

The Role of Wake Models in Wind Plant Design and Optimization

2nd NREL Wind Energy Systems Engineering Workshop

Matthew J. Churchfield

January 30, 2012

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Motivation

- The focus has been to design/optimize turbine or plant
- Focus shifting to simultaneous turbine/plant optimization
- Wake models are important for this design/optimization
- Current computationally efficient wake models from '80s-'90s
- Need for more accurate, more comprehensive wake models that are still computationally efficient

Current Computationally Efficient Models

• Examples: Park, eddy viscosity, deep array

Deficiencies

- Steady solution
- Based on axisymmetric equations
- Devised or tuned using observations

Current Computationally Efficient Models

- Mainly used to predict power
- But, loads are important, too...
 - IEC 61400-1 standard says:
 - "Wake effects from neighboring wind turbines may be taken into account during normal operation for fatigue calculation by an effective turbulence intensity I_{eff}, Frandsen (2003)"
 - This does not consider wake deficit
 - Wake models should be part of loads analysis in wind plant design/optimization
- Ideal for wind plant design/optimization

Medium and High-Fidelity Wake Models

• Reynolds-averaged Navier-Stokes (RANS)

- All turbulent scales modeled
- Steady
- Full 3D, terrain conforming (not axisymmetric)
- Mid-level computational efficiency

• Unsteady RANS (URANS)

Large-eddy simulation (LES)

- Larger turbulent scales directly resolved
- o Unsteady
- If well validated, complementary to field data/measurements
 - Use to inform reduced-order wake models

Wake Model Organization

High-Fidelity Versus Current Models

Lillgrund wind plant example

Ē

High-Fidelity Versus Current Models

Two NREL
5MW turbines
separated by
7D, subject to
an unstable
atmospheric
boundary layer,
computed with
LES

Is High Fidelity Better?

Lillgrund wind plant example

	down-the-row	Not down-the-row
	$\theta = 222^{0}$	θ = 264 ⁰
Obs (+/- 5 ⁰)	1.00	1.00
Park (k = 0.06/0.07)	0.98	0.98
LES (TI = 6%)	1.08	1.25
WAsP (k = 0.04)	0.92	0.96

Is High Fidelity Better?

NATIONAL RENEWABLE ENERGY LABORATORY

New Idea: Dynamic Wake Meandering

• "Poor man's LES"

- Eddy-viscosity model "base" steady wake
- Pre-generated atmospheric turbulence meanders base wake as passive tracer
- Made a steady wake model unsteady, and we can now study loads
- Proposed for next version of IEC standards

Uncertainty that Hinders Wake Modeling

- All models have multiple sources of uncertainty
 - Boundary/initial conditions (stability, etc.)
 - Duration of simulation versus measurement
 - Binning size of observations
- Models tunable to particular dataset (downthe-row), but tuning not universal
- Adding physics may reduce need for tuning and bound uncertainty

Conclusions

- Current reduced-order wake models
 - Lack physics, computationally efficient, ideal for design/optimization
- High-fidelity wake models
 - Have lots of physics, expensive, not design/optimization tool
- High-fidelity models are not proven to be more accurate
 - Limited knowledge of boundary conditions ("garbage in-garbage out")
- Need improved field measurements to provide input and validate high-fidelity models
- Not a question of "Is high-fidelity better?"
 - Measurements and high-fidelity models inform reduced-order models and standards—THEY NEED TO WORK TOGETHER
- Future reduced-order models
 - Need to account for unsteadiness, non-axisymmetry, atmospheric stability
 - Used to design/optimize for power and loads
 - Designed with uncertainty quantification in mind