Assessing the short-term solar forecasting performance of popular machine learning algorithms

Presenter: Alex Dobbs

Mentor: Anthony Florita

Accurate short-term solar forecasting is necessary for operating a reliable grid with high penetrations of solar energy. Machine learning techniques have shown promise for making more accurate short-term forecasts. In this study, a framework for assessing the solar forecasting performance of four popular machine learning algorithms is presented in conjunction with a range of numerical results using global horizontal irradiance (GHI) from the open-source SURFace RADiation data network. Training inputs include time series observations of GHI for a history of years, in addition to various other weather measurements, such that training sensitivities can be inferred. Prediction outputs include GHI forecasts up to four hours ahead of the forecast time. The suite of machine learning algorithms is compared according to a set of statistically distinct metrics and benchmarked against a landmark study and the persistence-of-cloudiness forecast. Results show significant improvement over the benchmark in most forecasting situations among the machine learning algorithms based on the spatial and temporal situations they are forecasting. Improved solar irradiance forecast can be combined with photovoltaic power and energy outputs to better understand power system impacts of integrating variable renewable energy sources.

Situation dependent short-term solar forecasting

Alex Dobbs^{1,2}, Tarek Elgindy², Bri-Mathias Hodge², Anthony Florita² ¹Colorado School of Mines, ²National Renewable Energy Laboratory

Performance of popular machine learning algorithms

INTRODUCTION

Motivation:

- · Integrating high levels of solar energy into the grid poses technical challenges for grid operators. Improvements in short-term solar forecasting will increase grid reliability and minimize economic losses.
- Machine learning (ML) approaches show potential for improving short-term solar irradiance forecasts. ML allows computers to learn and predict without being explicitly programmed. Use of Big Data creates more powerful models.

Research goal:

· Find optimal machine learning (ML) algorithm for predicting short-term solar irradiance (1, 2, 3, and 4 hours ahead) depending on the geographic location, time of year, and forecast horizon (f.h.) of each forecasting situation.

BACKGROUND

Terminology:

• Global horizontal irradiance (GHIt): sum of instantaneous direct and diffuse solar irradiance measured in W/m².

- Clear sky GHI (GHIt_{clear}): theoretical maximum GHI for an instantaneous point forecast assuming zero cloud coverage.
- · Clear sky index (CSIt): metric of cloud cover defined as the ratio between

GHIt and GHIt clear. CSI is the most indicative weather feature for GHI.

Machine learning methods:

(Various hyper-parameters are used to tune each model) · Random Forests (RFs) average the predictions across an ensemble of decision trees. Each tree directs input signals through a series of decision nodes to a final output.

(W/m²)

600

· Artificial Neural Networks (ANNs) simulate the neural networks found in the brain. Input signals are assigned weights that activate nodes as they propagate through the network. Weights are then adjusted with back propagation.

Support Vector Machines (SVMs) work by transforming a non-linearly separable input space into a higher dimensional feature space where variables can be separated by a 3-D hyperplane.

Gradient Boosting (GB) is a method similar to RFs, but instead adds new decision trees one at a time that are specifically built to correct for residual errors in the already trained ensemble of trees. This is opposed to RFs building and adding trees using random feature selection.

• Rather than training on instantaneous GHI values 1, 2, 3, or 4 hours ahead, which may not be representative of the most probable GHI f.h., ML models train on the average CSI for the hour ending at the forecast horizon (f.h.), which is then multiplied by GHI f. clear to produce a most likely GHI forecast.

METHODS

$$GHI_{prediction}^{f.h.} = \frac{\sum_{t=f,h-60}^{f.h} CSI^{t}}{60} \cdot (GHI_{clear}^{f.h.})$$

Time Temp Humidity Wind Speed Wind Direction Pressure Thermal IR GHI^t GHI^t_{clear} CSI^t is CSI^t_{average} 1200 20.7 71.3 5.2 54.6 838 403.4 816.3 870.4 .9378 f.h. - 60 min. Mostly sunny weather 1400 18.3 74.1 5.6 48.7 834 401.4 438.7 816.8 .5371 .392 60 minutes of mostly CSI^{3:00pm} CSIt $\div 60 = .4403$ f.h. cloudy weather 1500 17.8 76.5 5.5 49.7 832 401.1 Fig 7: Example of time series weather observations. The last column is the time shifted y-variable; the forecast horizon's clear sky index. GHI3:00 1200 21.4 72.0 4.3 52.6 838 403.9 811.4 871.9 .9306 ? A358 Ex: Unseen testing vector.

Situation dependent forecasts:

RED ROCKS

(7 sites) • (12 months) • (4 forecast horizons) • (4 ML models) = 1,344 models

cknowledgments: I would especially like to thank Anthony Florita for his guidance in this project and for entrusting me to contribut to the team's research. I would also like to thank Bri-Mathias Hodge, Tarek Elgindy, the Com (CCI) program, and the entire workforce development team at NREL

RESULTS

(Results still being produced for four of seven locations)

Fig. 9: The ML models perform differently depending on the time of year, location, and forecast horizon. Having a selection of models lowers overall yearly prediction errors.

Fig. 10: Forecasting is improved in all situations in CO against a benchmark, and is improved under certain forecast horizons in other location

Artificial Neural Networks out perform the other three models in the tests run so far.

Fig. 12: Forecasting errors increase with increasing sho forecast horizons, and Spring and Summer months tend to be the hardest to forecast. All months, sites, and forecast horizons will be compared when current tests produce results for other four sites.

CONCLUSION

Discussion:

- · Results show a ~25% forecasting improvement over the benchmark in Boulder. · Forecasts benefit from the availability of a selection of 4 ML methods, as the individual ML algorithms perform differently depending on the geographic and temporal forecasting situations.
- · Artificial Neural Network is the newest ML method being employed and is producing the best results in this study. Results may be further improved by optimizing hyper-parameters specific to the different forecasting situations.
- · A ML approach using ground measured weather observations can help advance short-term solar irradiance forecasting accuracy. Improved forecasts will help facilitate higher penetrations of solar energy into the grid.

Future work:

This solar power forecasting methodology can be extended by increasing the forecast horizon resolution from hourly increments to 5 minute increments, giving grid operators more dynamic information about upcoming ramping events. Further work should also look into optimizing ML hyper-parameters for each situation dependent forecast.

EX3 (2013, Jone 4). Machine lumming for paskage unov with E.(7). Kandom Forest. Zata Xvanias ZXX in Tohys. Reinteed July 114, Iron. http://jcom.haioudolog.com/wirky.2013100/02199000	The information contained in this poster is subject to a government license.
Relation, E. (2003, May). What are computational neuronionse and system biology so separate? PLOR Computational Biology Vol. 4 (9) Retrieved August 14, 2017, from https://succenteral.org/2017/03/31/golden-natio-new-toware-and-artificial-neural-national-sci Retrieved August 14, 2017, from https://succenteral.org/2017/03/31/golden-natio-neural-national-sci Retrieved August 14, 2017, from https://succenteral.org/2017/03/31/golden-natio-neural-natio-neural-national-sci Retrieved August 14, 2017, from https://succenteral.org/2017/03/31/golden-natio-neural-neural-natio-ne	SULI POSTER SESSION
Danie (2017, March 11). Korwel inisk reglanation. Jianh Eucharger Date Science Reletered August 19, 2017, Irom https://doi.org/au.org/au.org/au.org/au.org/au.org/au.org/au.org/au.org/au.org/au.org/au.org/au.org/au.org/au.org	NREL - Golden, Colorado
Europe, D. (2011). Documber 20). Docision inter-encodedies: bogging, sundom Eurori, and gradient bouning machines. Machine Learning Europe, Indian Institute Elencytower, European Astronom August 11, Ione, https://www.sladochane.net/Docpde/Corege/University sections/ione-encodedies-bagging-sandom: Encode paulient-bound	d August 9, 2017

450 300 150 12pm 3pm 6pn 9am Fig.1: Ideal vs. actual time-series irradiance

Time-shifted GHI forecasts:

Ex: Input training instance for 3 hour ahead forecasts Time shifted training output

forecasting for grid operators.

values, tune ML hyper-parameters, etc. 2 -· Train then test 4 ML models for each temporal and geographic situation. · Use validation metrics to discover the best

8 -

sts per Forecast Horizon (IL

Fig. 11: Table shows the frequency of each ML model in forecasting the lowest RMSE across all permutations of certain situations.

 $= -786.3 \text{ W/m}^2 \cdot .4358 = 342.7 \text{ W/m}^2$

