NREL Photovoltaic Subcontract Reports: Abstracts and Document Control Information

1 August 1992 – 31 July 1993

Photovoltaic Energy Program
L. Pohle, Coordinator

National Renewable Energy Laboratory
1617 Cole Boulevard
Golden, Colorado 80401-3393
Operated by Midwest Research Institute for the U.S. Department of Energy under Contract No. DE-AC02-83CH10093

Prepared under Task No. PV310101

September 1993

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED
NOTICE

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.

Printed in the United States of America
Available from:
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road
Springfield, VA 22161
Price: Microfiche A01
Printed Copy A04

Codes are used for pricing all publications. The code is determined by the number of pages in the publication. Information pertaining to the pricing codes can be found in the current issue of the following publications which are generally available in most libraries: Energy Research Abstracts (ERA); Government Reports Announcements and Index (GRA and I); Scientific and Technical Abstract Reports (STAR); and publication NTIS-PR-360 available from NTIS at the above address.

Printed on recycled paper
DISCLAIMER

Portions of this document may be illegible electronic image products. Images are produced from the best available original document.
PREFACE

This report contains document control information and abstracts for the National Renewable Energy Laboratory (NREL) subcontracted photovoltaic (PV) program publications. It also lists source information on additional publications that describe U.S. Department of Energy (DOE) PV research activities. It is not totally exhaustive, so it lists NREL contacts for requesting further information on the DOE and NREL PV programs. This report covers the period from August 1, 1992, through July 31, 1993. This report is published periodically, with the previous one covering the period from August 1, 1991, through July 31, 1992.

The purpose of continuing this type of publication is to help keep people abreast of specific PV interests, while maintaining a balance on the costs to the PV program. The information in this report is organized under PV technology areas:

- Amorphous Silicon Research
- Polycrystalline Thin Films (including copper indium diselenide, cadmium telluride, and thin-film silicon)
- Crystalline Materials and Advanced Concepts (including silicon, gallium arsenide, and other group III-V materials)
- PV Manufacturing Technology Development (which may include manufacturing information for various types of PV materials)

The referenced documents are mostly available from the National Technical Information Service (NTIS), and an NTIS order form is enclosed. In addition to these sections are listings of a more general nature. These additional listings identify their source.

The NREL Photovoltaics Program is sponsored by the U.S. Department of Energy under contract No. DE-AC02-83CH10093. NREL is operated by Midwest Research Institute for the U.S. Department of Energy.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amorphous Silicon Research Publications</td>
<td>1</td>
</tr>
<tr>
<td>Polycrystalline Thin Film Publications</td>
<td>17</td>
</tr>
<tr>
<td>(including copper indium diselenide, cadmium telluride, and thin film silicon)</td>
<td></td>
</tr>
<tr>
<td>Crystalline Materials and Advanced Concepts Publications</td>
<td>33</td>
</tr>
<tr>
<td>(including silicon, gallium arsenide, and other group III-V materials)</td>
<td></td>
</tr>
<tr>
<td>PV Manufacturing Technology Development Publications</td>
<td>47</td>
</tr>
<tr>
<td>(manufacturing information for any PV material type)</td>
<td></td>
</tr>
<tr>
<td>Additional Publications and Sources</td>
<td>55</td>
</tr>
</tbody>
</table>
Amorphous Silicon Research
This report describes the progress made during Phase II of the R&D program to obtain high-efficiency amorphous alloy multijunction PV modules. The highlight of the work includes: (1) demonstration of world-record small-area efficiency of 11.2% after one-sun light-soaking at 50°C for 600 h using a dual band gap, double-junction structure; and (2) demonstration of initial module efficiency of 10.6% over 0.09-m² (1-ft²) area using the same double-junction approach. In addition, fundamental studies on material properties and cell performance showed an interesting correlation between microstructure in the material and cell efficiency both in the initial and light-degraded conditions.
This report describes work to produce alloys of a-Si$_{1-x}$Ge$_x$:H of improved photoelectronic quality by plasma-enhanced chemical vapor deposition (PECVD). The goal was to discover optimum preparation conditions for the end-component, a-Ge:H, to establish whether modification of the usual practice of starting from a-Si:H preparation conditions was advisable. Such modification, found to be necessary, gave films of a-Ge:H with efficiency-mobility-lifetime products ($\eta \mu \tau$) 102 to 103 higher than were earlier available, in homogeneous environmentally stable material. Both a-Ge:H and a-Si$_{1-x}$Ge$_x$:H of large x were studied in detail. Alloy material was shown to have $\eta \mu \tau$ 102 larger than found earlier. However, just as the $\eta \mu \tau$ of a-Si:H decreases when Ge is added, so also the $\eta \mu \tau$ of these alloys decreases with Si addition. By contrast, the ambipolar diffusion lengths, L_σ, which are governed by the hole mobility, vary by only a factor of two over the whole alloy series. Using the experimental finding of a small valence band offset between a-Si:H and a-Ge:H, compositional fluctuations on a 10-nm scale are suggested to explain the behavior of $\eta \mu \tau$ and L_σ. The implications for eventual improvement of the alloys are profound, but require direct experimental tests of the postulated compositional fluctuations.
This report describes work to improve the performance of solar cells by improving the electrical and optical properties of their TCO layers. Boron-doped zinc-oxide films were deposited by atmospheric pressure chemical vapor deposition in a laminar-flow reactor from diethyl zinc, tert-butanol, and diborane in the temperature range between 300°C and 420°C. When the deposition temperature was above 320°C, both doped and undoped films have highly oriented crystallites with their c-axes perpendicular to the substrate plane. Films deposited from 0.07% diethyl zinc and 2.4% tert-butanol have electron densities between 3.5×10^{19} and $5.5 \times 10^{20} \text{ cm}^{-3}$, conductivities between 250 $\Omega^{-1} \text{ cm}^{-1}$ and 2500 $\Omega^{-1} \text{ cm}^{-1}$ and mobilities between 2.5 $\text{cm}^2\text{N-s}^{-1}$ and 35.0 $\text{cm}^2\text{N-s}^{-1}$, depending on dopant concentration, film thickness, and deposition temperature. Optical measurements show that the maximum infrared reflectance of the doped films is close to 90%, compared to about 20% for undoped films. Film visible absorption and film conductivity were found to increase with film thickness. The ratio of conductivity to visible absorption coefficient for doped films was between 0.1 Ω^{-1} and 1.1 Ω^{-1}. The band gap of the film changes from 3.3 eV to 3.7 eV when the film is doped with 0.012% diborane.
This report describes results from the first phase of a three-phase contract for the development of stable, high-efficiency, same-band-gap, amorphous silicon (a-Si) multijunction photovoltaic (PV) modules. The research program involved improving the properties of individual layers of semiconductor and non-semiconductor materials and small-area single-junction and multijunction devices, as well as the multijunction modules. The semiconductor materials research was performed on a-Si p, i, and n layers, and on microcrystalline silicon n layers. These were deposited using plasma-enhanced chemical vapor deposition. The non-semiconductor materials studied were tin oxide, for use as a transparent-conducting-oxide (TCO), and zinc oxide, for use as a back reflector and as a buffer layer between the TCO and the semiconductor layers. Tin oxide was deposited using atmospheric-pressure chemical vapor deposition. Zinc oxide was deposited using magnetron sputtering. The research indicated that the major challenge in the fabrication of a-Si multijunction PV modules is the contact between the two p-i-n cells. A structure that has low optical absorption but that also facilitates the recombination of electrons from the first p-i-n structure with holes from the second p-i-n structure is required. Non-semiconductor layers and a-Si semiconductor layers were tested without achieving the desired result. Work in the second phase of the contract will concentrate on this issue.
This report describes an apparatus, constructed and tested, that allows measurement of the surface morphology of as-grown hydrogenated amorphous silicon films with atomic resolution using a scanning tunneling microscope. Surface topologies of 100-A-thick intrinsic films, deposited on atomically flat, crystalline Si and GaAs, are reported. These film surfaces are relatively flat on the atomic scale, indicating fairly homogeneous, compact initial film growth. The effect of probe-tip size on the observed topology and the development of atomically sharp probes is discussed.
This report describes the in-situ characterization of growth and interfaces in amorphous silicon (a-Si:H) devices. The growth of a-Si:H by plasma-enhanced chemical vapor deposition (PECVD) is complex and involves many gas-phase and solid-surface chemical and physical processes, which are influenced by charged particle bombardment, ultraviolet light exposure, etc. The research consisted of two broad components. The first involved preparing a-Si:H by "optimum" PECVD and exposing the film to atomic hydrogen in-situ at the growth temperature. The processes of H-diffusion and incorporation in the exposed film were studied by spectroscopic ellipsometry, giving a picture of the processes by which the chemical potential in the film equilibrates with that in the gas phase. The properties of thin films were then prepared by alternating "optimum" PECVD growth and hydrogen exposure. Film properties were then studied again. The second component of the research is discussed only briefly in this report, as it is an outgrowth of previous work on single-wavelength ellipsometry. With the new spectroscopic capability developed at Penn State, it is now possible to quantify the nucleation and growth process of a-Si:H films.
This report describes work to obtain a comprehensive understanding of the structure and electronic properties of a-Si:H as they apply to solar cells. The main emphasis is on the phenomena of metastability and thermal equilibrium, in which the density of electronic states depends on the electronic and thermal history of the material. Metastability effects are a major problem with solar cells and with other electronic devices. Our studies provide an understanding of the complex interaction between the electronic states and the atomic structure that causes these effects.
This report describes work on phase 1 of a three-phase project directed toward demonstrating amorphous silicon (a-Si:H) solar cells with high stabilized conversion efficiency. In the process, an intermediate objective was to resolve several key material and device issues. These key issues are (1) whether a reduction in hydrogen content in amorphous silicon intrinsic layers can lead to higher stabilized solar cell efficiencies, (2) how the performance of solar cells made with narrow-band-gap a-SiGe:H can be enhanced, (3) how the particular materials and device parameters determine stabilized performance of a-Si:H solar cells, and (4) how particular materials and device parameters may enhance the performance of a-SiGe:H based solar cells.
Electron Cyclotron Resonance Deposition of Amorphous Silicon Alloy Films and Devices

7. Author(s)
Y.-H. Shing

9. Performing Organization Name and Address
Jet Propulsion Laboratory
Pasadena, California 91109

12. Sponsoring Organization Name and Address
National Renewable Energy Laboratory
1617 Cole Blvd.
Golden, CO 80401-3393

15. Supplementary Notes
NREL technical monitor: W. Luft

16. Abstract (Limit: 200 words)
This report describes work to develop a state-of-the-art electron cyclotron resonance (ECR) plasma-enhanced chemical vapor deposition (PECVD) system. The objective was to understand the deposition processes of amorphous silicon (a-Si:H) and related alloys, with a best-effort improvement of optoelectronic material properties and best-effort stabilization of solar cell performance. ECR growth parameters were systematically and extensively investigated; materials characterization included constant photocurrent measurement (CPM), junction capacitance, drive-level capacitance profiling (DLCP), optical transmission, light and dark photoconductivity, and small-angle X-ray scattering (SAXS). Conventional ECR-deposited a-Si:H was compared to a new form, a-Si:(Xe,H), in which xenon gas was added to the ECR plasma. a-Si:(Xe,H) possessed low, stable dark conductivities and high photosensitivities. Light-soaking revealed photodegradation rates about 35% lower than those of comparable radio frequency (rf)-deposited material. ECR-deposited p-type a-SiC:H and intrinsic a-Si:H films underwent evaluation as components of p-i-n solar cells with standard rf films for the remaining layers.

17. Document Analysis
a. Descriptors
amorphous silicon; films; electronic devices; deposition; photovoltaics; solar cells

b. Identifiers/Open-Ended Terms

c. UC Categories
271

18. Availability Statement
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road
Springfield, VA 22161

19. No. of Pages
59

20. Price
A04
Title and Subtitle

Research on Stable, High-Efficiency Amorphous Silicon Multijunction Modules

Abstract (Limit: 200 words)

This report describes research on semiconductor and non-semiconductor materials to enhance the performance of multi-band-gap, multijunction, large-area, amorphous-silicon-based alloy modules. The goal is to demonstrate a stabilized module efficiency of 10% for a multijunction panel with an area greater than 900 cm2 by 1992. Double-junction and triple-junction cells are made on a Ag/ZnO back reflector deposited on stainless steel substrates. An a-SiGe alloy is used for the i-layer in the bottom and the middle cells; the top cell uses an amorphous silicon alloy. After the evaporation of an antireflection coating, silver grids and bus bars are put on the top surface and the panel is encapsulated in an ethylene vinyl acetate (EVA)/Tefzel structure to make a 1-ft2 monolithic module.
This report describes work to demonstrate a multijunction module with a "stabilized" efficiency (600 h, 50°C, AM1.5) of 10.5%. Triple-junction devices and modules using a-Si:H alloys with carbon and germanium were developed to meet program goals. ZnO was used to provide a high optical transmission front contact. Proof of concept was obtained for several important advances deemed to be important for obtaining high (12.5%) stabilized efficiency. They were (1) stable, high-quality a-SiC:H devices and (2) high-transmission, textured ZnO. Although these developments were not scaled up and included in modules, triple-junction module efficiencies as high as 10.85% were demonstrated. NREL measured 9.62% and 9.00% indoors and outdoors, respectively. The modules are expected to lose no more than 20% of their initial performance.
This report describes the first year of a continuing research study to understand how recombination, trapping, and band-mobility modification affecting the electronic properties of amorphous semiconductors can be measured, characterized, and described by an appropriate spectrum of defect states, and how light-induced defects in a-Si:H and native defects in a-SiGe:H affect transport properties in these materials. The objective was to determine how the Staebler-Wronski defects affect the electronic processes in a-Si:H and a-SiGe:H films. To do this, electroluminescence (EL) and forward bias current in p-i-n devices (i-layer thickness > 2 µm) were studied both experimentally and theoretically before and after light soaking. A simple picture was developed to compare forward bias current to the EL signal. The result was unexpected: the product of the final current times the rise time was not constant before and after light soaking as expected from the concept of gain band width, but instead changed radically. The rise time t_r increased by more than one order of magnitude while the final current I_f did not change significantly with light soaking. On the other hand, the $I_r t_r$ product did hold close to a constant when only the applied voltage changed.
This report describes works to use transient photocapacitance and photocurrent measurements to determine the deep defect distribution and processes in low-band-gap a-Si,Ge:H alloys. Samples for these studies were produced by the photochemical vapor deposition (photo-CVD) growth method and were obtained through a collaboration with researchers at the University of Delaware. This report discusses how a detailed comparison between the photocapacitance and photocurrent spectra can be used to separately examine the majority and minority carrier processes. The results are as follows: (1) The midgap defect densities in the alloy regime near 1.3 eV can be as low as $5 \times 10^{16} \text{cm}^{-3}$ in such photo-CVD samples. (2) There exists a second defect band roughly 0.4 eV below E_C of a similar magnitude to the midgap defect density that exhibits significant lattice relaxation behavior in its electron trapping dynamics. (3) The hole $\mu\tau$ products determined for the lowest defect sample are roughly $5 \times 10^{10} \text{cm}^2\text{V}^{-1}$, comparable with the highest hole $\mu\tau$ products reported in sandwich geometry measurements for alloys in this composition range. (4) The hole $\mu\tau$ is found to be roughly inversely proportional to the midgap defect density for the samples studied. This is consistent with the fact that the effective minority carrier lifetime for such measurements is limited by the deep state trapping time.
This report describes major research accomplishments during Phase II of this subcontract. (1) We demonstrated that the remote PECVD process can be used to deposit heavily doped n-type and p-type a-Si:H thin films. (2) We optimized conditions for depositing undoped, near-intrinsic and heavily doped thin films of µc-Si by remote PECVD. (3) We extended the remote PECVD process to the deposition of undoped and doped a-Si,C:H and µc-Si,C alloy films. (4) We analyzed transport data for the dark conductivity in undoped and doped a-Si:H, a-Si,C:H, µc-Si and µc-Si,C films. (5) We studied the properties of doped a-Si:H and µc-Si in MOS capacitors using ~10 Ω-cm p-type crystalline substrates and thermally grown SiO₂ dielectric layers. (6) We collaborated with a group at RWTH in Aachen, Germany, and studied the contributions of process-induced defect states to the recombination of photogenerated electron pairs. (7) We applied a tight-binding model to Si-Bethe lattice structures to investigate the effects of bond angle, and dihedral angle disorder. (8) We used ab initio and empirical calculations to study non-random bonding arrangements in a-Si,O:H and doped a-Si:H films.
Polycrystalline Thin Films
This report describes work to develop Silicon-Film™ Product III into a low-cost, stable solar cell for large-scale terrestrial power applications. The Product III structure is a thin (<100-μm) polycrystalline layer of silicon on a durable, insulating, ceramic substrate. The insulating substrate allows the silicon layer to be isolated and metallized to form a monolithically interconnected array of solar cells. High efficiency is achievable with the use of light trapping and a passivated back surface. The long-term goal for the product is a 1200-cm², 18%-efficient, monolithic array. The short-term objectives are to improve material quality and to fabricate 100 cm² monolithically interconnected solar cell arrays. Low minority-carrier diffusion length in the silicon film and series resistance in the interconnected device structure are presently limiting device performance. Material quality is continually improving through reduced impurity contamination. Metallization schemes, such as a solder-dipped interconnection process, have been developed that will allow low-cost production processing and minimize Rᵢ effects. Test data for a nine-cell device (16 cm²) indicated a Vᵢₒ of 3.72 V. These first-reported monolithically interconnected multicrystalline silicon-on-ceramic devices show low shunt conductance (<0.1 mA/cm²) due to limited conduction through the ceramic and no process-related metallization shunts.
Title and Subtitle
Innovative Sputtering Techniques for CIS and CdTe Submodule Fabrication

Author(s)
J.M. Armstrong, M.S. Misra, B. Lanning

Performing Organization Name and Address
Martin Marietta
P.O. Box 179
Denver, CO 80201

Sponsoring Organization Name and Address
National Renewable Energy Laboratory
1617 Cole Blvd.
Golden, CO 80401-3393

Abstract (Limit: 200 words)
This report describes work done during Phase 1 of the subject subcontract. The subcontract was designed to study innovative deposition techniques, such as the rotating cylindrical magnetron sputtering system and electrodeposition for large-area, low-cost copper indium diselenide (CIS) and cadmium telluride (CdTe) devices. A key issue for photovoltaics (PV) in terrestrial and future space applications is producibility, particularly for applications using a large quantity of PV. Among the concerns for fabrication of polycrystalline thin-film PV, such as CIS and CdTe, are production volume, cost, and minimization of waste. Both rotating cylindrical magnetron (C-Mag™) sputtering and electrodeposition have tremendous potential for the fabrication of polycrystalline thin-film PV due to scalability, efficient utilization of source materials, and inherently higher deposition rates. In the case of sputtering, the unique geometry of the C-Mag™ facilitates innovative cosputtering and reactive sputtering that could lead to greater throughput, reduced health and safety risks, and, ultimately, lower fabrication cost. Electrodeposited films appear to be adherent and comparable with low-cost fabrication techniques. Phase 1 involved the initial film and device fabrication using the two techniques mentioned herein. Devices were tested by both internal facilities, as well as NREL and ISET.

Document Analysis
- **Descriptors**: copper indium diselenide; cadmium telluride; submodule; sputtering; photovoltaics; solar cells
- **Identifiers/Open-Ended Terms**
- **UC Categories**: 273

Availability Statement
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road
Springfield, VA 22161

- **No. of Pages**: 63
- **Price**: A04
This report describes work done during Phase I of a 3-phase, cost-shared contract. The objective of the subcontract is to demonstrate 12% total-area efficiency copper indium diselenide (CIS) solar cells and 50-W CIS modules averaging at least 8 W/ft² in the third year. At the end of Phase I, EPV delivered to NREL a 1.1 cm² CIS cell with an active area efficiency of 10.5%. The corresponding total-area efficiency is 7.9%.
This report describes a 3-year, 3-phase cost-shared contract to demonstrate 12.5% aperture-efficient, large-area (3900-cm²) encapsulated thin-film CuInSe₂ modules. During Phase 1, Siemens Solar Industries (SSI) demonstrated a new world record of 37.7 W and 9.7% aperture efficiency for a 3883-cm² (126.9 x 30.6 cm) encapsulated CuInSe₂ module, which was verified at NREL. Uncapsulated CuInSe₂ module plate performance achieved 40.8 W and 10.5% aperture efficiency. Excellent measurement agreement was verified between SSI and NREL.
This report describes work by Colorado State University (CSU) to perform comparative quantitative analyses of individual loss mechanisms for a large number of CdTe and CuInSe₂ solar cells from a variety of laboratories. The limiting role of polycrystallinity in thin-film solar cells has been reduced somewhat during the past year, and efficiencies of both CdTe and CuInSe₂ cells are approaching 15%. A quantitative separation of loss mechanisms shows that individual losses, with the exception of forward recombination current, can be made comparable to their single-crystal counterparts. One general manifestation of the extraneous trapping states is that the voltage of all polycrystalline thin-film cells drifts upward by 10-50 mV following the onset of illumination.
This report describes research to obtain an understanding of the materials processing, properties, and performance of polycrystalline thin-film CuInSe₂ and CdTe solar cells. Such an understanding is needed to achieve the goals for efficiency, reliability, and cost for flat-plate thin-film photovoltaic (PV) systems as defined in the national PV program, and to support the development of a competitive U.S. PV industry through collaboration with engineers and scientists at other laboratories. The report presents results and conclusions of Phase II of a multiyear research program on polycrystalline thin-film heterojunction solar cells. The research consisted of investigating the relationships between processing, materials properties, and device performance. The relationship was quantified by device modeling and analysis. The analysis of thin-film polycrystalline heterojunction solar cells explains how minority carrier recombination at the metallurgical interface and at grain boundaries can be greatly reduced by the proper doping of the window and absorber layers. Additional analysis and measurements show that the present solar cells are limited by the magnitude of the diode current that appears to be caused by recombination in the space-charge region.
This report describes work to develop an accurate numerical model for CuInSe₂ (CIS) and CdTe-based solar cells capable of running on a personal computer. Such a model will aid researchers in designing and analyzing CIS- and CdTe-based solar cells. ADEPT (A Device Emulation Program and Tool) was used as the basis for this model. An additional objective of this research was to use the models developed to analyze the performance of existing and proposed CIS- and CdTe-based solar cells. The development of accurate numerical models for CIS- and CdTe-based solar cells required the compilation of cell performance data (for use in model verification) and the compilation of measurements of material parameters. The development of the numerical models involved implementing the various physical models appropriate to CIS and CdTe, as well as some common window materials. A version of the model capable of running on an IBM-compatible personal computer was developed (primary code development is on a SUN workstation). A user-friendly interface with pop-up menus is continuing to be developed for release with the IBM-compatible model.
This report describes work to form thin films of CuInSe₂ (CIS) by annealing precursor films containing Cu, In, and Se in a rapid thermal processor. This involves two steps: (1) a precursor containing Cu, In, and Se is deposited on unheated substrates such that CIS does not form during this deposition step, and (2) the precursor is annealed in a rapid thermal processor to crystallize the CIS. Advantages of this process are that (1) no H₂Se is used; (2) concentration gradients can potentially be built into the film due to the rapid anneal; and (3) the precursor can potentially be deposited using scalable methods such as sputtering, solution growth, and electrodeposition. The deposition method used was three-source, elemental physical vapor deposition. At room temperature, such a method was considered to be a flexible way to deposit a precursor that would be fairly typical of precursors deposited by more scalable techniques. Precursors were made both by the stacked elemental layer approach, where one element at a time was evaporated, as well as by a co-evaporation method. Adhesion problems limited device performance, and the co-evaporated precursors displayed unintended segregation of Cu and In in a direction normal to the film plane. The best cell efficiency was 3.5%.
This report describes research to fabricate high-efficiency CdZnS/CuInGaSe₂ (CIGS) thin-film solar cells, and to develop improved transparent conductor window layers such as ZnO. A specific technical milestone was the demonstration of an air mass (AM) 1.5 global, 13% efficient, 1-cm²-total-area CIGS thin-film solar cell. Our activities focused on three areas. First, a CIGS deposition system was modified to double its substrate capacity, thus increasing throughput, which is critical to speeding the process development by providing multiple substrates from the same CIGS run. Second, new tooling was developed to enable an investigation of a modified aqueous CdZnS process. The goal was to improve the yield of this critical step in the device fabrication process. Third, our ZnO sputtering system was upgraded to improve its reliability, and the sputtering parameters were further optimized to improve its properties as a transparent conducting oxide. The characterization of the new CIGS deposition system substrate fixturing was completed, and we produced good thermal uniformity and adequately high temperatures for device-quality CIGS deposition. Both the CIGS and ZnO deposition processes were refined to yield a ZnO/Cd₉₂Zn₈S/CuIn₇Ga₃SnSe₂ cell that was verified at NREL under standard testing conditions at 13.1% efficiency with $V_{oc} = 0.581$ V, $J_{sc} = 34.8$ mA/cm², FF = 0.728, and a cell area of 0.979 cm².
This report describes work to produce 60 cm x 120 cm solar power modules based on thin-film CdTe. The method of choice for semiconductor deposition is condensation from high-temperature vapors. Early work focused on close-spaced sublimation and chemical vapor deposition using elemental sources. Small-area conversion efficiency was confirmed by NREL at 9.3% on a 0.22-cm² device (Vₜ₀ = 825 mV, Jₜ₀ = 18.2 mA/cm², and FF = 0.62) deposited on a 100-cm² substrate. On 8 cells, (64 cm² submodules), the best result to date is 7.3% (Vₜ₀ = 5.9 V, Jₑ = 130 mA, and FF = 0.61). CdS, CdTe, and ZnTe films were deposited onto 60 cm x 120 cm substrates; single cells produced from this material exceeded 8% efficiency, and 64-cm² submodules exceeded 5%. Module efficiency is limited by mechanical defects (mostly shunts) associated with processing after the semiconductor layers are deposited. The present best result is 1.4% total-area efficiency with a power output of 10 W. Further optimization should improve the performance of the modules.
Low-Cost CuInSe₂ Submodule Development

B.M. Basol, V.K. Kapur, A. Halani, C. Leidholm

International Solar Electric Technology
8635 Aviation Blvd.
Inglewood, CA 90301

National Renewable Energy Laboratory
1617 Cole Blvd.
Golden, CO 80401-3393

This report describes work to develop and demonstrate the processing steps necessary to fabricate high-efficiency CuInSe₂ solar cells and submodules by the two-stage technique (also called the selenization method). We optimized the processing parameters of this method and demonstrated CuInSe₂/CdS/ZnO devices with 1-4 cm² areas and up to 12.4% active-area efficiency. We also developed a novel approach for preparing Cu/In precursors that improved the stoichiometric and morphological uniformity in these films. We developed processing steps and tooling for handling up to 1-ft² substrates and, as a result, demonstrated our first monolithically integrated submodule of 1 ft² area.
This report describes work to improve the basic understanding of CdTe and ZnTe alloys by growing and characterizing these films along with cell fabrication. The major objective was to develop wide-band-gap (1.6-1.8 eV) material for the top cell, along with compatible window material and transparent ohmic contacts, so that a cascade cell design can be optimized. Front-wall solar cells were fabricated with a glass/SnO$_2$/CdS window, where the CdS film is thin to maximize transmission and current. Wide-band-gap absorber films ($E_g = 1.75$ eV) were grown by molecular beam epitaxy (MBE) and metal-organic chemical vapor deposition (MOCVD) techniques, which provided excellent control for tailoring the film composition and properties. CdZnTe films were grown by MBE, and CdTe films were grown by both MBE and MOCVD. All the as-grown films were characterized by several techniques (surface photovoltage spectroscopy, Auger electron spectroscopy [AES], and x-ray photoelectron spectroscopy [XPS]) for composition, bulk uniformity, thickness, and film and interface quality. Front-wall-type solar cells were fabricated in collaboration with Ametek Materials Research Laboratory using CdTe and CdZnTe polycrystalline absorber films. The effects of processing on ternary films were studied by AES and XPS coupled with capacitance voltage and current voltage measurements as a function of temperature. Bias-dependent spectral response and electrical measurements were used to test some models in order to identify and quantify dominant loss mechanisms.
Abstract (Limit: 200 words)

This report describes work to develop Silicon-Film Product III into a low-cost, stable device for large-scale terrestrial power applications. The Product III structure is a thin (< 100 µm) polycrystalline silicon layer on a non-conductive supporting ceramic substrate. The presence of the substrate allows cells to be isolated and interconnected monolithically in various series/parallel configurations. The long-term goal for the product is efficiencies over 18% on areas greater than 1200 cm². The high efficiency is made possible through the benefits of using polycrystalline thin silicon incorporated into a light-trapping structure with a passivated back surface. Short-term goals focused on the development of large-area ceramics, a monolithic interconnection process, and 100 cm² solar cells. Critical elements of the monolithically integrated device were developed, and an insulating ceramic substrate was developed and tested. A monolithic interconnection process was developed that will isolate and interconnect individual cells on the ceramic surface. Production-based, low-cost process steps were used, and the process was verified using free-standing silicon wafers to achieve an open-circuit voltage (V_{oc}) of 8.25 V over a 17-element string. The overall efficiency of the silicon-film materials was limited to 6% by impurities. Improved processing and feedstock materials are under investigation.
This report describes progress during the first year of a three-year research program to develop 12%-efficient CuInSe₂ (CIS) submodules with area greater than 900 cm². To meet this objective, the program was divided into five tasks: (1) windows, contacts, substrates; (2) absorber material; (3) device structure; (4) submodule design and encapsulation; and (5) process optimization. In the first year of the program, work was concentrated on the first three tasks with an objective to demonstrate a 9%-efficient CIS solar cell.
Crystalline Materials and Advanced Concepts
<table>
<thead>
<tr>
<th>Document Control Page</th>
<th>1. NREL Report No.</th>
<th>2. NTIS Accession No.</th>
<th>3. Recipient’s Accession No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. Title and Subtitle</td>
<td>Growth and Development of GaInAsP for Use in High-Efficiency Solar Cells</td>
<td>5. Publication Date</td>
<td>April 1993</td>
</tr>
<tr>
<td>9. Performing Organization Name and Address</td>
<td>Research Triangle Institute</td>
<td>10. Project/Task/Work Unit No.</td>
<td>PV321101</td>
</tr>
<tr>
<td></td>
<td>P.O. Box 12194</td>
<td>11. Contract (C) or Grant (G) No.</td>
<td>(C) XM-0-19142-3</td>
</tr>
<tr>
<td></td>
<td>Research Triangle Park, NC 27709</td>
<td>12. Sponsoring Organization Name and Address</td>
<td>National Renewable Energy Laboratory</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13. Type of Report & Period Covered</td>
<td>Technical Report</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 July 1991 - 30 June 1992</td>
</tr>
<tr>
<td>14.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Supplementary Notes</td>
<td>NREL technical monitor: J. Benner</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Abstract (Limit: 200 words)</td>
<td>This report describes work done during Phase II of the subcontract. Goals for Phase II include the following: (1) Optimize the GaInAsP cell on GaAs and demonstrate a 500-sun at air mass (AM) 1.5 efficiency of >23%. (2) Develop a window layer, including the evaluation of AlGaAs, GaInP, AlGaAsP, AlGaN, and GaP. (3) Develop a front-surface contact, with a grid designed for 500-sun concentration, and a goal of a contact resistivity of ~10⁵ ohm-cm². (4) Grow GaInAsP cells on Ge, with a goal of a 1-sun (AM 1.5) efficiency of >15%. Accomplishments reported herein include (1) the fabrication of p-on-n and n-on-p GaInAsP cells on GaAs, with the n-on-p cell demonstrating a 10-sun (AM 1.5) active-area efficiency of 23.4% as measured at NREL; (2) the evaluation of AlGaInAs, GaInP, and AlInP, window layers; and (3) the fabrication of GaInAsP cells on Ge, with the demonstration of a p-on-n GaInAsP cell grown on Ge with a 1-sun (AM 1.5) active-area efficiency of 14.4%.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Document Analysis</td>
<td>a. Descriptors</td>
<td>high efficiency; gallium indium arsenide; photovoltaics; solar cells</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Identifiers/Open-Ended Terms</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. UC Categories</td>
<td>273</td>
<td></td>
</tr>
<tr>
<td></td>
<td>U.S. Department of Commerce</td>
<td>20. Price</td>
<td>A03</td>
</tr>
<tr>
<td></td>
<td>5285 Port Royal Road</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Springfield, VA 22161</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
This report describes research to examine new solar cell design approaches for achieving very high conversion efficiencies. The program consists of two elements. The first centers on exploring new thin-film approaches specifically designed for III-V semiconductors. Substantial efficiency gains may be possible by employing light trapping techniques to confine the incident photons, as well as the photons emitted by radiative recombination. The thin-film approach is a promising route for achieving substantial performance improvements in the already high-efficiency, single-junction, III-V cell. The second element of the research involves exploring design approaches for achieving high conversion efficiencies without requiring extremely high-quality material. This work has applications to multiple-junction cells, for which the selection of a component cell often involves a compromise between optimum band gap and optimum material quality. It could also be a benefit in a manufacturing environment by making the cell’s efficiency less dependent on material quality.
This report describes work to achieve a high-efficiency, low-cost solar cell. The basic approach to the problem is centered upon the heteroepitaxial growth of a III-V compound material onto a single-crystal silicon wafer. The growth technique employed throughout this work is metal-organic chemical vapor deposition. The silicon wafer may serve as a mechanical substrate and ohmic contact for a single-junction device, or it may contain a p-n junction of its own and form the bottom cell of a two-junction tandem solar cell structure. The III-V material for the single-junction case is GaAs, and for the two-junction case it is either GaAlAs or GaAsP, either material having the proper composition to yield a band gap of approximately 1.7 eV. Results achieved in this contract include (1) a 17.6%-efficient GaAs-on-Si solar cell; (2) an 18.5%-efficient GaAs-on-Si concentrator solar cell at 400 suns; (3) a 24.8%-efficient GaAs-on-GaAs solar cell; (4) a 28.7%-efficient GaAs-on-GaAs concentrator solar cell at 200 suns; (5) the measurement of the effects of dislocation density and emitter doping on GaAs cells; and (6) improvements in the growth process to achieve reproducible thin AlGaAs window layers with low recombination velocities and environmental stability.
Abstract (Limit: 200 words)

This report describes work to develop technology to deposit GaAs on Si using a nucleation layer of atomic-layer-epitaxy-grown GaAs or AlAs on Si. This ensures two-dimensional nucleation and should lead to fewer defects in the final GaAs layer. As an alternative, we also developed technology for depositing GaAs on sawtooth-patterned Si. Preliminary studies showed that this material can have a very low defect density, \(\approx 1 \times 10^5 \text{cm}^{-2} \), as opposed to our conventionally grown GaAs on Si, which has a typical defect density of over \(1 \times 10^7 \text{cm}^{-2} \). Using these two new methods of GaAs-on-Si material growth, we made solar cells that are expected to show higher efficiencies than those of previous cells.
The aim of this contract is the achievement of a high-efficiency, low-cost solar cell. The basic approach to the problem is centered on the heteroepitaxial growth of a III-V compound material onto a single-crystal silicon wafer. The growth technique employed throughout this work is metal-organic chemical vapor deposition. The silicon wafer may serve as a mechanical substrate and ohmic contact for a single-junction device, or may contain a p-n junction of its own and form the bottom cell of a two-junction tandem structure. The III-V material for the single-junction case is GaAs, and for the two-junction case is either GaAlAs or GaAsP; either material has the proper composition to yield a band gap of approximately 1.7 eV. Results achieved in this contract include the following: (1) a 17.6%-efficient GaAs-on-Si solar cell; (2) an 18.5%-efficient GaAs-on-Si concentrator solar cell at 400 suns; (3) a 24.8%-efficient GaAs-on-GaAs solar cell; (4) a 28.7%-efficient GaAs-on-GaAs concentrator solar cell at 200 suns; (5) measurements of the effects of dislocation density and emitter doping on GaAs cells; and (6) improvements in the growth process to achieve reproducible thin AlGaAs window layers with low recombination velocities and environmental stability.
An Inverted AlGaAs/GaAs Patterned-Ge Tunnel Junction Cascade Concentrator Solar Cell

R. Venkatasubramanian

Research Triangle Institute
P.O. Box 12194
Research Triangle Park, NC 27709-2194

Technical Report
1 January 1991 - 31 August 1992

This report describes work to develop inverted-grown Al_{0.34}Ga_{0.66}As/GaAs cascades. Several significant developments are reported on as follows: (1) The AM1.5 1-sun total-area efficiency of the top Al_{0.34}Ga_{0.66}As cell for the cascade was improved from 11.3% to 13.2% (NREL measurement [total-area]). (2) The "cycled" organometallic vapor phase epitaxy growth (OMVPE) was studied in detail utilizing a combination of characterization techniques including Hall-data, photoluminescence, and secondary ion mass spectroscopy. (3) A technique called eutectic-metal-bonding (EMB) was developed by strain-free mounting of thin GaAs-AlGaAs films (based on lattice-matched growth on Ge substrates and selective plasma etching of Ge substrates) onto Si carrier substrates. Minority-carrier lifetime in an EMB GaAs double-heterostructure was measured as high as 103 nsec, the highest lifetime report for a freestanding GaAs thin film. (4) A thin-film, inverted-grown GaAs cell with a 1-sun AM1.5 active-area efficiency of 20.3% was obtained. This cell was eutectic-metal-bonded onto Si. (5) A thin-film, inverted-grown, Al_{0.34}Ga_{0.66}As/GaAs cascade with AM1.5 efficiency of 19.9% and 21% at 1-sun and 7-suns, respectively, was obtained. This represents an important milestone in the development of an AlGaAs/GaAs cascade by OMVPE utilizing a tunnel interconnect and demonstrates a proof-of-concept for the inverted-growth approach.
This report describes investigation into the theory and technology of a novel heterojunction or superlattice, single-junction solar cell, which injects electrons across the heterointerface to produce highly efficient impact ionization of carriers in the low-band-gap side of the junction, thereby conserving their total energy. Also, the superlattice structure has the advantage of relaxing the need for perfect lattice matching at the p-n interface and will inhibit the cross diffusion of dopant atoms that typically occurs in heavy doping. This structure avoids the use of tunnel junctions that make it very difficult to achieve the predicted efficiencies in cascade cells, thus making it possible to obtain energy efficiencies that are competitive with those predicted for cascade solar cells with reduced complexity and cost. This cell structure could also be incorporated into other solar cell structures designed for wider spectral coverage.
Novel Ways of Depositing ZnTe Films by a Solution Growth Technique

R. W. Birkmire, B. E. McCandless, T. A. Yokimcus, A. Mondal

Institute of Energy Conversion
University of Delaware
Newark, Delaware 19716-3820

National Renewable Energy Laboratory
1617 Cole Blvd.
Golden, CO 80401-3393

This report describes research to develop novel processes for the deposition of thin (<500Å) ZnTe layers suitable as transparent ohmic contacts for CdS/CdTe solar cells. The processes developed for ZnTe deposition were also applied to the deposition of other II-VI semiconductor layers for polycrystalline thin film solar cells. Three processes for the deposition of ZnTe were investigated: (1) surface exchange with CdTe, where Cd is replaced by Zn from an aqueous bath to form a ZnTe layer; (2) solution growth; and (3) galvanic deposition from an aqueous bath. The galvanic deposition technique proved to be the only method in which ZnTe films were successfully and reproducibly formed. The formation of ZnSe and CdS films using this galvanic deposition method was attempted, and encouraging results were achieved for the formation of CdS films on SnO₂/glass substrates. The development of this method, and the optimization of key processing steps in the fabrication of CdS/CdTe/ZnTe:Cu devices, resulted in cell performance results of > 70% fill factor and ~ 10% efficiency.
Title and Subtitle

Photon and Ion Assisted Doping and Growth of II-VI Compound Thin Films

Author(s)

R.H. Bube, A.L. Fahrenbruch

Performing Organization Name and Address

Stanford University
Department of Materials Science & Engineering
Stanford, California 94305-2205

Sponsoring Organization Name and Address

National Renewable Energy Laboratory
1617 Cole Blvd.
Golden, CO 80401-3393

Abstract (Limit: 200 words)

This report describes research on ion-assisted doping (IAD) and photon-assisted doping (PAD) as techniques to grow p-type conducting thin layers. P-type dopants P and As are difficult to incorporate by vacuum evaporation, due in part to their low sticking coefficients. Segregation at the growing film surface during deposition further reduces incorporation. In addition, self-compensation occurs in CdTe, reducing the electrical activity of the dopant atoms that are incorporated. Several years ago, we chose IAD as a promising technique to circumvent these difficulties. However, the doped films had small minority carrier diffusion lengths (L_d) and were not suitable for efficient solar cells. The low L_d motivated us to look for a technique which would allow a high level of doping, in addition to long minority carrier diffusion lengths and good crystalline quality. PAD appeared to be a good candidate for this purpose, and we began research on PAD as an alternative to IAD. In the past year, good control of the micro-stoichiometry of CdTe films has become an important issue, for both IAD and PAD, because it affects not only the doping and self-compensation, but also the crystalline quality.

Document Analysis

- **Descriptors**
 - II-VI
 - thin films
 - photovoltaics
 - solar cells
 - cadmium telluride
 - doping

- **Identifiers/Open-Ended Terms**
 -

- **UC Categories**
 - 273

Availability Statement

National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road
Springfield, VA 22161

Form No. 0069E (6-30-87)
This report describes the results of a program to develop a more complete understanding of the physical and chemical processes involved in low-temperature growth of III-V compounds by metal-organic chemical vapor deposition (MOCVD) and to develop a low-temperature process that is suitable for the growth of high-efficiency solar cells. The program was structured to develop a better understanding of the chemical reactions involved in MOCVD growth, to develop a model of the processes occurring in the gas phase, to understand the physical kinetics and reactions operative on the surface of the growing crystal, and to develop an understanding of the means by which these processes may be altered to reduce the temperature of growth and the utilization of toxic hydrides. The basic approach was to develop the required information about the chemical and physical kinetics operative in the gas phase and on the surface by the direct physical measurement of the processes whenever possible. The program included five tasks: (1) MOCVD growth process characterization, (2) photoenhanced MOCVD studies, (3) materials characterization, (4) device fabrication and characterization, and (5) photovoltaic training. Most of the goals of the program were met, and significant progress was made in defining an approach that would allow both high throughput and high uniformity growth of compound semiconductors at low temperatures. The technical activity was focused on determining the rates of thermal decomposition of trimethyl gallium, exploring alternate arsenic sources for use in MOCVD, and empirical studies of atomic layer epitaxy as an approach.
This report describes progress during the first year of a three-year project. The objective of the research is to examine new design approaches for achieving very high conversion efficiencies. The program is divided into two areas. The first centers on exploring new thin-film approaches specifically designed for III-V semiconductors. The second area centers on exploring design approaches for achieving high conversion efficiencies without requiring extremely high quality material. Research activities consisted of an experimental study of minority carrier recombination in n-type, metal-organic chemical vapor deposition (MOCVD)-deposited GaAs, an assessment of the minority carrier lifetimes in n-GaAs grown by molecular beam epitaxy, and developing a high-efficiency cell fabrication process.

17. Document Analysis
 a. Descriptors
 high efficiency ; photovoltaics ; solar cells ; semiconductors ; gallium arsenide
 b. Identifiers/Open-Ended Terms
 c. UC Categories
 272

18. Availability Statement
 National Technical Information Service
 U.S. Department of Commerce
 5285 Port Royal Road
 Springfield, VA 22161

19. No. of Pages
 54

20. Price
 A04
Basic Studies of III-V High Efficiency Cell Components

Author(s)

Performing Organization Name and Address
Purdue University
School of Electrical Engineering
West Lafayette, Indiana 47907

Sponsoring Organization Name and Address
National Renewable Energy Laboratory
1617 Cole Blvd.
Golden, CO 80401-3393

Type of Report & Period Covered
Technical Report
15 August 1989 - 14 August 1990

Abstract (Limit: 200 words)
This report describes research activities on this subcontract for the last year. Other research is described in the reprints contained in Appendix 1. Chapter 1 describes experimental and theoretical work on perimeter and surface recombination. It describes measurements to characterize such recombination as well as the extension of the PUPHS2D model to treat these effects. Chapter 2 describes a new surface passivation treatment, A_{5-3}, which appears to produce a permanent reduction of surface recombination. Chapter 3 describes collaboration with outside laboratories to fabricate and characterize a variety of high-efficiency cells using films grown by molecular beam epitaxy. Chapter 4 presents some thoughts on how innovative designs might be used to advantage for III-V cells. Appendix 1 is a complete list of the publications that have resulted during the course of the project.

Document Analysis

a. Descriptors
- III-V cells
- high efficiency
- photovoltaics
- solar cells

b. Identifiers/Open-Ended Terms

c. UC Categories
273

Availability Statement
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road
Springfield, VA 22161

No. of Pages
68

Price
A04
PV Manufacturing Technology Development
This report describes work on a project to develop an advanced, low-cost manufacturing process for a new utility-scale flat-plate module based on thin active layers of polycrystalline silicon on a low-cost substrate. This is called the Silicon-Film™ process. This new power module is based on a new large solar cell that is 675 cm² in area. Eighteen of these solar cells form a 170-W module. Twelve of these modules form a 2-kW array. The program has three components: (1) development of a Silicon-Film™ wafer machine that can manufacture wafers 675 cm² in size with a total product cost reduction of 70%; (2) development of an advanced solar cell manufacturing process that will turn the Silicon-Film™ wafer into a 14%-efficient solar cell; and (3) development of an advanced module design based on these large-area, efficient silicon solar cells with an average power of 170 watts. The completion of these three tasks will lead to a new power module designed for utility and other power applications with a substantially lower cost.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. Title and Subtitle</td>
<td>Large-Area, Triple-Junction a-Si Alloy Production Scale-Up</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Publication Date</td>
<td>April 1993</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Author(s)</td>
<td>R. Oswald, J. O'Dowd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Performing Organization Name and Address</td>
<td>Solarex Thin Film Division 826 Newtown-Yardley Road Newtown, Pennsylvania 18940</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Project/Task/Work Unit No.</td>
<td>PV350101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Contract (C) or Grant (G) No.</td>
<td>(C) ZM-2-11040-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Supplementary Notes</td>
<td>NREL technical monitor: R. Mitchell</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Abstract (Limit: 200 words)</td>
<td>This report describes Solarex’s work to advance its photovoltaic manufacturing technologies, reduce its a-Si:H module production costs, increase module performance, and expand the Solarex commercial production capacity. Solarex will meet these objectives by improving the deposition and quality of the transparent front contact; optimizing the laser patterning process; scaling up the semiconductor deposition process; improving the back-contact deposition; and scaling up and improving the encapsulation and testing of its a-Si:H modules. In the Phase 1 portion of this subcontract, Solarex focused on scaling up components of the chemical vapor deposition system for deposition of the front contact, scaling up laser scribing techniques; triple-junction recipes for module production; and metal-oxide back contacts. The goal of these efforts is to adopt all portions of the manufacturing line to handle substrates larger than 0.37 m^2.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Document Analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Descriptors</td>
<td>large area ; triple junction ; amorphous silicon ; production ; photovoltaics ; solar cells</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Identifiers/Open-Ended Terms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. UC Categories</td>
<td>271</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Availability Statement</td>
<td>National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road Springfield, VA 22161</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. No. of Pages</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Price</td>
<td>A03</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Form No. 0069E (6-30-87)
This report describes work performed by ECD to advance its roll-to-roll, triple-junction photovoltaic manufacturing technologies; to reduce the module production costs; to increase the stabilized module performance; and to expand the commercial capacity utilizing ECD technology. The 3-year goal is to develop advanced large-scale manufacturing technology incorporating ECD’s earlier research advances with the capability of producing modules with stable 11% efficiency at a cost of approximately $1/Wp. Major efforts during Phase 1 are (1) the optimization of the high-performance back-reflector system, (2) the optimization of a-Si-Ge narrow band-gap solar cell, and (3) the optimization of the stable efficiency of the module. The goal is to achieve a stable 8% efficient 0.3-m x 1.2-m (1-ft x 4-ft) module. Also, the efforts include work on a proprietary, high-deposition-rate, microwave plasma, CVD manufacturing technology; and on the investigation of material cost reduction.
This report describes subcontracted research by Spectrolab, Inc., to address tasks outlined in the National Renewable Energy Laboratory's (NREL) letter of solicitation RC-0-10057. These tasks include the potential of making photovoltaics (PV) a more affordable energy source, as set forth in the goal of the PVMaT project. Spectrolab believes that the DOE cost goals can be met using three different types of cells: (1) silicon concentrator cells, (2) high efficiency GaAs concentrator cells, and (3) mechanically stacked multijunction cells.
Photovoltaic Manufacturing Technology Phase 1

Chronar Corporation
195 Clarksville Road
Lawrenceville, NJ 08648

National Renewable Energy Laboratory
1617 Cole Blvd.
Golden, CO 80401-3393

Technical Report
1 May 1991 - 10 May 1991

This report describes subcontracted research by the Chronar Corporation, prepared by Advanced Photovoltaic Systems, Inc. (APS) for Phase 1 of the Photovoltaic Manufacturing Technology Development project. Amorphous silicon is chosen as the PV technology that Chronar Corporation and APS believe offers the greatest potential for manufacturing improvements, which, in turn, will result in significant cost reductions and performance improvements in photovoltaic products. The APS "Eureka" facility was chosen as the manufacturing system that can offer the possibility of achieving these production enhancements. The relationship of the "Eureka" facility to Chronar's "batch" plants is discussed. Five key areas are also identified that could meet the objectives of manufacturing potential that could lead to improved performance, reduced manufacturing costs, and significantly increased production. The projected long-term potential benefits of these areas are discussed, as well as problems that may impede the achievement of the hoped-for developments. A significant number of the problems discussed are of a generic nature and could be of general interest to the industry. The final section of this document addresses the cost and time estimates for achieving the solutions to the problems discussed earlier. Emphasis is placed on the number, type, and cost of the human resources required for the project.
This report describes work done under Phase 1 of the Photovoltaic Manufacturing Technology (PVMaT) Project. PVMaT is a five-year project to support the translation of research and development in PV technology into the marketplace. PVMaT, conceived as a DOE/industry partnership, seeks to advance PV manufacturing technologies, reduce PV module production costs, increase module performance, and expand U.S. commercial production capacities. Under PVMaT, manufacturers will propose specific manufacturing process improvements that may contribute to the goals of the project, which is to lessen the cost, thus hastening entry into the larger scale, grid-connected applications. Phase 1 of the PVMaT project is to identify obstacles and problems associated with manufacturing processes. This report describes the cost analysis methodology required under Phase 1 that will allow subcontractors to be ranked and evaluated during Phase 2.
ADDITIONAL PUBLICATIONS AND SOURCES

The following publications were produced under the DOE Photovoltaics Program or are publications that include reports on activities that were largely supported by the DOE program. Many of these publications can be obtained through local libraries or can be ordered directly from the stated source.

NTIS ORDER FORM

MAIL ORDER TO:
NTIS
U.S. DEPARTMENT OF COMMERCE
National Technical Information Service
Springfield, VA 22161

Date ________________

For DTIC Users Only

Express/Rush

DTIC User Code ____________________________

(800) 336-4700

Contract Number ____________________________

(703) 487-4700

(last 6 characters only)

Regular Service

TELECOPIER

(703) 487-4650

TELEX

(703) 321-8547

89-9405

PURCHASER:

BILLING OFFICE TELEPHONE: ____________________________

ATTENTION: ____________________________

(Last Name) ____________________________ (Initial)

(Company, University, Agency)

(Bldg., Suite, Dept.)

(Company, University, Agency)

(Bldg., Suite, Dept.)

(Street, P.O. Box)

(Street, P.O. Box)

U.S. ____________________________ (State) (Zip)

U.S. ____________________________ (State) (Zip)

Foreign: ____________________________ (City, State or Province, Country)

Foreign: ____________________________ (City, State or Province, Country)

ORDERING OPTIONS: All Regular demand orders are shipped First Class Mail or equivalent service to all U.S. addresses. (For First Class Mail or equivalent service to Canadian and Mexican addresses add $3 per item; for all other addresses add $6 per item.) You may also elect Express or Rush Service. For a $20 per item charge your Express order will be processed within 24 hours and delivered by overnight courier. For a $10 per item charge your Rush order will be processed within 24 hours and mailed First Class Mail (or equivalent) or you may pick up your Rush order at NTIS within 24 hours for a $7.50 per item charge. *A Shipping and Handling fee must be applied to all Regular orders, but does not apply to Express, Rush or subscription orders.

USE THIS SECTION ONLY IF YOU KNOW THE DOCUMENT NUMBER. IF YOU ARE ORDERING BY TITLE, TURN THE PAGE.

<table>
<thead>
<tr>
<th>NTIS ORDER NUMBER</th>
<th>USER ROUTING CODE</th>
<th>QUANTITY</th>
<th>UNIT PRICE</th>
<th>PRIORITY MAIL SERVICES</th>
<th>TOTAL PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Method of Payment

☐ Charge to NTIS Deposit Account No. ____________________________

☐ Check/money order enclosed for $__________________________

☐ Billing Charge (see reverse for restrictions and explanation)

Employer identification number: ____________________________ (9 digits)

Purchase Order No. ____________________________

Charge to my ☐ American Express ☐ VISA ☐ MasterCard

Account No. ____________________________ Expiration Date ____________________________

Signature: ____________________________

(Required to validate all orders)

USE MEDIA CODES

The two or three letters at the end of NTIS Order Numbers have been placed there to help NTIS marketers determine the most effective media in bringing various types of information to users' attention. Please use the media codes when ordering. The information they provide is very helpful to NTIS and to its user community.

(REV 10-84)
USER ROUTING CODE: NTIS can label each item for routing within your organization. If you want this service put your routing code in the box marked USER ROUTING CODE (Limit eight characters).

BILLING SERVICE: This service is restricted to North American business locations for an extra $7.50 per order (or per Custom Search). The business employer identification number plus the phone number of the office paying the bill are required to process these requests. A late payment charge will be applied to all billings more than 30 days overdue.

FOR TELEPHONE ORDERS, CALL THE NTIS SALES DESK — 703/487-4650.

ORDERING MAGNETIC TAPE: (check mode)

- [] 9 Track
- [] 800 bpi
- [] 1600 bpi
- [] 6250 bpi (odd parity)

ORDERING BY TITLE: Use this section if you do not know the document number, but you do know the title. Please give us as much information as you can to help us to fill your order correctly.

TITLE #1

<table>
<thead>
<tr>
<th>Sponsor's Series #</th>
<th>Contract or Grant Number of Report</th>
<th>Date Published</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Originator (Give specific laboratory, or division and location)</td>
<td>Personal Author</td>
<td></td>
</tr>
</tbody>
</table>

TITLE #2

<table>
<thead>
<tr>
<th>Sponsor's Series #</th>
<th>Contract or Grant Number of Report</th>
<th>Date Published</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Originator (Give specific laboratory, or division and location)</td>
<td>Personal Author</td>
<td></td>
</tr>
</tbody>
</table>

TITLE #3

<table>
<thead>
<tr>
<th>Sponsor's Series #</th>
<th>Contract or Grant Number of Report</th>
<th>Date Published</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Originator (Give specific laboratory, or division and location)</td>
<td>Personal Author</td>
<td></td>
</tr>
</tbody>
</table>

TITLE #4

<table>
<thead>
<tr>
<th>Sponsor's Series #</th>
<th>Contract or Grant Number of Report</th>
<th>Date Published</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Originator (Give specific laboratory, or division and location)</td>
<td>Personal Author</td>
<td></td>
</tr>
</tbody>
</table>

TITLE #5

<table>
<thead>
<tr>
<th>Sponsor's Series #</th>
<th>Contract or Grant Number of Report</th>
<th>Date Published</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Originator (Give specific laboratory, or division and location)</td>
<td>Personal Author</td>
<td></td>
</tr>
</tbody>
</table>
Contacts: NREL Photovoltaic Program Personnel

<table>
<thead>
<tr>
<th>Task Area</th>
<th>Contact Name</th>
<th>Telephone</th>
</tr>
</thead>
<tbody>
<tr>
<td>PV Program</td>
<td>Thomas Surek, Manager</td>
<td>231-1371</td>
</tr>
<tr>
<td></td>
<td>Kathy Summers, Admin. Asst.</td>
<td>231-1395</td>
</tr>
<tr>
<td>Amorphous Silicon Research Project</td>
<td>Werner Luft, Manager</td>
<td>231-1823</td>
</tr>
<tr>
<td></td>
<td>Bolko von Roedern</td>
<td>231-1380</td>
</tr>
<tr>
<td>High Efficiency Concepts University Programs,</td>
<td>John Benner, Manager</td>
<td>231-1396</td>
</tr>
<tr>
<td>Crystalline Silicon Materials, and New Ideas</td>
<td>Bhushan Sopori</td>
<td>231-1383</td>
</tr>
<tr>
<td>Project</td>
<td>Kenneth Zweibel, Manager</td>
<td>231-7141</td>
</tr>
<tr>
<td></td>
<td>Harin Ullal</td>
<td>231-1841</td>
</tr>
<tr>
<td>Photovoltaic Manufacturing Technology Project</td>
<td>Ed Witt, Manager</td>
<td>231-1402</td>
</tr>
<tr>
<td></td>
<td>Richard Mitchell</td>
<td>231-1379</td>
</tr>
<tr>
<td></td>
<td>Holly Thomas</td>
<td>231-1900</td>
</tr>
<tr>
<td>Module and Systems Performance and Engineering</td>
<td>Richard DeBlasio, Manager</td>
<td>231-1286</td>
</tr>
<tr>
<td>PV Analysis and Applications Development</td>
<td>Roger Taylor, Manager</td>
<td>231-1332</td>
</tr>
</tbody>
</table>

We continually update our mailing list for photovoltaic documents. If you want to remain or be added to the distribution list for this and other directed documents, you must return the following information to:

K. Summers, Administrator
Photovoltaic Program
National Renewable Energy Laboratory
1617 Cole Blvd.
Golden, CO 80401-3393

Name:
Company:
Mailing Address:
City, State:
Zip Code:

61