimize the number of operations)

» [t enables a computational graph to be constructed that fully
describes the model (at the level of fundamental operations)

)
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CSDL by Example
Introduction

Basic Examples

Standard Library

average
Cress

dot
einsum_new
einsum_old
expand
inner
matmat
matvec
max

min

outer

pnorm
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from csdl_om
import nunpy
import csdl

import Simulator
as no

from csdl import Mocel

class Exanplelnteger(Model):

def defin

a =85S

b =g¢s
S
S
S
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self.
self.
self.

el{self):

elf.declare_variable('a', val=0)
elf.declare_variable('n', val=l)
plf.declare_variable('r', val=?)
elf.declare variable('d’, val=/.4)
elf.declare_variable('z', val=np.pi)
elf.declare_variable('f', val=9)

e + f

Lf.create_output('x', shape=(7, ))
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Q

0 =-A (T O N F

y
4 gy} o J
Va LU I FOom 1

register_output('x0', x[@a])
register output('x6', x[6])
register_output('x_z"', x[-2])



Adjacency matrices of graphs of CSDL models
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Our first back-end that generated OpenMDAO code was slow;
our second back-end generated optimized Python code

(Generates executable code

Generates graph representation Performs graph

from CSDL code transformations from graph representation
r R r ™ s ™
f_= R ( /T\ r:EI ™
_% —» | Front-end Middle-end | = W —»| Back-end |=— :%%
\:_ ~ _° &:__ y
Code written by g - g - “ Executable code in

engineer in CSDL output language

New system modeling methodology

— OpenMDAO — % OpenMDAO
back-end code
_,[

] — % Fast Python
code

Python
back-end
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Ihe second back-end reduces time & memory by >10x
compared to the OpenMDAQO back-end

Memory scaling Time scaling (model evaluation) Time scaling (sensitivity analysis)
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Sensitivity analysis methods —Pareto front

Finite- Complex-
difference step
O(n) nonlinear ®

solutions
AD: reverse-mode

algorithmic differentiation

Computation
COst

O(1) nonlinear
solution

AD +
adjoint A gioint
UDE °

Novel methodology
for system modeling

O(1) linear
solution a

Derivation of the

No effort - .
. adjoint equations
Implementation effort
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Review of sensitivity analysis methods

Novel methodology for system modeling

» Demonstration on UAM air taxi design problem



UCSD-led NASA University Leadership Initiative (ULI) project

» Three-year project (2021-2024)

» 10 investigators, ~30 students

» Peer review board (industry, government) :
» Investigates low-/mid-/high-fidelity large-scale MDO
- UCSanDiego
_ SAN DIFGO STATE
UNIVERSITY

22



NASA ULI (Y1): we developed an aircraft design tool called
CADDEE within the new system modeling methodology

L» Comprehensive Aircraft high-Dimensional DEsign Environment

Geometry Design Variables

Geometry parametrization Modular interfaces to Full-mission simulation with
with kinematic relations physics-based analyses trim-state and transient segments
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NASA ULI (Y1): we demonstrated full-configuration,
large-scale MDO of an air taxi with only ~30 min runtime
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Other

Objective

Design
variables

Constraints

Gross weight
Rotor radii

Blade twist

Blade chord

Rotor location
Wing area

Wing AR

Wing twist
Horizontal tail area
Horizontal tail AR

Horizontal tail location

Total design variables: {102

Trim residual norm
Final state of charge

Rotor tip clearance

Motor left-right symm.

Final climb altitude

Total constraints:

9
36
10

2

1

1

5

1

1

1

1
:
4
4
1
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Battery location
Battery mass
Motor length
Motor diameter
Lift rotor speed
Propeller speed
Angle of attack
Tail trim angle

Cruise altitude

Sound pr. level
Stall speed
Max. motor torque

Rotor lateral symm.
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NASA ULI (Y1): we showed that we can perform
parameter sweeps using the large-scale MDO algorithm

Design variable

Rotor radii

Blade twist

Blade chord

Rotor location
Wing area

Wing AR

Wing twist
Horizontal tail area
Horizontal tail AR
Horizontal tail location
Battery location
Battery mass
Motor length
Motor diameter
Lift rotor speed
Propeller speed
Angle of attack
Tail trim angle
Cruise altitude

Total design variables:

Ct.
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N

Baseline
MDO

Full
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7600 8500y —— Full MDO 2000
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o
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Range (nm) Cruise velocity (knots) Battery energy density (Wh/kg)

1. Gross mass is reduced ~10% with full MDO (this is the benefit of large-scale MDO)

2. The large-scale MDO algorithm is fast and robust enough for parameter sweeps to
be completed in a few hours (enables engineer to gain insights about trade studies)
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Summary

We developed a fully automated method fo

sensitivity ana

ySIS using a three-stage com

r adjoint-based

lle

.

This automation enabled, in one year, the development of:

» CADDEE, an aircraft design framework (VWEIS)

» Set of low-fidelity aircraft models (WISDEM) with V&YV

» A full-configuration air taxi large-scale MDO algorithm

In year 2: we will add mid-fidelity models (OpenFAST)
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Our ongoing work builds on this new methodology

Geometry Design Variables

New applications of large-scale MDO

CSDL/CADDEE will be used for robotic
fish (ONR), laser-powered UAVs (DARPA)
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Thank you!

These slides include contributions from many people, some of whom are acknowledged below.

Large-scale design optimization (LSDO) lab students: Andrew Fletcher, Victor Gandarillas,

Alexander Ilvanov, Anugrah Jo Joshy, Nicholas Orndorff, Marius Ruh, Darshan Sarojini, Luca
Scotzniovsky, Mark Sperry, Bingran Wang, Jiayao Yan.

ULI collaborators: Isaac Asher, Jeff Chambers, David Kamensky, Alicia Kim, Seongkyu Lee, Shirley
Meng, Chris Mi, Andrew Ning, Tyler Winter

http://Isdo.eng.ucsd.edu -« http://uli.eng.ucsd.edu

We are grateful for financial support from the following organizations:

HYUINDAI

MOTOR GROUP

UC San Diego

JACOBS SCHOOL OF ENGINEERING
Mechanical and Aerospace Engineering
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