Evaluation of Aftermarket LPG Conversion Kits in Light-Duty Vehicle Applications

Final Report

E.A. Bass

Southwest Research Institute San Antonio, TX

National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 Operated by Midwest Research Institute for the U.S. Department of Energy Under Contract No. DE-AC02-83CH10093

Evaluation of Aftermarket LPG Conversion Kits in Light-Duty Vehicle Applications

Final Report

E.A. Bass

Southwest Research Institute San Antonio, TX

NREL technical monitor: B. Bailey

National Renewable Energy Laboratory (formerly the Solar Energy Research Institute) 1617 Cole Boulevard Golden, Colorado 80401-3393 Operated by Midwest Research Institute for the U.S. Department of Energy under Contract No. DE-AC02-83CH10093

Prepared under subcontract no. YW-2-12119-1

June 1993

This publication was reproduced from the best available camera-ready copy submitted by the subcontractor and received no editorial review at NREL.

NOTICE

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.

> Printed in the United States of America Available from: National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road Springfield, VA 22161 Price: Microfiche A01

Printed Copy A08

Codes are used for pricing all publications. The code is determined by the number of pages in the publication. Information pertaining to the pricing codes can be found in the current issue of the following publications which are generally available in most libraries: Energy Research Abstracts (ERA); Government Reports Announcements and Index (GRA and I); Scientific and Technical Abstract Reports (STAR); and publication NTIS-PR-360 available from NTIS at the above address.

Preface

The National Renewable Energy Laboratory (NREL), as the field program manager for the U.S. Department of Energy (DOE) Alternative Fuels Utilization Program, seeks to assist and promote the development of technology required to facilitate the use of alternative fuels for transportation applications. Alternative fuels include compressed natural gas (CNG) and liquefied petroleum gas (LPG).

There are two major reasons for advancing these fuels. The first is the potential for reducing harmful vehicle emissions. Much has been published on the emissions of CNG-fueled vehicles, but not nearly as much published on the subject of LPG emissions. The second reason for advancing the use of CNG and LPG is that their use could displace a portion of the imported petroleum required by the transportation sector.

The conversion of existing vehicles to allow the utilization of alternative fuels is one means of facilitating a commercial market. Several manufacturers and conversion facilities are already in this market. It is essential that the commercial conversion technology provide acceptable safety, power, fuel economy, and emissions. This project was conducted to provide precise, independent evaluations of current-technology LPG fuel conversion systems in a light-duty vehicle. The evaluation focused on fuel economy and emissions, using three current conversion systems.

The author would like to thank the sponsors and their representatives who were responsible for funding this project: Brent Bailey of NREL, and Steve Jaeger of the Texas Railroad Commission's Alternative Fuels Research and Education Division (TRRC-AFRED). The project also would not have been possible without the dedicated and efficient laboratory staff at Southwest Research Institute (SwRI), including Wayne Costello, Rudy Guerra, Sharon Tondre, Andy Maldonado, Lisa Swaim, and Sylvia Niño.

Table of Contents

Page
roduction
st Program
Task 1: Test Vehicle Procurement2Task 2: LPG Conversion Kit Procurement4Task 3: Test Fuel Procurement8Task 4: Conversion Kit Installation8Discussion of Results9Hydrocarbon Emissions Speciation13
lated Work and Recommendations
nclusions
ferences
bliography
ppendix A - Conversion Kit Instructions and Original Documentation pendix B - FTP Test Data ppendix C - Exhaust Hydrocarbon Speciation Data

List of Figures

Figure	Pag	e
1	LPG Conversion Kit Components	6
2	LPG Kit Installation	7
3	Average Emissions of Total HC, CO, and NO _X as a Function of LPG Fuel Blend	1
4	Exhaust Organic Speciation Flow Chart 1	4

List of Tables

<u>Table</u>	Page
1	Test Vehicle Assembly Codes
2	Chevrolet Lumina Emission Test Data Comparison (FTP Cycle)
3	LPG Fuel Analysis by SwRI
4	Evaluation of Aftermarket LPG Conversion Kits in Light-Duty Vehicle, 1992 Chevrolet Lumina
5	Selected HC Species Contribution to Potential Ozone
6	Toxic Emissions Measured in FTP Tests 17
7	Comparison of Reactivity Adjustment Factors

Introduction

SwRI was contracted by NREL to evaluate three LPG conversion kits on a Chevrolet Lumina. The objective of the project was to measure the Federal Test Procedure (FTP) emissions and fuel economy of these kits, and compare their performance to gasoline-fueled operation and to each other. Varying LPG fuel blends allowed a preliminary look at the potential for fuel system disturbance. The project required kit installation and adjustment according to manufacturer's instructions. A limited amount of trouble diagnosis was also performed on the fuel systems.

A simultaneous contract from the Texas Railroad Commission, in cooperation with NREL, provided funds for additional testing with market fuels (HD5 propane and industry average gasoline) and hydrocarbon (HC) emissions speciation to determine the ozone-forming potential of LPG HC emissions.

Test Program

The approach was designed to evaluate current LPG conversion kits, with a range of fuel compositions on a late model light-duty vehicle. To meet NREL's requirements (and emissions speciation for the Texas Railroad Commission), SwRI developed a project based on the following elements.

Test Vehicle:	1992 Chevrolet Lumina, 3.1 L, with port fuel injection
Test Kits:	 (1) IMPCO ADP adaptive digital processor (2) IMPCO AFCP-1 automated fuel control processor (3) MOGAS ECOLO feedback control system
Test Fuels:	 (1) 98% propane, 2% butane (2) 92% propane, 8% butane (3) 85% propane, 5% propylene, 10% butane (4) 96% propane, HD5 market LPG (procured by TRRC-AFRED)
Evaluations:	FTP emissions and fuel economy Baseline gasoline and LPG conversions with fuel blends HC emissions speciation sponsored by the TRRC-AFRED

Task 1: Test Vehicle Procurement

The test vehicle configuration prescribed by NREL was analogous to a variable-fuel vehicle (VFV M85/E85) Chevrolet Lumina. The first test vehicle selected was a 1991 Lumina, which was purchased new by SwRI for use in an intake valve deposit (IVD) test. This test is an industry standard procedure that consists of 10% city driving, 20% suburban driving, and 70% highway driving. All maintenance during the 41,600 miles of testing was logged by SwRI staff. Based on the known history of the vehicle, (which was commuter service), inspection of engine and emissions control components, a preliminary tailpipe emissions check, and the reasonable results of the first FTP baseline test, the vehicle was believed to be a good test bed to represent typical late model vehicles that could be converted to LPG fuel.

At the request of the sponsor, an alternate test vehicle was rented from Avis. This was necessary to meet an objective that results be compared to other data collected in the DOE Alternative Fuels Utilization Program. The vehicle was a 1992 Chevrolet Lumina two-door with 17,800 miles. Some of the vehicle assembly codes are listed in Table 1. The SwRI staff performed a computer diagnostic check, inspected the engine and emission control components, and compared the engine identification codes with Environmental Protection Agency (EPA) certification data prior to accepting the vehicle. Average results of the FTP baseline tests on this vehicle with "EEE" reference gasoline are presented in Table 2.

Option	Code	Description
Engine	LHO	3.1 L port fuel injection
Emission System	NA5	not available
Exhaust System	NC6	not available
Transmission	MD9	three-speed automatic
Transaxle Ratio	F17	2.84:1
Wheels	PH3	15-inch diameter
Tires	DIN	P205/70R15
Plant Code	OSH	not available

Table 1. Test Vehicle Assembly Codes

 Table 2. Chevrolet Lumina Emission Test Data Comparison (FTP Cycle)

Test Results	HC g/mlle	CO g/mlle	NOx g/mile
EPA Standard	0.41	3.4	1.0
EPA '91-'92 Certification Data	0.22	2.5	0.53
NREL '92 Published Data	0.15	1.00	0.12
NREL '92 M-85 Lumina	0.11	1.70	0.07
SwRI '91-'92 Luminas (range of 6 cars)	0.17-0.73	2.11-6.14	0.27-0.51
'91 Test Car Baseline (Test 1)	0.38	4.06	0.55
'92 Test Car Baseline (EEE) Average	0.32	4.25	0.40
NREL Lumina Data Base (average of 9 runs on 4 cars)	0.26	3.10	0.33

The project vehicle can be compared to previous data in Table 2. These data illustrate how results vary between vehicles sampled. Even within one laboratory, CO varied about 4 g/mile among 6 identically configured Luminas with less than 10,000 miles on the odometers. The '91 test car exhibited emissions slightly above normal. The '92 test car (employed for the conversion project) was closer to expected levels, but still slightly above the CO standard.

Task 2: LPG Conversion Kit Procurement

Kit Availability/Procurement

LPG conversion kits were not as readily available as reported by manufacturers and suppliers. SwRI found that there were very few organizations ready to supply conversion kits (without adaptation) for the Chevrolet Lumina.

Stewart and Stevenson GFI could not deliver a kit until "sometime in January 1993." Evidently, the system was not yet commercially available. Century Products (affiliated with Vialle Autogas Systems and also known as Pacer Industries) has "never developed this specific kit" either. This was confirmed by both Vialle and Pacer company representatives. Garretson (which was taken over by MESA, Inc.) was originally planned as the second kit supplier, but there was negative response to our purchase order. MESA reported that the Garretson conversion system would not be a good candidate for evaluation, and that some parts would have required custom fabrication. SwRI did not believe this was the intent of the project, so did not pursue this source. MOGAS Fuel Systems Inc. was selected as an alternative kit supplier because this group had a kit readily available for the Lumina.

Other kit suppliers, not listed in the NREL statement of work, were also investigated. Eagle Propane (which supplies OHG, Inc. systems) responded negatively. SLP Engineering is a company that has publicized a kit for the Lumina that achieves California's low emission vehicle (LEV) standard; however, the SLP product will not be available until late 1993. S. Jaeger of the Texas Railroad Commission (sponsor of the HC speciation), procured an additional electronic closed-loop control system from Autotronics, Inc. This system utilizes IMPCO hardware with the exception of the fuel control valve. Interestingly, it specifies an adjustment for vehicles with DIS (direct ignition system) spark control such as the Lumina.

The Autotronics kit was not included in the evaluation because three kits had already been selected. The three kits selected for evaluation were the IMPCO ADP, IMPCO AFCP-1, and the MOGAS ECOLO systems; and they are discussed in detail below.

IMPCO ADP KIt

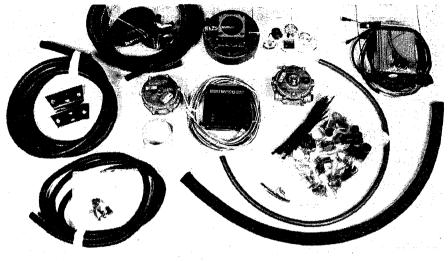
The ADP is IMPCO's best offering for the Lumina. As received from the IMPCO supplier, L.E. Klein, Inc., the package included paper packing material; but only the electronic components were enclosed in individual boxes. The outer box was badly crushed near the bottom, but no parts were visibly damaged. Components inventoried by SwRI were as follows.

- Autotronics 8690 dual curve ignition accessories (instruction sheet indicates it monitors "Service Engine" codes)
- IMPCO AH3-14209 ADP module
- IMPCO VFF30-2 (SN290911) fuel lock/filter including hoses and fittings
- IMPCO JB (SN290114) regulator
- IMPCO 225 fuel mixer
- 350 psi weatherhead hose
- Heater hose
- Wire reinforced 1-in. Hose
- Instructions (IMPCO 23600-71 ADP)

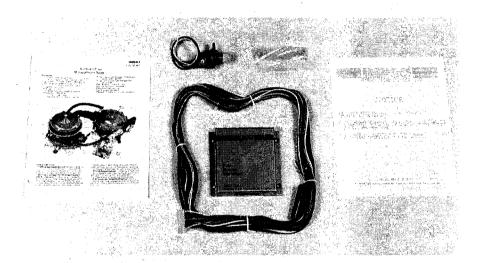
The IMPCO ADP and AFCP-1 fuel systems use "air valve" (or above throttle) vacuum as the signal to actuate both the fuel lock and the converter (or regulator). Closed-loop control actuation is performed by a "fuel control valve." This is a solenoid valve installed in the air valve vacuum line. It limits the response of the converter diaphragm by restricting the vent when the fuel processor sends a pulsed signal to open and close the valve. The ADP system uses a speed-density control algorithm and an original equipment manufacturer (OEM) exhaust oxygen sensor to control the solenoid valve. It reportedly has 16 "cells" in a non-volatile memory table to store learned responses. The AFCP-1 does not have the learning feature, nor does it use manifold pressure as a control signal. Both systems are limited in their range of control because the solenoid valve can only be used to restrict the converter diaphragm. This gives only a lean control mode.

IMPCO AFCP-1 Kit

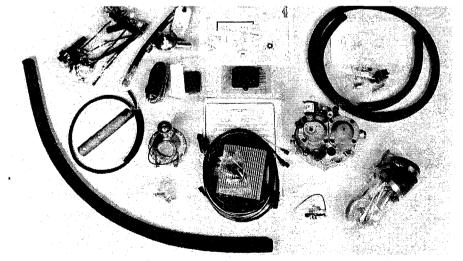
The IMPCO AFCP-1 was the second IMPCO kit selected for evaluation. It was the predecessor of the ADP kit. The AFCP-1 used the same fuel lock, converter, and mixer as the ADP system.


MOGAS ECOLO KIt

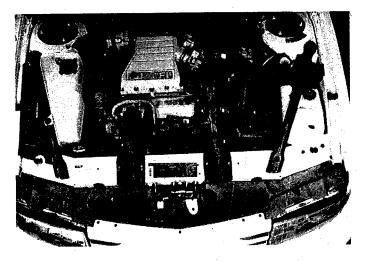
MOGAS Sales' of Canada "ECOLO Feedback" propane conversion system (Kit No. 3 of this project) was received on December 28 in good condition. The inventory of the MOGAS kit is shown below.


- 16.100.100 ECOLO feedback control (small)
- 09.01.505/5 regulator LPG R90/1/E (product of Italy)
- 16.40.031 kit mixer GM 3.1L M.P.F.I.
- 09.02.142 lock off and filter LP gas (AFC)
- 05.50.146 kit computer support, 8690 CARB approved-GM Autotronics
- 05.00.111 electric shut-off (E.S.O.) programmable
- 07.70.601 hose assy. 3/8-in. x 1-ft high pressure hose
- Mounting bracket ~1 in. x 12 in. x 0.25 in. with 2 holes and a mounted stud
- Low pressure hose 1 in. x 4 ft
- Heater hose -5/8 in. x 6 ft
- 2 miscellaneous bags of hose fittings, clamps, ties, and fasteners
- MOGAS systems diagrams and Autotronic Controls instructions

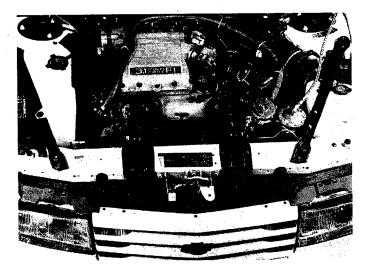
The MOGAS ECOLO closed-loop control system uses only the exhaust oxygen sensor to regulate its control valve. The fuel control valve in this case is installed between the regulator and the mixer. It has a diaphragm with a vacuum source regulated by a solenoid valve. Manual adjustments are possible on the fuel control valve, the regulator, and the fuel lock solenoid. The fuel lock solenoid is controlled by the ESO, which is signaled by the ignition switch and spark plug ignition.


One observation about the kits was that the Autotronic Controls Corp. No. 8690 computer-code module is a common component for each. Another observation was that all three used engine coolant in the regulator to control fuel temperature. The hardware of the kits was photographed for further documentation of the components (see Figure 1). Photographs were also taken of the engine before and after IMPCO and MOGAS hardware was installed on the test vehicle, as shown in Figure 2.

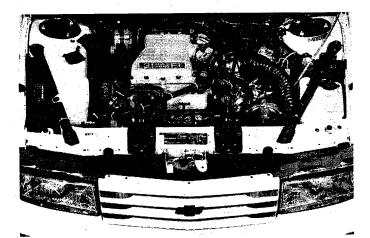
a. IMPCO ADP



b. IMPCO AFCP-1



c. MOGAS ECOLO



a. Original Lumina 3.1 L Engine Compartment

b. IMPCO ADP and AFCP-1 Installations

c. MOGAS ECOLO Installation

Task 3: Test Fuel Procurement

The effect of CNG composition on emissions has been documented (King 1992). The current project included multiple LPG fuel blends to study the effects on vehicle emissions. Liquid Carbonic Specialty Gas Corporation delivered three test fuels in December 1992. The Railroad Commission also procured a market grade fuel, designed to meet the HD5 specification, from Petrolane Gas Company. This HD5 fuel, unlike the three blends, is a typical refinery product. The following compositions were obtained by SwRI using a Varian 1700 FID Gas Chromatograph with 10-ft x 1/8-in. Hayesep D Column and Valco 10-port injection valve. Results are shown in Table 3. The test fuels were within 1% of the NREL specifications for this project, which were an average composition LPG (approximately 92% propane), a low propane composition LPG (approximately 85% propane, 5% propylene), and a high propane composition LPG (approximately 98%).

Fuel Code	Cylinder Code	Propane Mole %	Butane Mole %	Propylene Mole %	Ethane Mole %	Other Mole %	Hydrogen/ Carbon Ratio
P98	R249933	98.0	2.0	0.0	0.0	0.0	2.66
P92	B0059036	91. <u>6</u>	8.4	0.0	0.0	0.0	2.65
P85	A01 468 45	84.7	10.3	5.0	0.0	0.0	2.62
HD5	A55393	95.5	0.3	0.1	4.0	0.1	2.68

Table 3. LPG Fuel Analysis by SWRI

Task 4: Conversion Kit Installation

We observed several installation discrepancies on the IMPCO ADP system. These comments also apply to the AFCP system (Kit No. 2).

- The kit did not include duct hoses to connect the mixer to the air cleaner and the mixer to the throttle body. The OEM hose could not be adapted for these uses.
- The mixer (or carburetor) could not fit between the air cleaner and the throttle body. To accommodate the mixer, the air cleaner had to be relocated.
- Instructions were incomplete. This is particularly true with regard to the mixer (the direction of air flow is not labeled), the filter/fuel lock (the air valve vacuum port was not described), and the plumbing (connections for the components, the fuel tank, and the coolant).
- The initial adjustments could not be performed as described by the manual. The idle fuel mixture was monitored with a calibrated portable CO instrument. A jumper wire must be connected, but the terminals are not clearly identified. An incorrect connection (on the first attempt) caused very lean operation.

• The IMPCO FSA (fuel system analyzer) was essential for adjustment and diagnosis of the system, but it was not included in the kits.

The MOGAS system was installed more easily than the IMPCO because it had fewer sensor wires and vacuum hoses. There were, however, several discrepancies in the installation process.

- Flow direction is not shown on the fuel mixer or feedback valves, nor in the instructions.
- A "Hydrostatic Relief Valve" called for in the diagram was not in the kit. This valve is a safety to prevent fuel line explosion in the event overheating occurs in the high pressure line.
- The wiring diagram appears to show several wires connected together. Actually, they must not be connected. For example, the Computer Support (Autotronics) Module has a yellow wire to indicate if the vehicle has been switched to gasoline operation. It is shown connected to the MOGAS LPG fuel activation relay, but this contradicts the Autotronics instructions.
- A manual control valve (apparently for use in a mechanical system) was received in addition to the feedback control valve. The manual control valve should not be used.
- A small screw on the feedback valve was used to trim the response of the system at the advice of the MOGAS service representative, but this screw was not described in the MOGAS information.

We resolved the discrepancies noted above by contacting the supplier and/or the manufacturer. Clearly, some field installers might use their own judgment where the instructions are unclear or incomplete. The result could be poor emissions or safety hazards, even if driveability is acceptable.

Discussion of Results

Several steps were taken to ensure precision of the FTP tests. All tests other than the gasoline baselines were performed by the same driver and CVS operator, on the same dynamometer, and with the same emissions analyzers. Furthermore, all conversion installations were performed by one technician. Some bi-fuel conversion systems are normally started on gasoline. However, the engine was started with LPG in every test to eliminate this variable during this project.

Temperature Effects

The effect of fuel temperature on gaseous fuel management and resulting emissions and performance has been documented in previous studies at SwRI. For example, according to (King 1992), a 25°F change in fuel temperature, relative to intake air temperature, will cause about 2.5% variation in equivalence ratio. A 0.5% variation in equivalence ratio around stoichiometric operation can cause significant differences in exhaust emissions. The effect is particularly important on mechanical systems, which normally have no provision for direct temperature change compensation. Pressure regulators cause temperature changes, dependent on tank pressure and engine demand. Of course, ambient temperature can influence the results. Since the vehicle was always soaked overnight in the lab before tests, and the temperature did not vary more than five degrees; ambient temperature was well controlled. SwRI measured fuel temperature at approximately the same position (regulator outlet) for each installation.

The IMPCO AFCP and ADP tests showed an average fuel temperature change of 137°F (from cold start to hot test) during the FTP. The MOGAS results appeared slightly better, with an average change of 117°F. Catalytic converter inlet and outlet temperatures were also measured for information about the performance of the converter. As discussed for each kit below, catalyst outlet temperature did confirm our observations about the fuel control of the kits.

Fuel Composition Effects

Figure 3 shows the average total hydrocarbons determined by flame ionization detector (FID) (a), carbon monoxide (b), and nitrogen oxides (c) emissions as a function of LPG fuel propane mole percent for each of the three kits. The fuel composition changes apparently are an air/fuel ratio disturbance. In general, the decrease in propane content caused increases in HC and CO, and a decrease in NO_X , indicating a richer mixture. These effects were minimal for the MOGAS system, showing that in feedback control, fuel mixture variation can be tolerated. More study is needed to determine if it is the propane, butane, or hydrogen-to-carbon ratio which is most significant in the fuel composition.

IMPCO ADP KIt

As shown in Table 4, the IMPCO ADP system produced consistently high NO_x results. On the Chevrolet Lumina, this could be caused by EGR malfunction or lean operation. The vehicle's on-board diagnostic codes revealed only an intermittent air cleaner temperature signal. When this was corrected, no difference in results was observed. Because the EGR wiring was not disturbed by the kit installation, we surmised that the IMPCO kit was probably operating slightly lean. This was confirmed with an O_2 analyzer, the indicator light on the IMPCO ADP module, and the catalyst outlet temperature (which was an average of 128°F lower than that measured with gasoline).

The IMPCO supplier (in Dallas, Texas) and the service representatives (California) were consulted about the lean operation of the ADP system. Two different mixer diaphragms were then delivered to SwRI for comparison. Apparently the diaphragms are flow tested after production, then assigned a rating. IMPCO stated that perhaps the system under evaluation may have a #88 diaphragm; however, the original diaphragm in the mixer was a #93 rating. The alternatives were #88 and #92. These two are reported to run leaner than the #93, although even at IMPCO, there was no consensus about what the overall effect of the different diaphragms would be.

IMPCO AFCP-1 KIt

The second kit evaluated (IMPCO AFCP-1) produced high CO and HC emissions (see Figure 3). Diagnostics with the IMPCO FSA, which was sent on request, revealed that the processor was not regulating the fuel control valve at all. In this mode, the electronic fuel control was inactive, and the system operated only with mechanical feedback. Catalyst outlet temperature showed lower activity compared to gasoline as a result of low oxygen in the exhaust. This measurement along with the near constant "rich" indication of the IMPCO FSA instrument confirmed the hypothesis that the high CO and HC were caused by rich air/fuel mixtures. By comparison, the ADP (Kit No. 1) switched the fuel control valve at about 30% duty cycle, producing lean results. A second AFCP processor was shipped to SwRI and produced the same indications.

One hypothesis for the problems with both IMPCO systems is that the direct (distributor-less) ignition system (DIS) on the Lumina fires each cylinder twice per revolution. This could cause a false high speed indication for the processor. The IMPCO documents do not offer instructions for a vehicle with this system.

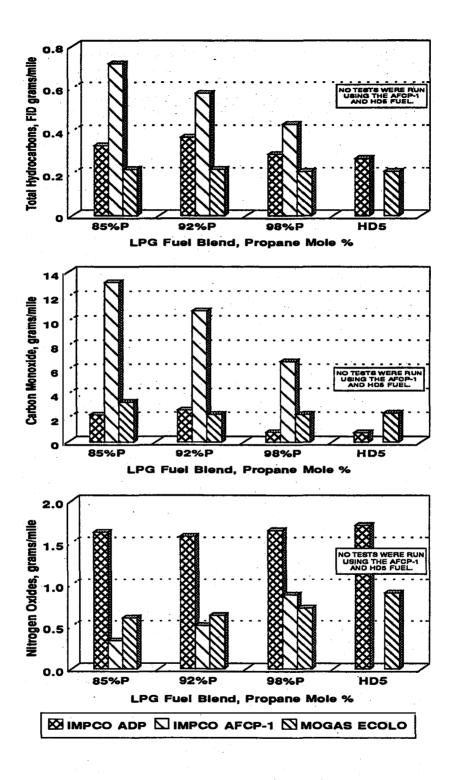


Figure 3. Average Emissions of Total HC, CO, and NO_X as a Function of LPG Fuel Blend

Table 4. Evaluation of Aftermarket LPG Conversion Kits in Light-Duty Vehicle, 1992 Chevrolet Lumina

		1992 Cnevro					
			Em	ission Re	sults, g/n	ılle	Fuel
Date	Test ID	Fuel	НС	CO	NOX	CO2	Economy, mpg
		Baseline Tests: Origi	nal Vehic	le Conditi	on		
12/11/92	L2-00-EEE1	EM1540 Baseline	0.27	3.15	0.41	427.4	20.47
12/29/92 12/30/92	L2-00-EEE2 L2-00-EEE3	EM1540 Baseline EM1540 Baseline	0.37 0.33	5.26	0.41 0.36	475.8 469.0	18.28 18.60
Average	L2-00-EEE3	EN11540 Daseillie	0.33	4.33 4.25	0.30	409.0 457.4	19.12
12/31/92	L2-00-RFA1	EM1215 TRC Base	0.32	4.25 6.76	0.46	454.4	19.02
1/06/93	L2-00-RFA2	EM1215 TRC Base	0.37	5.71	0.40	430.4	20.39
1/07/93	L2-00-RFA3	EM1215 TRC Base	0.45	6.32	0.44	431.1	20.31
Average			0.41	6.26	0.44	438.6	19.91
Overall Ave	rage		0.37	5.40	0.42	446.7	19.57
		IMPCO ADP LPG Conv	ersion T	ests (Kit i	#1)		
1/20/93 1/21/93	L2-01-P85 RUN 2	85% Propane 85% Propane	0.32 0.33	2.34 2.18	1.53 1.73	388.1 391.3	14.56 14.45
		•				386.6	
1/22/93 1/26/93	L2-01-P92 RUN 2	92% Propane 92% Propane	0.37 0.36	3.06 2.23	1.47 1.69	390.9	14.48 14.38
1/28/93	L2-01-P98	98% Propane	0.30	0.83	1.72	394.1	14.19
1/29/93	RUN 2	98% Propane	0.28	0.79	1.57	387.9	14.42
Average			0.33	1.90	1.62	389.8	14.41
		Additional Test Sp		•	1		
2/2/93	L2-01-HD5	Market HD5	0.27	0.78	1.71	388.1	14.10
	1	IPCO AFCP-1 LPG Co		•	•		
2/13/93	L2-02-P92	92% Propane	0.58	10.85	0.51	385.6	14.07
2/14/93	L2-02-P98	98% Propane	0.43	6.69	0.88	390.2	14.00
2/15/93	L2-02-P85	85% Propane	0.70	13.16	0.33	384.1	14.07
Average			0.57	10.23	0.57	386.6	14.08
	M	OGAS ECOLO LPG Co	onversion	Tests (K	lt #3)		
2/22/93	L2-03-P92	92% Propane	0.22	2.30	0.63	397.7	14.14
2/23/93	L2-03-P98	98% Propane	0.20	1.98	0.76	393.4	14.16
2/24/93	L2-03-P98	98% Propane	0.21	2.61	0.68	389.2	14.30
2/25/93	L2-03-P85	85% Propane	0.22	3.32	0.60	401.3	14.05
Average			0.21	2.55	0.67	395.4	14.16
	· · · · · · · · · · · · · · · · · · ·	Additional Test Sp	onsored	by TRRC		·	•••
2/26/93	L2-03-HD5	Market HD5	0.21	2.40	0.90	389.3	13.97
~		al Baseline Tests: Re					
3/3/93	L2-00-EEE4	EM1540	0.39	6.67	0.53	448.7	19.27
3/5/93	L2-00-EEE5	EM1540	0.28	3.15	0.43	468.2	18.71
Average			0.34	4.91	0.48	458.5	18.99

MOGAS ECOLO KIt

Driveability of the converted Lumina was generally excellent. Two observations were made on the MOGAS system. Starting required at least 10 seconds of cranking. It was suspected that the inductive winding on the spark plug or the ESO (electronic shut-off) caused the delay in de-activating the fuel lock. Also, the engine appeared to oscillate under certain high speed and load conditions. The MOGAS monitor indicated that the engine was slightly lean. This condition occurred during the Hot 505 portion of the FTP test. Under most operating conditions, the MOGAS monitor showed that the air-fuel ratio was oscillating at about stoichiometry. This is ideal for the catalytic converter so that it receives oxygen periodically to oxidize CO and HC, and it was typically imperceptible to the driver. As expected, catalyst outlet temperatures were close to gasoline measurements.

Hydrocarbon Emissions Speciation

Emissions of non-methane hydrocarbons (NMHC) from mobile sources have traditionally been given in terms of total mass. This approach fails to account for the highly variable reactivity of the different hydrocarbon species, which actually controls their ability to contribute to the formation of ozone. With the introduction of Carter's maximum incremental reactivity (MIR) scale and the ability of researchers to speciate hydrocarbon emissions from light-duty gasoline, natural gas and alcohol-fueled vehicles, regulators have been able to apply (and incorporate into law) reactivity adjustment factors to the hydrocarbon mass emissions of these vehicles.

HC speciation was conducted for the TRRC-AFRED as part of the NREL project. The Texas Railroad Commission test plan called for a baseline test on industry-average gasoline. Three tests were actually conducted to check vehicle and test repeatability, but only one included speciation of exhaust HC. The speciation process is shown in generalized form in Figure 4. A summary of the results (gasoline and LPG Kits No. 1 and No.3) of the speciation are shown in Table 5. Maximum incremental reactivity factors used in the table are from the California Air Resources Board's most recent proposed regulations (California ARB, 1992). The first four species are the toxics, and the remainder are listed in order of increasing carbon number. Mass rates of toxic emissions are listed separately in Table 6. These data show that, compared to industry average gasoline, the ozone formation potential and the level of toxics were reduced with LPG.

A combined three-GC method was used to obtain the hydrocarbon emissions speciation because it gives the lowest overall detection limits. This three-GC method and the aldehyde and ketone techniques are described below:

- <u>GC # 1 C₁ C₃ Hydrocarbons, Benzene, and Toluene</u> For measurement of selected individual hydrocarbons; methane, ethane, ethylene, acetylene, propane, propylene, benzene, and toluene; a sample of CVS-diluted exhaust is collected in a Tedlar bag. This bagged sample is then analyzed for individual hydrocarbons using a gas chromatographic system containing four separate columns and a flame ionization detector. The peak areas are compared to an external calibration blend, and the individual hydrocarbon concentrations are obtained using a networked PE Nelson Model 2600 data acquisition system.
- <u>GC #2 1,3-Butadiene</u> The procedure was developed to measure 1,3-butadiene in dilute vehicle exhaust from CVS bag samples. It also provides separation and measurement for six other C_4 hydrocarbons including: isobutane, butane, 1-butene, isobutylene, cis-2-

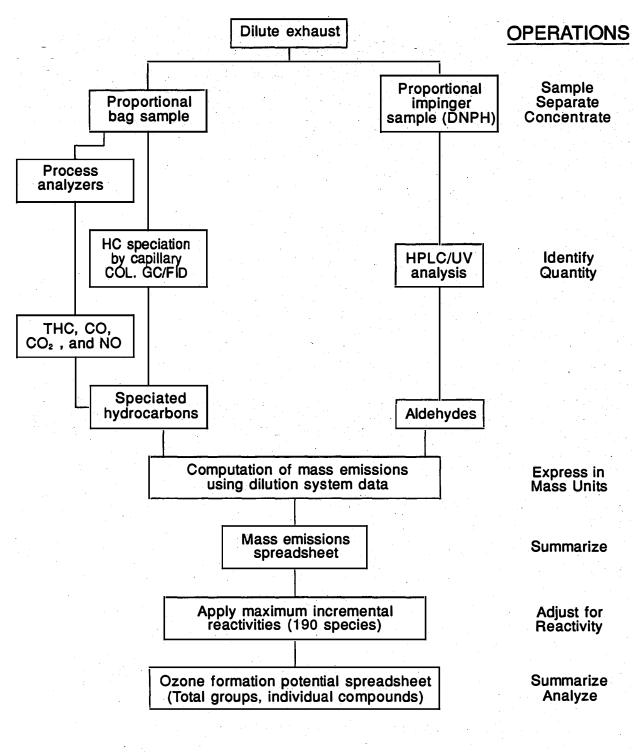


Figure 4. Exhaust Organic Speciation Flow Chart

		Gasoline Ba	aseline Data	IMPCO ADP Kit				
		Industry Average Fuel (RFA)		98% P	ropane	HD5 (96%	Propane)	
Hydrocarbon Species	Maximum Incremental Reactivity	Average Ozone Formation Potential (mg/mlle)	Average Weight % Ozone	Average Ozone Formation Potential (mg/mile)	Average Weight % Ozone	Average Ozone Formation Potential (mg/mile)	Average Weight % Ozone	
Formaldehyde	7.15	22.34	2.43	11.07	3.78	0.58	0.19	
Benzene	0.42	7.03	0.76	0.91	0.31	0.27	0.09	
1,3-Butadiene	10.89	26.92	2.93	0.00	0.00	0.00	0.00	
Acetaldehyde	5.52	8.21	0.89	3.53	1.20	1.27	0.41	
Ethylene	7.29	194.9	21.18	124.79	42.56	165.90	53.08	
Ethane	0.25	2.22	0.24	1.53	0.52	2.75	0.88	
Propane	0.48	0.33	0.04	92.05	31.39	99.60	31.87	
Propylene	9.40	104.87	11.40	34.46	11.75	38.59	12.35	
1-Butene	8.91	15.09	1.64	1.61	0.55	1.59	0.51	
Isobutylene	5.31	19.63	2.13	0.00	0.00	0.47	0.15	
cis-2-Butene	9.94	6.39	0.69	0.00	0.00	0.00	0.00	
trans-2-Butene	9.94	7.09	0.77	0.00	0.00	0.00	0.00	
Toluene	2.73	71.93	7.82	0.00	0.00	0.00	0.00	
Isopentane	1.38	4.26	0.46	0.00	0.00	1.50	0.48	
2,2,4-Trimethylpentane	0.93	7.30	0.79	0.00	0.00	0.00	0.00	
2,3,4-Trimethylpentane	1.60	0.74	0.08	0.00	0.00	0.00	0.00	
2,3,3-Trimethylpentane	1.20	0.55	0.06	0.00	0.00	0.00	0.00	
4-Methyl-2-Pentene	6.69	57.81	6.28	0.00	0.00	0.00	0.00	
3-Methyl-Pentane	1.52	10.28	1.12	0.00	0.00	0.00	0.00	
2,3-Dimethylpentane/2-Methylhexane	1.30	8.95	0.97	0.00	0.00	0.00	0.00	
Ethylbenzene	2.70	24.23	2.63	0.00	0.00	0.00	0.00	
Kylenes ^a	7.38 ^b /6.46 ^c	211.94	23.04	8.13	2.77	0.00	0.00	
I,2,4-Trimethylbenzene	8.83	19.36	2.10	15.15	5.17	0.00	0.00	
1,3,5-Trimethylbenzene	10.12	87.67	9.53	0.00	0.00	0.00	0.00	
TOTAL FOR ALL SPECIES		920.0	100.0	293.2	100.0	312.5	100.0	

Table 5. Selected HC Species Contribution to Potential Ozone

15

^C MIR for (p-,m-) ^C MIR for (o-)

Table 5. Selected HC Species Contribution to Potential Ozone (Concluded)

<u></u>		Gasoline B	aseline Data	MOGAS ECOLO Kit				
		Industry Average Fuel (RFA)		98% Propane		HD5 (96% Propane)		
Hydrocarbon Species	Maximum Incremental Reactivity	Average Ozone Formation Potential (mg/mile)	Average Weight % Ozone	Average Ozone Formation Potential (mg/mile)	Average Welght % Ozone	Average Ozone Formation Potential (mg/mile)	Average Weight % Ozone	
Formaldehyde	7.15	22.34	2.43	10.89	5.21	8.86	5.01	
Benzene	0.42	7.03	0.76	0.31	0.15	0.00	0.00	
1,3-Butadiene	10.89	26.92	2.93	1.41	0.67	0.00	0.00	
Acetaldehyde	5.52	8.21	0.89	2.55	1.22	1.77	1.00	
Ethylene	7.29	194.9	21.18	55.98	26.77	54.05	30.57	
Ethane	0.25	2.22	0.24	1.65	0.79	2.97	1.68	
Propane	0.48	0.33	0.04	57.63	27.56	55.14	31.19	
Propylene	9.40	104.87	11.40	39.44	18.86	36.42	20.60	
1-Butene	8.91	15.09	1.64	1.99	0.95	1.21	0.68	
Isobutylene	5.31	19.63	2.13	0.48	0.23	0.24	0.14	
cis-2-Butene	9.94	6.39	0.69	1.07	0.51	0.00	0.00	
trans-2-Butene	9.94	7.09	0.77	0.00	0.00	0.00	0.00	
Toluene	2.73	71.93	7.82	1.65	0.79	0.00	0.00	
Isopentane	1.38	4.26	0.46	0.42	0.20	0.00	0.00	
2,2,4-Trimethylpentane	0.93	7.30	0.79	0.00	0.00	0.00	0.00	
2,3,4-Trimethylpentane	1.60	0.74	0.08	0.00	0.00	0.00	0.00	
2,3,3-Trimethylpentane	1.20	0.55	0.06	0.00	0.00	0.00	0.00	
4-Methyl-2-Pentene	6.69	57.81	6.28	1.63	0.78	0.00	0.00	
3-Methyl-Pentane	1.52	10.28	1.12	0.47	0.22	0.00	0.00	
2,3-Dimethylpentane/2-Methylhexane	1.30	8.95	0.97	0.00	0.00	0.00	0.00	
Ethylbenzene	2.70	24.23	2.63	0.76	0.36	0.00	0.00	
Xylenes ^a	7.38 ^b /6.46 ^c	211.94	23.04	10.06	4.81	3.61	2.04	
1,2,4-Trimethylbenzene	8.83	19.36	2.10	20.72	9.91	12.52	7.08	
1,3,5-Trimethylbenzene	10.12	87.67	9.53	0.00	0.00	0.00	0.00	
TOTAL FOR ALL SPECIES	•	920.0	100.0	209.1	100.0	176.8	100.0	
^a xylenes (p-,m-,o-) ^b MiR for (p-,m-) ^c MIR for (o-)								

System	Fuel	Form- aldehyde mg/mlle	Acet- aldehyde mg/mlle	Benzene mg/mile	1,3- Butadiene mg/mile	Total mg/mile
Baseline	RF-A	3.1	1.5	16.7	2.5	23.8
IMPCO ADP	98% Propane	1.5	0.6	0.1	0.0	2.2
IMPCO ADP	HD5	0.1	0.2	0.6	0.0	0.9
MOGAS ECOLO	98% Propane	1.5	0.5	0.7	0.1	2.8
MOGAS ECOLO	HD5	1.2	0.3	0.0	0.0	1.5

Table 6. Toxic Emissions Measured in FTP Tests

butene, and trans-2-butene. The gas chromatograph system is a Perkin-Elmer Model 3920B gas chromatograph with an FID, two pneumatically-operated and electrically-controlled Seiscor valves, and an analytical column. The analytical column is a 9 ft. \times 1/8-in. stainless steel column containing 80/100 Carbopack C with 0.19% picric acid. Carrier gas is helium, which flows through the column at a rate of 27 mL/min. The column temperature is maintained at 40°C for analysis. External 1,3-butadiene standards in zero air are used to quantify the results via a P.E. Nelson 2600 data acquisition system. This system was developed and validated under an EPA contract, and has been used in two programs for CARB.

<u>GC #3 - C₅ - C₁₀ Hydrocarbons Including MTBE</u> - This procedure permits the quantitative determination of more than 80 individual hydrocarbon species in CVS-diluted exhaust. The gas chromatograph system utilizes a Perkin-Elmer Model 3920B gas chromatograph with subambient oven temperature capability. The capillary column used in the system is a Perkin-Elmer F-50 Versilube, 150 ft \times 0.02-in. WCOT stainless steel column. FID response is integrated using the P.E. Nelson 2600 data acquisition system.

•

• <u>Aldehyde and Ketone Emissions</u> - The aldehydes and ketones that were included in this analysis are: formaldehyde, acetaldehyde, acrolein, acetone, propionaldehyde, crotonaldehyde, isobutyraldehyde/methylethylketone (not resolved from each other under normal operating conditions and so reported together), benzaldehyde, and hexanaldehyde. Measurement of the aldehydes and ketones in exhaust is accomplished by bubbling dilute exhaust at 4 L/min. through chilled glass impingers containing an acetonitrile solution of 2,4-dinitrophenylhydrazine (DNPH) and perchloric acid. The exhaust sample is collected continuously during the test cycle. For analysis, a portion of the acetonitrile solution is injected into a liquid chromatograph equipped with a UV detector. External standards of the aldehyde and ketone DNPH derivatives are used to quantify the results. Detection limits for this procedure are on the order of 0.005 ppm aldehyde or ketone in dilute exhaust.

Discussion of HC Speciation Results

The California Air Resources Board (CARB) uses speciation data on a specific fuel and vehicle combination to calculate non-methane organic gases (NMOG) for the TLEV category. Hydrocarbon emissions with low reactivity (or ozone formation potential, as defined by CARB) can reduce the effective NMOG by an adjustment factor. This factor is the reactivity adjustment factor (RAF). For example, a light duty vehicle using M-85 fuel may use the RAF determined by CARB (multiplying by 0.41 for M-85) to reduce the effective NMOG result. In 1991, California published data on LPG (and other alternative fuels) based on two IMPCO-equipped GM 1989 vehicles. The RAF reported at that time was 0.50 for LPG (California ARB 9/27/91). Speciation of emissions from the LPG-fueled Chevrolet Lumina in this project illustrated the potential for LPG to produce emissions of lower reactivity than gasoline, i.e. a low RAF.

CARB has determined an industry average gasoline value for the potential grams of ozone formed per gram of NMOG emissions for specific emissions categories (e.g. TLEV) of vehicles. This value (3.42 for TLEV) is used to compare any specific fuel and vehicle combination. From the speciation data, the calculated value of gram of ozone per gram of NMOG is divided by 3.42 to determine the RAF. Table 7 shows the RAFs for the IMPCO and MOGAS kits tested with HD5 LPG and 98% propane fuels. The FTP hydrocarbon data and RAF for RF-A (industry average) gasoline on the Lumina in its as-received condition is also shown for comparison. Since this value was 1.15 (rather than 1.0), this particular Lumina produced hydrocarbons with slightly more reactivity than the California ARB average for TLEV. Total hydrocarbons obtained by the FID instrument (THC by FID - the standard instrument for bulk HC measurement) are shown along with the total hydrocarbons by the gas chromatograph speciation (THC by GC - summed from the individual species contributions) so that the agreement of the two measurements can be seen. The difference between the two measurements was $\leq 14\%$ for the five tests shown. The lowest RAF (0.292) was obtained with the MOGAS LPG system and the HD5 propane fuel. This is as expected, since the air-fuel ratio was controlled near stoichiometry, and the catalyst appeared to be more active with the MOGAS kit.

System	Fuel	NMOG g/mlle	Ozone g/mile	RAF	THC by GC g/mile	THC by FID g/mlle
Baseline	RF-A	0.27	1.06	1.15	0.32	0.37
IMPCO ADP	98% Propane	0.23	0.30	0.377	0.28	0.30
IMPCO ADP	HD5	0.25	0.33	0.374	0.29	0.27
MOGAS ECOLO	98% Propane	0.15	0.22	0.336	0.19	0.20
MOGAS ECOLO	HD5	0.15	0.18	0.292	0.18	0.21

 Table 7. Comparison of Reactivity Adjustment Factors

Related Work and Recommendations

Work related to this project at SwRI includes a catalyst study for the Gas Research Institute (GRI) on the evaluation of existing and developmental precious metal catalysts for stoichiometric and lean-burn natural gas fueled engines; multiple projects on the development and emissions certification of upstream, multipoint and lean-burn CNG engine management systems; and modal/mansient evaluation of LPG conversion systems. However, much work remains to be done to evaluate the potential of LPG for engine emissions, performance, and durability, particularly on dedicated engines.

IMPCO and MOGAS systems had no spark timing adjustment built into their control systems. This may be important because LPG has a higher octane rating than gasoline, allowing ignition timing to be advanced for more complete combustion. The Autotronic Controls "Dual-Curve" ignition system, which has gasoline and LPG timing curves, was not tested.

A simple electronic fuel management system, the DAI Translator, is suggested as a system for further evaluation. Under a contract with the GRI, SwRI patented this new gaseous fuel system concept, which requires almost no engine mapping. It was designed specifically for the conversion of modern gasoline light-duty vehicles that already have electronic fuel injection systems. Engine mapping is nearly eliminated because the OEM engine control unit (ECU) logic remains in this system. The "Translator" converts the output of the ECU to a control signal for a continuous-flow gas control valve. Production versions of the system will be built by DAI Technologies, Inc. of Lisle, Illinois.

The fuel effects observed in this project bear further investigation. Keys to a clean LPG fuel specification may be obtained with additional work. The problems with IMPCO kits should also be researched. It is likely that there is something about the Chevrolet Lumina's electronic systems or sensors which defeats the IMPCO processor.

Conclusions

This project allowed a comparison of LPG kits; and emissions, drivability, and fuel economy using LPG relative to gasoline. Remarks concerning installation and diagnosis are included because of their importance to acceptable operation.

- Although the MOGAS system excelled in ease of installation and emissions, the IMPCO systems had better starting and driveability, despite rich or lean operation. Neither IMPCO system gave acceptable emissions results, but the ADP system was better than the older AFCP system (Table 4).
- One problem with all kits was poor (or even incorrect) documentation. Important details, such as direction of flow on gas valves, were not found in any of the documentation. Better photos (specific to the application) would be helpful. The IMPCO AFCP instructions were perhaps the most complete, but even this older system document (1990) had an error, acknowledged by IMPCO service personnel, in the wiring schematic information. One electrical connection was incorrect on the MOGAS wiring diagram, also. Except for the MOGAS and Autotronics (computer support module used in each conversion) diagram, the documentation of installation procedures was not specifically for the Chevrolet Lumina, or even for General Motors vehicles.

Tuning instructions were generally hard to follow and incomplete. These instructions are very important because the initial mechanical settings of the regulator (MOGAS) and mixer (MOGAS and IMPCO) determine the default and limiting conditions of the fuel system. For example, on the IMPCO systems, the fuel control valve acts on the vacuum signal to the regulator, limiting its response to engine vacuum. If the mechanical mixture screws are set lean, or even near lean, the fuel control system can not enrich the fuel mixture.

The installer must have diagnostic equipment, such as the IMPCO FSA or another frequency instrument to monitor the fuel control actuator, and at least a 4-gas analyzer to check the settings and verify the oxygen sensor voltage. MOGAS did provide oxygen sensor voltages (from CNG experience) to target for mechanical adjustment of the system.

The kit suppliers are aware of undocumented techniques of modifying the response of the LPG equipment that may improve the tuning. Examples are the diaphragms from IMPCO and the trim screw in the MOGAS control valve. Again, the problem is lack of good documentation. Installers will not necessarily be aware of or concerned about emissions, so documentation of installation and tuning are critical to obtaining acceptable operation.

- Off-the-shelf conversion kits did demonstrate good driveability, making the LPG conversion transparent to the vehicle operator.
- HC and CO emissions were better with LPG than gasoline using the MOGAS and the IMPCO ADP LPG systems, but worse with the IMPCO AFCP-1 system (Table 4).

- In all cases, CO₂ (a greenhouse gas) emissions were significantly lower with LPG, but NO_X was higher than with gasoline (Table 4).
- Fuel composition did influence emissions results (Figure 3). The effect of fuel composition diminished under good AFR control as shown using the MOGAS system.
- HC speciation revealed that the reactivity of the LPG-fueled engine HC emissions was much lower than that of the gasoline emissions. It appears that LPG can be one approach to reducing ozone in Southern California and other non-attainment areas.
- The volumetric fuel economy reduction (~27%) was consistent with the energy content difference between LPG and gasoline.
- Most of the problems observed with LPG conversion kits could be overcome with minor hardware and documentation changes. Perhaps the manufacturers should document a conversion and conduct an FTP emissions test for one example of an engine family for which the kit is intended, before offering it commercially for that engine.

References

King, S.R., "The Impact of Natural Gas Composition on Fuel Metering and Engine Operational Characteristics," SAE Paper 920593 presented at the International Congress and Exposition, Detroit, Michigan, February 24-28, 1992.

California ARB, "Establishment of Reactivity Adjustment Factors," Supplement to Initial Statement of Proposed Rulemaking (Staff Report) Amendments to the Low-Emission Vehicle Program, November 13, 1992.

"Proposed Reactivity Adjustment Factors for Transitional Low-Emission Vehicles," Technical Support Document prepared by the Mobile Source Division, California Air Resources Board, pgs. I-2 - I-6, September 27, 1991.

Bibliography

Broman, V.E., "Factors Affecting the Formulation of Engine Oils for LP-Gas Service," LP-Gas Engine Fuels, ASTM STP 525, American Society for Testing and Materials, pgs. 3-17, 1973.

"Compressed Natural Gas (CNG) Vehicular Fuel Systems," 1992 Edition, NFPA 52, pgs. 52-5 to 52-25.

"Compressed Gas and Compressed Air Equipment," Subpart M, 29 CFR Ch. XVIII (7-1-91 Edition), pgs. 465-466.

Cotton, K.J., "A Study of the Potential of Propane Fuel to Reduce Utility Engine Exhaust Emissions," SAE Paper 921696 presented at the International Off-Highway & Powerplant Congress & Exposition, Milwaukee, Wisconsin, September 14-17, 1992.

Klimstra, J., "Carburettors for Gaseous Fuels - On Air-to-Air Ratio, Homogeneity and Flow Restriction," SAE Paper 892141, 1989.

Raine, R.R., Jones, G.M., "Comparison of Temperatures Measured in Natural Gas and Gasoline Fuelled Engines," SAE Paper 901503 presented at the Future Transportation Technology Conference and Exposition, San Diego, CA, August 13-16, 1990.

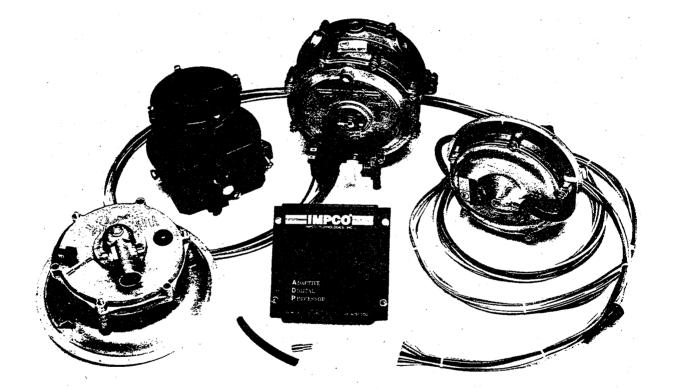
Smith, J.M., "Engine Oil Performance in Propane Fueled Light Duty Vehicles," SAE Paper 872125 presented at the International Fuels and Lubricants Meeting and Exposition, Toronto, Ontario, November 2-5, 1987.

APPENDIX A

CONVERSION KIT INSTRUCTIONS AND ORIGINAL DOCUMENTATION

- IMPCO ADP
- IMPCO AFCP-1
- MOGAS ECOLO

IMPCO ADP


Adaptive Digital Processor Clean Fuel Management System

Introduction

The IMPCO[®] Adaptive Digital Processor (ADP)™ is an electronic closed loop fuel control system which adapts to each individual vehicle and the alternate fuel components installed on the vehicle. The memory of the ADP is nonvolatile and will remain stored until the memory is cleared by the installing technician. The ADP is mechanically and electrically

The ADP is mechanically and electrically interchangable with the AFCP-1 **GREEN STRIPE** processor. The addition of an intake manifold vacuum line is all that is required to upgrade the vehicle to the ADP. The areas covered are:

- Before you begin
- Glossary of terms
- Understanding the OEM "Feedback" system
- Principals of Operation Cold start/Open loop Stabilized Engine Operation/Closed loop
- ADP Theory and Operation
- Typical Installation Information
- Adjustment Procedures
- Tech Tips on the ADP
- Maintenance Schedule
- IMPCO "Feedback" carburetion parts list

ALTERNATIVE FUEL SYSTEMS

Before You Begin

WARNING

The ADP engine management system is intended to be used with volatile gaseous fuels and if improperly installed may create a hazardous condition leading to a fire and/or explosion. Engine emissions and performance may also be affected by improper installation. Accordingly, the system and associated equipment should be installed only by duly trained and qualified personnel in accordance with the instructions in this manual. Failure to install the system in accordance with this manual voids system warranty.

This entire manual should be carefully studied and understood BEFORE you convert your vehicle. Some installations may require additional parts. Also, you must be qualified on, or have access to, specialized testing equipement.

It is important to be thoroughly familiar with all of the warnings and precautions we have provided you.

The internatinally accepted warning symbol \triangle is in our manual for your protection.

This symbol means: **ATTENTION! BECOME ALERT! YOUR SAFETY IS INVOLVED!** If you come across an unfamiliar or potentially hazardous condition, call our technical representative for clarification before proceeding.

The symbol **P** is to call your attention to special notes or features. This is to alert you as to unique tools, condition, parts or exceptions you may encounter while installing our system on your vehicle.

To prevent ignition of leaking gaseous fuels which may cause a fire and/or explosion, avoid open sparks, flames, and operation of electrical devices in or about the engine compartment and always perform wiring modifications with battery cables disconnected.

Always follow installation regulations that apply to you. These requirements are found in NFPA-52 for natural gas and NFPA-58 for LPG. These are U.S. standards. For Canadian codes see National Standards **CANADA**. Additionally, some states or province may also have certain requirements you must be aware of.

WARNING: IMPROPER INSTALLATION OR USE OF THIS PRODUCT MAY CAUSE SERIOUS INJURY AND/OR PROPERTY DAMAGE. SERVICE TECHNICIANS AND USERS

SHOULD CAREFULLY READ AND ABIDE BY THE PROVISIONS SET FORTH IN NATIONAL FIRE PROTECTION ASSOCIATION PAMPHLET #37 FOR STATIONARY ENGINES, #52 FOR CNG VEHICULAR FUEL SYSTEMS OR #58 FOR LPG SYSTEMS.

INSTALLERS

LPG INSTALLATIONS IN THE UNITED STATES MUST BE DONE IN ACCORDANCE WITH FEDERAL, STATE, OR LOCAL LAW, WHICHEVER IS APPLICABLE AND NATIONAL FIRE PROTECTION ASSOCIATION PAMPHLET #58, STANDARD FOR STORAGE AND HANDLING OF LIQUIFIED PETROLEUM GASES TO THE EXTENT THESE STANDARDS ARE NOT IN VIOLATION WITH FEDERAL, STATE OR LOCAL LAW.

IN CANADA REFER TO CAN/CGA-B149.2, PROPANE INSTALLATION CODES.

CNG INSTALLATIONS IN THE UNITED STATES MUST BE DONE IN ACCORDANCE WITH FEDERAL, STATE OR LOCAL LAW AND NATIONAL FIRE PROTECTION ASSOCIATION PAMPHLET #52, COMPRESSED NATURAL GAS (CNG) VEHICULAR FUEL SYSTEMS TO THE EXTENT THESE STANDARDS ARE NOT IN VIOLATION WITH FEDERAL, STATE OR LOCAL LAW.

IN CANADA REFER TO CAN/CGA-B149.1 CNG INSTALLATION CODES.

LPG AND/OR NATURAL GAS INSTALLATIONS ON STATIONARY ENGINES MUST BL DONE IN ACCORDANCE WITH FEDERAL, STATE OR LOCAL LAW AND NATIONAL FIRE PROTECTION ASSOCIATION PAMPHLET #37, STATIONARY COMBUSTION ENGINES AND GAS TURBINE ENGINES, TO THE EXTENT THESE STANDARDS ARE NOT IN VIOLATION WITH FEDERAL, STATE OR LOCAL LAW.

FAILURE TO ABIDE BY THE ABOVE WILL VOID ANY IMPCO WARRANTY ON THE PRODUCTS AND MAY CAUSE SERIOUS INJURY OR PROPERTY DAMAGE.

Due to the inherant danger of gaseous fuels the impco products should not be installed or used by persons not knowledgeable of the hazards associated with the use of gaseous fuels.

Glossary Of Terms

Exhaust Gas Oxygen Sensor. Located in the exhaust gas stream, it monitors the amount of oxygen present. The computer uses this information to control the air/fuel ratio for most engine operating modes.

Manifold Absoute Pressure Sensors. The M.A.P. sensor monitors intake manifold vacuum. Manifold absolute pressure if defined as barometric pressure minus manifold vacuum. With this signal the ADP will change the control strategy of the air fuel mixture related to engine load and speed.

Engine Coolant Temperature Sensor. Inputs information about engine temperature which is used to process EGR flow, ignition timing and open-or closed-loop logic.

Knock Sensor. Normally mounted on the intake manifold. Its signal is used to retard ignition timing during spark knock.

Understanding the OEM Feedback System

The OEM Feedback System is based on the functions of the onboard computer which monitors and controls critical engine functions. The computer is dependent on a system of engine sensors that feed information it uses to control engine operation functions.

The input signals are processed and the correct computation for each operating mode is relayed through the computer drivers to the various engine controls.

The engine controls normally include:

Air fuel ratio control Ignition timing EGR control Air injection control Canister purge Throttle solenoid or automatic idle speed control

The computer itself is a logic switching device that has non-volatile memory. This allows it to act rather than just react. It has two basic methods of operation, open loop and closed loop. In the openloop mode, the computer ignores most of the sensors and utilizes various predetermined operating conditions estabished by the program in its memory. "Special" conditions such as cold start or wide-open throttle can cause the computer to switch to the open-loop modes. The computer selects the correct open loop conditions to operation from.

In closed loop, the computer processes the signals of all sensors. It utilizes this information to determine how to set the fuel, ignition and other enginecontrollable functions for routine conditions. With a wide range of control in closed loop, the computer can optimize engine performance. It is the computer's ability to quickly and correctly react that allows for the most efficient use of the fuel.

Principle of Operation

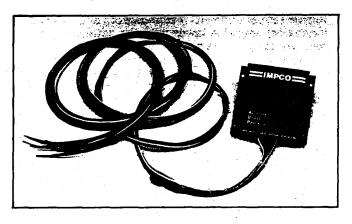
Cold Start/Open Loop Oeration. The cold start operation mode is activated by the engine coolant temperature sensor telling the computer a cold engine condition exists.

On some OEM vehicles, during cold start, "fresh" air from the air injection pump or thermactor pump is directed into the engine exhaust manifold. The fresh air provides additional oxygen in the exhaust manifold to promote continued burnoff of excess fuel and a further reduction in HC (hydro-carbon) and CO (carbon monoxide) emission levels until the catalytic converter reaches operating temperatures. During the cold-start operating mode, the engine is metered a predetermined rich fuel mixture, via computer command to the fuel injector. The oxygen sensor is automatically "locked out" since it would sense an excess of oxygen and send a lean-mixture signal to the computer. Once the oxygen sensor temperature reachers a specified temperature (above 600F), the computer switches from an "open loop" condition to a "closed loop" stabilized engine operating condition. Fuel enrichment is then controlled with input from the oxygen sensor. Also, the "fresh" air from the air injection pump or thermactor pump is dircted to the catalytic converter or vented to the atmosphere depending on how the computer is programmed.

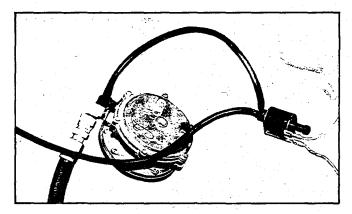
Stabilized Engine Operation/Closed Loop. The oxygen sensor located in the exhaust system ahead of the catalytic converter is the reference control for "stabilized engine" closed loop operation. The oxygen sensor interacts with the computer via electrical signals. When oxygen is sensed in the exhaust gases (lean mixture) the oxygen sensor generates a voltage signal of .5 or less to the computer. The level of voltage transmitted is dependent on the amount of oxygen detected. An absence of oxygen in the exhaust (rich mixture), genreates a voltage from .5 to 1.0 depending on the richness of the mixture. The computer processes this information and reacts to the voltage transmitted, commanding the Fuel Injector to assume a richer or leaner cycle.

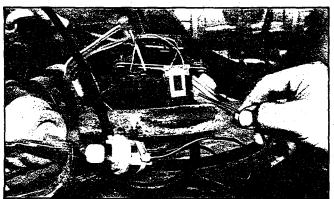
ADP Theory and Operation

The IMPCO Technologies, ADP is an Adaptive Digital Processor that is interchangeable with the AFCP-1. The only addition is the use of a vacuum line that is connected to the ADP MAP sensor.


The additional features that the ADP has is the ability to store in non volatile memory the changes that occur during normal operation of the vehicle as mileage increases.

The ADP contains 16 "cells" that allow the non volatile memory to change or update the air fuel mixtures, related to the wear of the mixer, the engine and OEM emission components.


The cells will begin with a value of 50% duty cycle when the ADP is first installed.


When the installer adjusts the idle base mixture and the ADP enters into the quick learn stage of operation, the IIIs will be updated within a very short period of time. After the ADP passes the 3 timed quick learn stages, the ADP enters into continuous update. During this operational mode, the ADP updates the cells in a much slower rate.

Installation on Fuel-Injection Engines Using the Adaptive Digital Process

1. The ADP is designed for installation inside the passenger compartment, away form engine heat and road splash. Mount the ADP securely using the provided screws and mounting holes. Pass the wiring harness through a convenient knockout in the firewall.

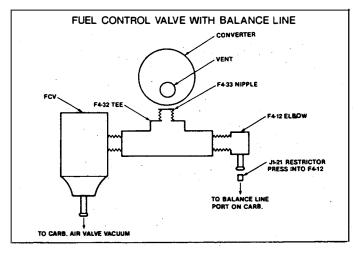
Connect all wiring for the ADP as described in the schematic on page 6. All electrical connections must be soldered and sealed to prevent corrosion.

Also install a '4'' vacuum line from a manifold vacuum source on the engine of the vehicle. Route the vacuum line along the path of the wiring harness inside the vehicle to the location of the mounting of the ADP.

Install the supplied 3/16" vacuum line to the vacuum port of the ADP, use the tubing adapter to connect the 3/16"vacuum line to the 1/4" vacuum line from the engine.

2. JPP Install the required IMPCO® adapter assembly between OEM EFI throttle body and the IMPCO® mixer.

Preset the wide open fuel adjustment at the middle mark of the rich/lean scale.


On the CA425, Adjust the Hex Head Bolt to a measurement of 1%" from the body to the outside edge of the Hex Head Bolt.

- 3. An alternate method of installation, using a CA300A-1 mixer, utilizes an optional 3-way vacuum control solenoid (part #VCS) to control VFF30 operation. In this installation, the Boden cable and CA300A lifter cam are not required. Insert the solenoid into the vacuum line, between the vacuum source and the VFF30. Connect one electrical lead to secure ground, the other to the alternate fuel side of the fuel selector switch located inside the driver's compartment. Fuel selection is made with this switch, rather than a Boden wire. See: 23600-50 in the ISM for correct wiring of the VCS.
- **4.** Or vehicles equiped with air pumps: Chevrolet: Connect the gray wire from the ADP to the brown wire at the air pump diverter valve on the air pump. This is on pre-1992 vehicles.

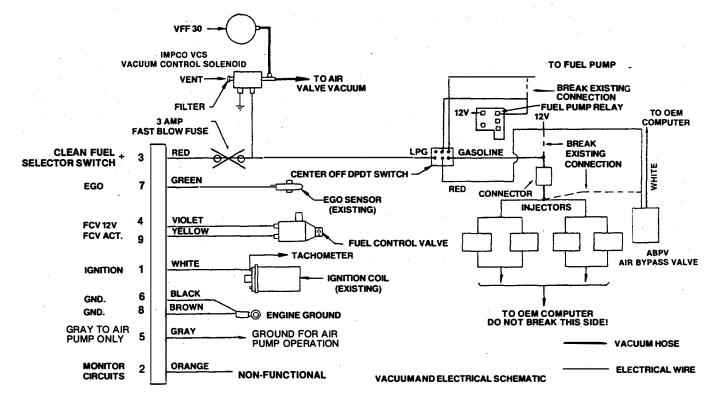
Ford: Locate the thermactor air pump diveter solenoid (TAD). Using a continuity light or meter, locate the power to the TAD. Splice the gray wire into the power wire for the TAD.

Chrysler: Use the VS-2A vacuum switch. Cut off the red wire and insulate the cut. Solder the yellow wire from the VS-2A to the gray wire in the ADP wiring harness. Locate the vacuum line to the air pump diverter valve on the air pump. Splice in a vacuum line to the vacuum line to the diverter valve, connect the vacuum line to the vacuum port on the VS-2A. Attach the black wire to ground.

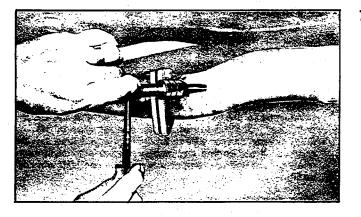
Install IMPCO[®] Fuel Control Valve (FCV) and fitting into the cover of the converter (see #6). If an air valve vacuum source is not available for the FCV, tap into the adapter under the mixer. Install an F4-8 fitting in the adapter and connect a vacuum hose from the fitting to the FCV. **NOTE:** The FCV must have an independent air valve vacuum source. Install the FCV so the vacuum connection is in the down position.

5.

6. Install the ADP wire harness as indicated. See complete typical schematic on page 6.

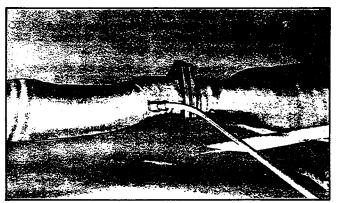

Installation is simple. It is done in the following sequence:(Note: Only procedures that involve the computer feedpack system are listed below. Other standard conversion steps are not described.)

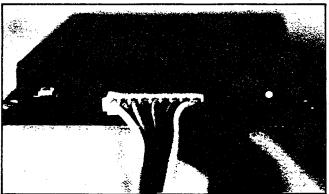
- **1.** Check to ensure that all computer sensors and controls are connected and working.
 - Install Impco alternate fuel feedback carburetor.
 Remove screen from converter cover vent and screw in 1/8" nipple (part #F4-33) and 1/8" tee (part #F4-32), as shown.
 - 4. Screw Fuel Control Valve (part #FCV) into one side of tee fitting.
 - 5. Install F4-12 elbow and J1-21 restrictor as shown. The F4-12 must be used to provide adequate flow.
 - 6. Connect fuel control valve to air valve vacuum port at the carburetor/mixer.


THE COLOR-CODED WIRES ON THE ADP KEYED CONNECTOR:

PIN NO.	COLOR	FUNCTION	CONNECTION
6	Black	Signal Ground	To Vehicle Ground
8	Brown	Solenoid Ground	To Vehicle Ground
3	Red	ADP Power	To Fused LPG Switch plus 12 volts
- 4	Violet	Solenoid Power	To FCV on Converter
9	Yellow	Solenoid Active	to FCV on Converter
1 ¹	White	Ignition Tach (RPM) Input	To Ignition Coil Tach Side
7	Green	EGO Sensor Signal	To EGO Sensor
5	Gray	Open loop with Air Pump On or	To Air Pump
2	Orange	Air Pump Signal Non-Functional	(See Page 4, Photo-4)

TYPICAL ADP FUEL CONTROL PROCESSOR WIRING SCHEMATIC


6


If CO analyzer is available, drill a 21/64" hole in the ex-7. haust pipe before the catalytic converter and near the exhaust manifold, if possible. Tap with a 1/8"x27 NPT for installation of probe to measure CO.

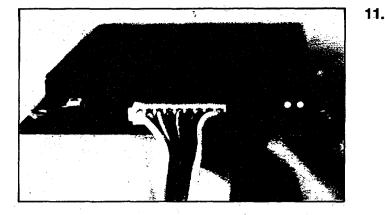
> NOTE: When using a CO Meter, you must be assured of no air induction into the exhaust ahead of the probe for correct readings. Check exhaust system for leaks before the EGO sensor.

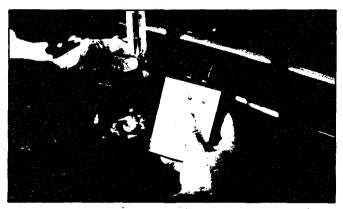
Install exhaust gas probe and connect to CO meter. 8.

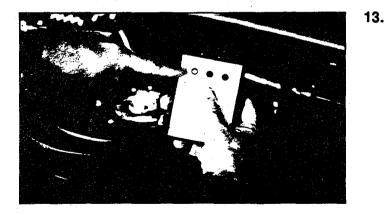
- Connect the IMPCO® Fuel System Analyzer (FSA-1) to the FCV. Refer to 23800-27 "Fuel System Analyzer In-9. structions." If a tach/dwell meter is used, it should be attached to the post connected to the yellow wire. Set Dwell meter to dwell position and 6-cylinder mode, regardless of the number of engine cylinders.

- 10. IP To Set Idle Mixture
 - (ON AIR PUMP VEHICLES ONLY) Disconnect the gray wire from the air pump, prevent the wire from grounding. Divert the air to atmosphere or away from the exhaust manifold.

BEFORE STARTING THE ENGINE:


Inside the vehicle: Ensure that the jumper/shorting clip is installed on the 4 pin header on the left side of the ADF


NOTE: There are a total of 4 pins on the header. The two right pins are the connections that must be made to initialize the ADP. The left two pins are not used in the field.


Turn the key to the run position, DO NOT START THE ENGINE.

On the right side of the ADP you will see a green and a red LED.

7

With the key on and the engine off, the green LED will flash, this is the duty cycle of the ADP. Check the FCV. It should be operational and clicking.

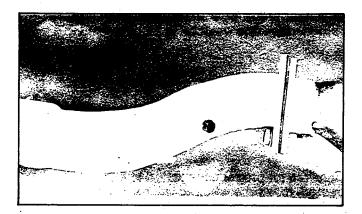
If the green LED is not lit, or the FCV is not clicking. Check the wiring to the FCV valve on the converter. The red LED should be on. This is the oxygen sensor voltage light, when this LED is lit the oxygen sensor voltage is low, below .5 volts (lean mixture).

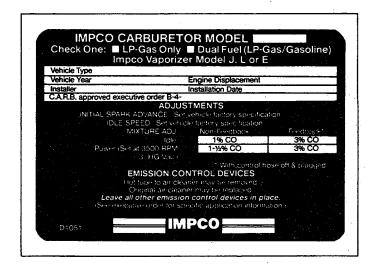
If the red LED is not lit, check that the green oxygen sensor wire in the wiring loom of the ADP is properly connected to the oxygen sensor signal wire to the OEM computer. Confirm the wire color and location of the OEM oxygen sensor wire in an OEM or equal type service manual. If the engine and oxygen sensor are hot, it may show a high voltage temporarily and the red LED will not be lit.

12. START THE ENGINE

Allow the engine to come up to operational temperature.

With no load on the engine, air conditioning off, lights off, fans off, adjust the idle mixture screw on the IMPCO mixer/carburetor so a smooth transition is noted on the FSA-1 oxygen sensor voltage lights.


In photo 12 we have blocked the duty cycle window. During this adjustment procedure, **IGNORE THE READING ON THE DUTY CYCLE OF THE FSA-1.** The duty cycle reading on the FSA-1 will remain fixed between 45% and 55% reading on the FSA-1 regardless of the adjustment. The duty cycle reading will not change until the jumper/shorting clip is removed in the next step.


If you are not using the FSA-1, monitor the red LED on the ADP. A smooth transition of the red LED turning on and off should be achieved. The transition time should be 2 seconds or less between rich to lean and back to rich.

NOTE: The adjustment may become somewhat difficult on engines equipped with the CA300 series of mixers. To lessen the effect of this, support the weight of the screwdriver with your hand. Do not press down on the idle adjustment screw of the CA300 series mixer as this will tend to lean the mixture and give a false reading to the FSA-1 and the ADP.

After achieving a smooth transition. Allow the engine to idle for 60 seconds, monitor the oxygn sensor lights on the FSA-1 or the ADP for smooth transitions. Ignore the duty cycle reading during review.

14. Remove the jumper/shorting clip from it's installed position. Retain the jumper/shorting clip.

You will notice a change in engine operation and a change in the duty cycle reading on the FSA-1 and the transition of the oxygen sensor voltage lights on the FSA-1 and the ADP. THIS IS NORMAL.

Allow the engine to operate for a minimum of 60 seconds after the jumper/shorting clip has been removed.

NOTE: During this 60 second period, the ADP is counting the number of engine revolutions, determining the number of cylinders of the engine and reading the MAP sensor in the ADP to determine the operational condition of the engine.

Turn the engine off and check to see that the key is in the **OFF** position.

NOTE: By removing the jumper/shorting clip and allowing the engine to idle and then stopping the engine. This porcedure presets the ADP to enter into the fast learn mode.

15. Prior to drive cycle disconnect CO Meter Probe and plug opening with 1/8" pipe plug.

Using a stop watch or other timing device. Start the vehicle and drive the vehicle in as many different driving modes as possible during the first 24 minutes of operation.

NOTE: The drive cycle should include, stop and go traffic, long accelerations and decelerations, Wide Open Throttle, and steady speed cruise operations.

During this operation, the duty cycle readings on the FSA-1 will be slow. This operational speed will change as the ADP establishes each cells operational value.

NOTE: During this phase of the installation, the ADP stores correction factors in a calibration table in the Random Access Memory (RAM). This is a short term memory. Every 8 minutes after the start up the ADP will copy this data into the Read Only Memory (ROM). This is the long term memory. After the third 8 minute update period, the ADP switches to normal operation.

IMPORTANT: If the vehicle is turned off and power is removed from the ADP during the first 10 minutes of operation. The short term memory in the ADP is lost and will begin again when the vehicle is restarted.

If a cell is not filled during the drive cycle. The non updated cell will be updated during normal driving.

16. Install decais as necessary.

"TECH TIP'S" ON THE IMPCO ADAPTIVE DIGITAL PROCESSOR

The ADP is designed to be an independent fuel control processor. It is very important to check the OEM system first to confirm that the OEM system is operating properly before checking the IMPCO ADP alternate fuel system.

Required tool:

IMPCO FSA-1 Digital Volt-Ohm Meter Tachometer General shop tools

1.0 Normal duty cycle reading of the ADP will range from 30% to 70%. This range will vary as the vehicle changes engine speed and load. The oxygen sensor lights will be showing a lean reading during start up. When the engine and oxygen sensor are at operational temperatures. The oxygen sensor lights will be in a constant transition once the vehicle is in closed loop operation.

- 2.0 No reading on the oxygen sensor lights or duty cycle of the FSA-1 or LED's of the ADP:
 - **2.1** No power to the ADP:
 - 2.1.1 Inspect the brown and black ground wires for proper connection to an engine ground. If a faulty ground is suspected, move the wires to the negative side of the battery to confirm that a proper ground has been achieved.
 - 2.1.2 Also use a continuity meter to confirm continuity between the wiring connector at the ADP and the engine ground of the brown and black wires. Ensure the use of properly sized wiring lugs to attach the brown and black grounding wires.
 - **2.2** The red power wire should be attached to the fuel selection switch, on dual fuel installations.
 - **2.2.1** Place the switch in the alternate fuel position, and the ignition key in the on position.
 - **2.2.2** Check the switch with a continuity light for power to the alternate fuel terminal. If none is found troubleshoot the wiring harness and the connections to the fuel selection switch.
 - **2.2.3** Check the wiring connector to the ADP with a volt meter or continuity meter, for 12 volt power at the red wire connector.
 - **2.2.4** Inspect the in-line 3 amp quick blow fuse.

NOTE: Preform the above test prior to starting this section.

- 3.0 Reading of 00 duty cycle on the FSA-1 or no flashing of the green LED on the ADP.
 - 3.1 Check the white wire in the ADP harness for connection to the negative side of the ignition coil.
 - 3.1.1 Use a tachometer attached to the white wire to read engine RPM.

3.1.1.1 If no RPM is seen, the white wire is connected to the wrong side of the coil or an improper tachometer lead.

3.2 Check the wiring connections to the Fuel Control Valve (FCV).

3.2.1 With the key on:

- **3.2.1.1 Use a volt meter** to check for 12 volt reading on the violet wire at the Fuel Control Valve (FCV).
- **3.2.1.2** If no voltage is found, check the wiring connector at the ADP.
- **3.2.1.3** Check the wiring route for cut or shorted wiring.
- **3.2.2** Check the yellow wire for 12 volts.

3.2.2.1 If no voltage is found, replace the FCV.

3.2.2.2 If voltage found, check the ground wires. (See 2.1.1)

4.0 After start up a 99 duty cycle reading is shown and the rich light is lit on the FSA-1.

NOTE: It is not possible to view this condition by viewing the LED's on the ADP.

4.1 With the key on the engine off:

4.1.1 Check the green wire in the ADP wiring harness with DVOM, if the voltage is above 2.0 volts, the green ADP wire has heen attached to an OEM wire other than the oxygen sensor wire.

4.2 With the engine running:

- **4.2.1** Check the route of the green wire from the oxygen sensor wire to the ADP connector. It is possible that two wires have been crossed or connected together.
- 4.2.2 Check to see that no ignition wire is located next to the green ADP wire.

5.0 After start up a 00 duty cycle reading is shown and the lean light is lit on the FSA-1.

5.1 Check the intake system for vacuum leaks.

- 5.1.1 Check the air management system for constant air into the exhaust manifold.
 - **5.1.1.1** If found, service the OEM air management system according to OEM service manuals and technic.
- 5.1.2 Check the IMPCO adapter for proper fit and tightness.

5.2 Check the green oxygen sensor wire for shorting to ground.

- 6.0 During normal driving one of the following occur:
 - 6.1 Duty cycle remains at or near 50%, oxygen sensor voltage lights transition.
 - 6.1.1 Check the gray wire connection, the wire maybe attached to the wrong control solenoid.
 - **6.1.2** If using the VS-2A vacuum switch, check to see that the gray wire is connected to the yellow wire of the VS-2A.
 - 6.1.3 Installation jumper is still installed in the initialization mode. Restart the initialization procedures in this manual.
 - 6.2 Duty cycle varies between 30% and 70%, the oxygen sensor lights do not lite.

6.2.1 Check connections of the FSA-1.

- 6.3 Duty cycle remains very low (below 30%) or very high (above 70%) during a cruise mode.
 - 6.3.1 The wide open throttle adjustment is not proper. Readjust the WOT adjustment to the middle of the WOT scale.
- 6.4 Duty cycle during WOT is at or near 00:
 - 6.4.1 Check the intake system for vacuum leaks.
 - 6.4.2 Check the exhaust system for leaks before the oxygen sensor.
- **NOTE:** Preform the above checks before attempting the following.
 - 6.4.3 WOT Adjustment is adjusted too lean, readjust the WOT 1 mark richer on the WOT scale.
 - 6.4.4 Recheck WOT operation, and continue adjusting the mixture rich until a reading above 50% duty cycle is achieved.

RECOMMENDED SERVICE INTERVALS

CARBURETION SECTION	Conversion Date	1К	5К	10K	15K	20K	25K	30K	35K	40K		LEAC		60K	65K	70K	75K	80K	85K	90K	95K
Adjust idle mixture Note 1	X	X	1		· · · · · ·	-	X			<u> </u>		X	Γ		<u> </u>				Γ	T	
Adjust wide open throttle mixture Note 1	X	X	1	1			X			1		Х	1				X				
Check air/gas valve diaphragm	- ,		Ì	X			X	1		Ì ·		X	.	Ì	Ì	İ	X	1.1			
Replace air/gas valve assy Note 3				1								X		Ι.							
Check idle diaphragm CA425				X	· · · · · · · · · · · · · · · · · · ·		X				-	X					X				
Replace CA425 Idle diaphragm if needed					1							X									
Check for vacuum leaks on complete intake system including adapters			İ	X	•• • •		X					X					X				
Check gas orifice for wear			1				X			1		Х				1	X				
Service open air cleaner:				<u> </u>			ŀ			ŀ			<u> </u>			· ·			E.		
Normal conditions						X	ļ			X				X			$r = r_{\rm e}$	X	1		
Dirty conditions				X	<u> </u>	X	<u> </u>	X		X		X	<u> </u>	X		X		X	-	X	
REGULATOR SECTION				<u> </u>							Ī		T ·					1			
Check FCV for proper OHM reading Note 5	X						X					×					X .				•
Replace FCV		· · · · · · · · · · · · · · · · · · ·			1		1	[·				X				1					
Inspect secondary diaphragm Note 4				X			X	I				X					X		T		
Test secondary pressures Note 2			1	X	1.	-	X					X		1			X				
Test primary pressures Note 2				X	1		X			1	1	X					X				
Rebuild regulator			<u> </u>							1		X									
LOCKOFF SECTION		1	1	1	1	1	1	.	T	Τ	<u> </u>			1	1		1	Γ			
Replace filter	<u> </u>						X					X					X	() (
GENERAL MAINTENANCE					·		·				<u> </u>		Γ	<u> </u>			<u> </u>		r		
Check all vacuum lines and fittings (Replace as needed)	X	-					X					X					x				
Check all fuel fittings and hoses (Replace as needed)	X						X					×					X				
								aya da			_ · · · ·		$C_{1} = 0$	in i Ang						1	
	•		L			N	OTES	:]			• •			10 A.				
 See air fuel ratio at See ITK-1 test proc Side draft CA425 - 	edures			as for	. waa		•	- - -		C	f oil a lean lo les	regul	ator o	of all	oil ar						

FUEL MANAGEMENT SYSTEM PARTS LIST

AIR GAS VALVE ASSEMBLY

PART NO.	APPLICATION	PART NO.	APPLICATION
AV1-1447 AV1-1447-2 AV1-1447-4	Model 125 Model 125 Silicone Model 125M-10 Vacuum Lift	D-1051 D-1052	Decal for LPG Only and dual fuel LPG/Gasoline Decal for CNG only and dual fuel CNG/Gasoline
	Model 125M-10 Vacuum Lift Silicone	SPEC	IAL PARTS NOT SUPPLIED BY IMPCO®
AV1-1245 AV1-1245-2 AV1-1651 Gas Valve Or V2-49 V2-50 V2-58	Model 225 Model 225 Silicone Model 425 <i>Ily Required</i> Model 300A-1, CA300A-20 Model 300A-50, CA300A-70 Model 175A-2,	PART NO. TPS Description: DPDP Description:	SOURCE Ford #EOAE9B989AB Position Sensor; replaces OEM T.P.S. where necessary.
	Optional for CA175-1 (Anodized red) FUEL CONTROL PARTS		back installation.
PART NO.	APPLICATION		
FCV FEV SV VPV J1-21 J1-20	Fuel Control Valve, all feedback Fuel enrichment Valve (Use SV w/specified jet) Starting Valve, used as Fuel Enrichment Valve Vacuum Power Valve, light-duty Chrysler feed- back installation Jet .100, Balance Line Restrictor Jet .062, SV		
J1-20-1 J1-20-2 J1-20-3 J1-20-4 F4-2 F4-12	Jet .032, Starting Valve for FEV application jet .050, Vacuum Power Valve jet .075, Vacuum Power Valve Jet .100, Vacuum Power Valve Tube fitting, 1/4" x 1/4" 1.D. Hose 1/8" NPT to 3/8" Hose elbow, balance line		
F4-32 F4-33 T1-13	1/8" tee, balance line 1/8" nipple, balance line Tube connector		

Notes

Notes . -۰.

, ~

÷

© 1992 IMPCO TECHNOLOGIES, INC.

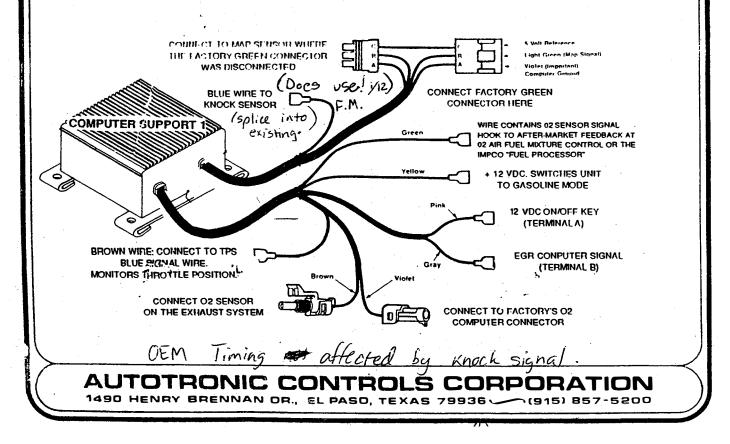
23600-71 792(792)T/L 1M PRINTED IN U.S.A.

PReg. U.S. Pat. & Trn. Off.

COMPUTER SUPPORT 1 P/N 8690

PARTS INCLUDED IN THIS KIT

1-Computer Support 1 6-Wire Tap Devices 6-Fast0n Receptacles 1-Installation Instructions 4-Wire Ties 4-No. 6x3/4 Screws


The Computer Support 1 is designed to work in conjunction with an 02 Feedback Fuel Control System In order to correctly monitor "Service Engine" codes while on alternate funds.

1. Supplies a correct 02 Feedback signal to the FCM (Actor 5/01 56 02 sensor malfunction codes (13,44,45) while allowing TRUE failure conditions to be recognized and displayed by the factory computer.

2. Monitors ECM signals related to exhaust gas recirculation (EGR), and then responds with the correct sensor signals. Prevents *FAI SE* "EGR" malfunction code (32) while allowing *TRUE* "EGR" failure conditions to be recognized and factory vehicle displayed.

3. Monitors "ECM" signals related to the "knock sensor", and then responds with the correct sensor signals. Prevents *FALSE* "knock sensor" malfunction code (43) and computer "limp-mode" spark timing related on alternate fuels, which leads to poor driving characteristics, low milage, and high exhaust temperatures.

4. Monitors 02 sensor signals related to RICH/LEAN conditions in the exhaust, verifying that the 02 Feedback Fuel Control being used is effectively maintaining the correct AIR/FUEL ratios.

MOUNTING AND WIRE HOOK-UP

Mount the unit in a location where the cables will reach the exhaust O2 sensor, the EGR control solenoid, the knock sensor, and the MAP sensor. Do not mount on the engine or near the exhaust manifold. The extreme temperatures at these locations could cause damage to the unit. Use the sheet metal screws provided in the parts kit.

WIRE CONNECTIONS

PINK WIRE: Connect to the EGR pink wire or coil + wire for keyed 12 VDC supply. **GREY WIRE:** Connect to the EGR control signal wire. (Grey wire at EGR solenoid.) **BLUE WIRE:** Connect to blue wire at knock sensor found by starter (350 eng.) or by oil filter (454 & 366 Eng.) **YELLOW WIRE:** Connect to a 12 VDC source that Is HOT only while on gasoline. 12 VDC on yellow wire indicates gasoline mode. **GREEN WIRE:** Connect to O2 Feedback Fuel Control Processor (FCP-1). Green wire contains actual O2 sensor signal for FCP-1. **BROWN WIRE:** Connect to throttle position sensor (TPS) signal wire. Wire will be either brown (early model TPS) or blue (late model TPS) at TPS sensor. **02 SENSOR CONNECTORS:** Connect to factory O2 sensor wire connectors with the violet wire going to computer and the brown wire going to factory O2 sensor. **3 PIN MAP CONNECTORS:** Connect to factory MAP sensor. Connect factory green connector into black female shroud, and connect the 8690's green connector where the factory green connector was disconnected. CS1 - Computer Support 1 P/N 8690 TPS - Throttle Position Sensor PINK MAP - Manifold Absolute Presture (Vacuum Sensor) WHITE ESC - Electronic Spark Control Pink Win *CS1 EGR - Exhaust Gas Beckruhater - 12V SMALL Connect *CS1* Green 3-Pin TOIL INJECTOR MAP Connector here. VIOLET LIGHT GREEN m Wire from "CS1" TPS Gray Wire "CS1" GRAY WIRE 1991 GM "TPS" Sensor is different though was KIBLAC ATES SPLICE 1988-90 EGR CONTROL SOLENOID ON PICK-UP TAK ESC SPARK AL OTRONIC CONTROLS CORPO 1490 HENRY BRENNAN DR. EL PASO, TEXA5 79936 - 5200 19151 85 FORM NO. 1501 01/91

PRINTED IN U.S.A.

IMPCO AFCP-1

NOTICE

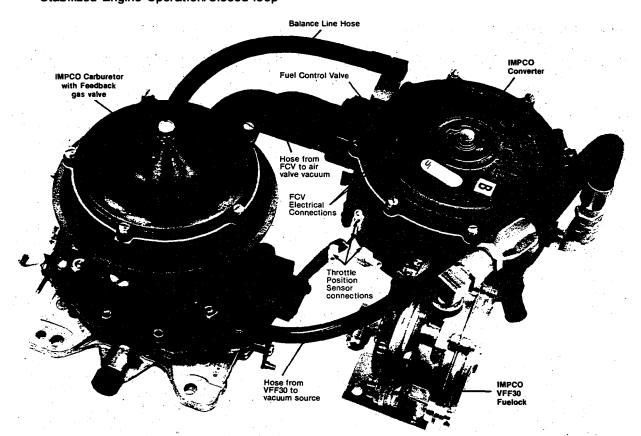
THERE HAVE BEEN CHANGES IN THE INSTALLATION INSTRUCTIONS FOR THE AFCP-1.

IF THE PACKAGE IS MARKED WITH A GREEN STRIP READ THE NCLOSED INSTRUCTIONS FOR INSTALLATION OF THE VACUUM SWITCH AND THE GRAY WIRE.

IF YOU HAVE ANY QUESTIONS ON THIS INSTALLATION CONTACT YOUR PRODUCT DISTRIBUTOR OR IMPCO DIRECTLY.

IMPCO TECHNOLOGIES, INC.

15504 GRIDLEY PLACE, DERRICE, DA 90701-1752 (212)550-5555 TELEX 55-5455 FAX (213)505-1140


Alternate Fuel Management System

Introduction

The intent of this service bulletin is to provide an overview of Computerized Engine Control (CEC) systems, IMPCO[®]'s Alternate Fuel Management System including the AFCP-1 Fuel Control Processor, and Typical Installation Information.

- The areas covered are:
- Glossary of terms
- Understanding the "Feedback" system
- Principals of Operation Cold start/Open loop Stabilized Engine Operation/Closed loop

- Checking out the on-board computerized engine control system
- Typical Alternate Fuel Management components
- AFCP-1 Fuel Control Processor
- Typical Installation Information
- Adjustment Procedures
- Tech Tips on the AFCP-1
- IMPCO "Feedback" carburetion parts list.

Glossary Of Terms

Exhaust Gas Oxygen Sensor. Located in the exhaust gas stream, it monitors the amount of oxygen present. The computer uses this information to control the air/fuel ratio for most engine operating modes.

Barometric and Manifold Absolute Pressure (B.M.A.P.) Sensors. The Barometric Pressure Sensor measures barometer pressure of the approximate altitude the vehicle is operating. The M.A.P. sensor monitors intake manifold vacuum. Manifold absolute pressure is defined as barometric pressure minus manifold vacuum. With these two signals, the computer will know which mode the engine is operating in and adjust fuel and spark to meet the requirements.

Throttle Position Sensor. Connected to the throttle shaft, it registers closed, part, and wide open throttle positions. This permits the computer to determine the proper amount of spark, fuel and EGR flow.

Engine Coolant Temperature Sensor. Inputs information about engine temperature which is used to process EGR flow, ignition timing and open- or closedloop logic. Air Charge Temperature Sensor. Provides mixture temperature information. This input is used as a density corrector for air flow calculations and to proportion the cold enrichment fuel flow.

Knock Sensor. Normally mounted on the intake manifold. Its signal is used to retard ignition timing during spark knock.

Crankshaft Position Sensors. The computer uses input from this sensor as a reference point to implement the spark table in the program.

All of these signals must be received or the computer will switch to a default mode. If the computer does not have all the input needed to operate the engine properly, it switches to a preset control of fuel and spark. This is intended to permit the engine to continue running with the least possible risk of engine or catalyst damage until repairs can be made. This condition is not optimum for fuel economy or power.

Understanding the Feedback System

The IMPCO system operates almost exactly the same as the computer-controlled gasoline feed back system. Both systems are based on the functions of the onboard computer which monitors and controls critical engine functions. The computer is dependent on a system of engine sensors that feed information it uses to control engine operating functions.

The input signals are processed and the correct computation for each operating mode is relayed through the computer drivers to the various engine controls. The engine controls normally include:

Feedback carburetion control

(Fuel Control Valve adjusts air/fuel ratio) Ignition timing EGR control Air injection control Canister purge

Throttle solenoid or automatic idle speed control IMPCO's Propane Feedback System is engineered to use the existing gasoline onboard

computer and sensors without modification.

The computer itself is a logic switching device that retains some memory. This allows it to act rather than just react. It has two basic methods of operation, open loop and closed loop. In the openloop mode, the computer ignores most of the sensors and utilizes various predetermined operating conditions established by the program in its memory. "Special" conditions such as cold start or wide-open throttle cause the computer to switch in the open-loop modes. The computer selects the correct open loop conditions to operate from. The "default" mode of operation is another example of open loop operation. In closed loop, the computer processes the signals of all sensors. It utilizes this information to determine how to set the fuel, ignition and other engine-controllable functions for routine conditions. With a wide range of control in closed loop, the computer can optimize engine performance. It is the computer's ability to quickly and correctly react that is employed by the IMPCO Propane Feedback System for the most efficient use of the fuel.

Principle of Operation

Cold Start/Open Loop Operation. The cold start operating mode is activated by the engine coolant temperature sensor telling the computer a cold engine condition exists.

During cold start, "fresh" air from the air injection pump or thermactor pump is directed into the engine exhaust manifold. The fresh air provides additional oxygen in the exhaust manifold to prompt continued burnoff of excess fuel and a further reduction in HC (hydro-carbon) and CO (carbon monoxide) emission levels until the catalytic converter reaches operating temperatures. During the cold-start operating mode, the engine is metered a pre-determined rich fuel mixture via computer command to the Fuel Control Valve. The oxygen sensor is automatically "locked out" since it would sense an excess of fuel and send a leanmixture signal to the computer. Once the oxygen sensor temperature reaches a specified temperature (above 600F), the computer switches from an "open loop" condition to a "closed loop" stabilized engine operating condition. Fuel enrichment is then reduced by the fuel enrichment valve via computer command and input from the oxygen sensor. Also, the "fresh" air from the air injection pump or thermactor pump is directed to the catalytic converter or vented to the atmosphere depending on how the computer is programmed.

The computer is capable of controlling the Fuel Control Valve from full rich to full lean operation. During cold start operation, a rich fuel mixture is normally pre-set in the computer and used for engine operation.

Stabilized Engine Operation/Closed Loop. The oxygen sensor located in the exhaust system ahead of the catalytic converter is the reference control for "stabilized engine" closed loop operation. The oxygen sensor interacts with the computer via electrical signals. When oxygen is sensed in the exhaust gases (lean mixture) the oxygen sensor generates a voltage of .5 or less to the computer. The level of voltage transmitted is dependent on the amount of oxygen detected. An absence of oxygen in the exhaust (rich mixture), generates a voltage from .5 to 1.0 depending on the richness of the mixture. The computer processes this information and reacts to the voltage transmitted, commanding the Fuel Control Valve to assume a richer or leaner cycle.

The Fuel Control Valve in the IMPCO Fuel Management System is used to control fuel delivery in a unique fashion. Because the diaphragm of the IMPCO converter is very large, little movement is required to control any amount of fuel change. The IMPCO Fuel Control Valve is connected between the atmospheric side of the converter secondary diaphragm and the air valve venturi of the carburetor. This applies a very low vacuum signal to the atmospheric side of the converter secondary diaphragm.

Any signal less than atmospheric results in a reduction in fuel delivery. This assures extremely accurate fuel delivery and rapid response time.

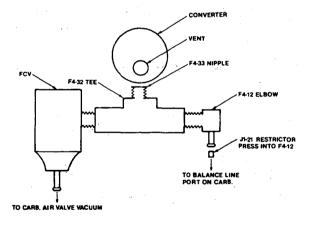
With the engine at operating temperature and the computer in closed loop, there is a wide range of control. This permits the computer to optimize the air/fuel mixture to varying engine requirements. For wide-open throttle, the computer will switch back to open-loop to meet the increased fuel demand.

Checking Out The Onboard Computer Feedback System For Proper Operation

The vehicle computer feedback system should **always** be checked **first** for proper operation, before engine tuning is conducted. The Impco Fuel System Analyzer can be used to isolate and identify problem areas due to computer feedback system malfunction or carburetion system problems.

The onboard computer system can be checked for proper function by following this procedure:

- 1. Warm up engine.
- Connect the FSA-1 Fuel System Analyzer as described in the FSA-1 instruction booklet (or 23800-27).
- 3. Drive vehicle at a steady road speed. The "RICH/ LEAN" lights should switch, and the "COMPUTER COMMAND" display will read a varying number if the computer feedback system is operating properly. **NOTE:** Some vehicle manufacturers have chosen "RICH/LEAN" switch points at a level that may cause only the "RICH" (red) light and the "transition" (green) light to flash. The lights may flash so fast that it appears only one light is on. If the feedback system is working properly, close examination will show a second light is switching on.
- 4. During a W.O.T. test, the lights should continue to change from rich to lean at a constant rate. If either the lean or rich light is on and the duty cycle is a fixed number, the W.O.T. adjustment on the carburetor is improperly adjusted.


THE VEHICLE ONBOARD FUEL CONTROL COM-PUTER SYSTEM SHOULD ALWAYS BE CHECKED OUT FOR PROPER OPERATION BEFORE INSTALL-ING AND/OR ADJUSTING THE CARBURETION SYSTEM FOR OPTIMUM ENGINE PERFORMANCE.

Typical Propane Fuel Management Component Installation

Installation is simple. It is done in the following sequence: (Note: Only procedures that involve the computer feedback system are listed below. Other standard conversion steps are not described.)

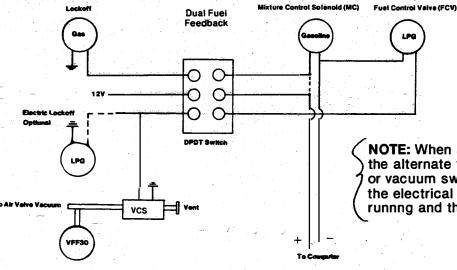
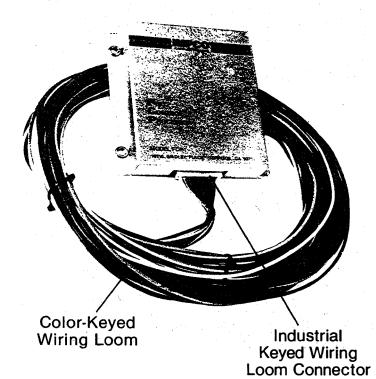

- Check to ensure that all computer sensors and controls are connected and working (see "Checking Out The Onboard Computer Feedback System For Proper Operation").
- 2. Install Impco propane feedback carburetor.
- 3. Remove screen from converter cover vent and screw in 1/8" nipple (part #F4-33) and 1/8" tee (Part #F4-32), as shown in Figure 1.
- 4. Screw Fuel Control Valve (Part #FCV) into one side of tee fitting.
- 5. Install F4-12 elbow and J1-21 restrictor as shown in Figure 1.
- 6. Connect fuel control valve to air valve vacuum at carburetor.
- Connect 3/8" I.D. balance line vacuum hose to hose end of F4-12 fitting and balance line port on carburetor (refer to Figure 1).
 Note: The F4-12 must be used to provide adequate air flow.

FIGURE 1. FUEL CONTROL VALVE WITH BALANCE LINE

8. For straight fuel conversions, connect the two electrical leads from the original gasoline mixture control solenoid to the Fuel Control Valve. If the conversion is dual fuel, connect the gasoline fuel control solenoid and the propane Fuel Control Valve as shown in Figure 2.

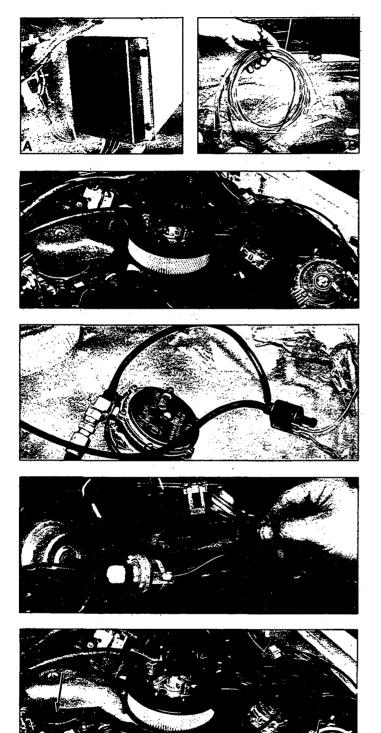
FIGURE 2.



NOTE: When an electric lockoff is used for the alternate fuel, an approved oil pressure or vacuum switch must be used to interrupt the electrical signal when the engine is not runnng and the ignition is on.

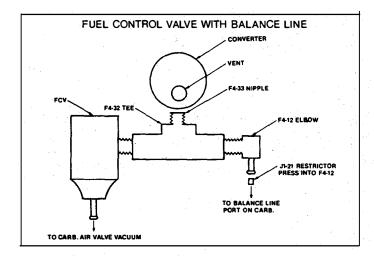
- 9. Start engine and set curb idle speed.
- **10.** Stop engine and adjust voltage of throttle position sensor to manufacturer's specifications with key on.

Note: This step is for straight fuel conversions on GM when the gasoline carburetor has been removed and a TPS has been installed on the LPG carburetor.



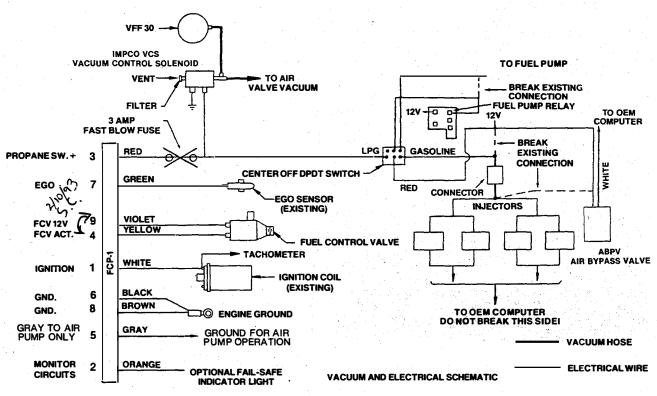
MODEL AFCP-1 FUEL CONTROL PROCESSOR

The AFCP-1 is IMPCO's control system that utilizes state-of-the-art electronics technology to adjust air/fuel ratio for optimum performance. It monitors engine operating conditions sensing exhaust gas oxygen and RPM. It provides precise fuel control for increased fuel efficiency and lower emissions.


One of the best canididates for conversion to propane fuel is the fuel-injected engine. Spark advance on these engines is aggressive and fuel control is precise, as, almost without exception, these engines are computer-controlled. In fuelinjected models, the FCP-1 operates with the factory installed onboard computer without causing a default condition or increasing emissions. On noncomputer-controlled application, the system requires that an exhaust gas oxygen sensor (IMP-CO® part #FOS) be installed in the exhaust manifold. The AFCP-1 is designed to be compatible with most engine systems.

Instructions for Typical CA300A Installation on Fuel-Injected Engines Using Model AFCP-1 Fuel Control Processor

- The FCP-1 box (photo A) is designed for installation inside the passenger compartment, away from engine heat and road splash. An ideal location is on the passenger side kick panel or under the dashboard. Mount the FCP-1 securely using the 4 mounting holes provided. Thread the wiring harness (photo B) through a convenient knockout in the firewall.
- Install the required IMPCO[®] adapter assembly between the OEM carburetor or EFI throttle body and the IMPCO[®] mixer.


- 3. An alternate method of installation, using a CA300A-1 mixer, utilizes an optional 3-way vacuum control solenoid (part #VCS) to control VFF30 operation. In this installation, the Boden cable and CA300A lifter cam are not required. Insert the solenoid into the vacuum line, between the vacuum source and the VFF30. Connect one electrical lead to secure ground, the other to the alternate fuel side of the fuel selector switch located inside the driver's compartment. Fuel selection is made with this switch, rather than a Boden wire.
- 4. Air Pump Vehicles: Chevrolet: Connect gray wire from FCP to brown wire at air pump diverter valve. Ford & Chrysler: Use a VS-2A vacuum switch. When air is diverted into the exhaust manifold prior to the 0² sensor, the VS-2A closes to ground causing open loop operation at/or near 50% duty cycle. Cut and remove the red wire. Solder the yellow wire to the gray wire. Attach the black wire to ground.
- 5. Install IMPCO[®] Fuel Control Valve (FCV) in the cover of the converter (also Fig. 1, page 3). If an air valve vacuum source is not available for the FCV, tap into the adapter under the mixer. Install an F4-8 fitting in the adapter and connect a vacuum hose from the fitting to the FCV. NOTE: The FCV must have an independent air valve vacuum source. Install the FCV so the vacuum connection is in the down position.

6. Install the FCP-1 wire harness (part #AW2-3) as indicated. See complete typical schematic below.

THE COLOR-CODED WIRES ON THE AFCP-1 KEYED CONNECTOR:

PIN NO.	COLOR	FUNCTION	CONNECTION
6	Black	Signal Ground	To Vehicle Ground
8	Brown	Solenoid Ground	To Vehicle Ground
3	Red	FCP-1 Power	To Fused LPG Switch + 12 volts
4	Violet	Solenoid Active	To FCV on Converter
9	Yellow	Solenoid Active	To FCV on Converter
1	White	Ignition Tach	To Ignition Coil Tach Side
7	Green	EGO Mixture	To EGO Sensor
5	Gray	open Loop with Air Pump On OR Air Pump Signal	To Air Pump (See Page 5, Photo #4)
2	Orange	Fail/Safe	To Optional Dashboard Fail/Safe Lamp

TYPICAL AFCP-1 FUEL CONTROL PROCESSOR WIRING SCHEMATIC

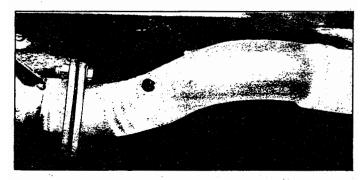
7. If a CO analyzer is available, dirll a 21/64" hole in the exhaust pipe before the catalytic converter and near the exhaust manifold, if possible. Tap with a 1/8" x 27 NPT for installation of probe to measure CO.

NOTE: When using a CO Meter, you must be assured of no air induction into the exhaust ahead of the probe for correct readings.

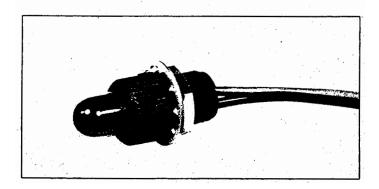
8. Install exhaust gas probe and connect to CO meter.

9. Connect the IMPCO® Fuel System Analyzer (FSA-1) yellow lead to the yellow wire from the Fuel Control Valve (FCV). Refer to 23800-27 "Fuel System Analyzer Instructions." If a tach/dwell meter is used, it should be attached to the post connected to the yellow wire. Set dwell meter to dwell position and 6-cylinder mode, regardless of the number of engine cylinders.

10. To Set Idle Mixture (ON AIR PUMP VEHICLES ONLY)


Disconnect the gray wire from the processor, prevent the wire from grounding. Divert the air to atmosphere or away from the exhaust manifold. Allow the engine to warm up to operational temperatures. Apply a load to the engine (automatic transmission, place in drive, block wheels and set parking brake).

To Set Idle Mixture


Set idle mixtures to 40 - 50% duty cycle. If there is any reason to believe that the FCP-1 is not in closed loop operation, depress the primer button on the regulator. If the engine is in closed loop, the duty cycle reading will increase toward 100. Release the primer button and the duty cycle will decrease toward 00. **NOTE:** It is possible to adjust idle air fuel mixtures too lean to prevent the AFCP-1 from going into closed loop operation. In order for the AFCP-1 to go into closed loop, a rich 0² sensor voltage signal must be received by the AFCP-1.

- **11.** If analyze or dwell meter reading remains in a fixed "00" or 50% or 100% position **after warm up:**
 - A. Fuel mixture setting is wrong or all connections were not properly made or:
 - B. Open loop (gray wire) is grounded or vacuum switch is defective. Gray wire fixed duty cycle is 50%. If gray wire is grounded, it is in open loop at 50% duty cycle or if a vacuum switch is used, the switch may be bad. Gray wire is for air pump use only.

IMPCO CARBURETOR MODEL Check One: ■ LP-Gas Only ■ Dual Fuel (LP-Gas/Gasoline) Impco Vaporizer Model J. L or E Vehicle Type Vehicle Year Engine Displacement Installation Date C.A.R.B. approved executive order B-4 ADJUSTMENTS ADJUSTMENTS INITIAL SPARK ADVANCE. Set vehicle factory si IDLE SPEED. Set vehicle factory si MIXTURE ADJ Non-Fe icie factory specification 1% CO 1-½% CO 1CI/ iSet at 3500 PPM 3 HG Vacil 6 CC With control hose cfl & plugged EMISSION CONTROL DEVICES Leave all other emission control devices in place. IMPCO D:05:

12. After engine start, the FSA-1's "Computer Command" number or dwell reading will stay at a fixed duty cycle at or near 50% for 30 to 60 seconds. With the engine warmed to operating temperatures, readings should vary within the "30 to 70" range while the vehicle is being driven.

13. Disconnect CO meter probe and plug opening with a 1/8" pipe plug.

14. Install decals as necessary.

15. NOTE: An optional fail/safe indicator light for the AFCP-1 (part #FS-1, ordered separately) may be installed inside driver's compartment. See appropriate schematic diagram for correct wiring connections.

ADJUSTMENT PROCEDURES

Feedback Adjustment:

With IMPCO[®] Fuel System Analyzer:

The Analyzer can be used to adjust the IMP-CO[®] Alternate Fuel Management System or a gasoline feedback system if you do not have a dyno and CO meter. Hook up the unit's black lead to ground, red to 12 volts, green to the oxygen sensor and yellow to the vehicle computer side of the Fuel Control Valve as explained under "Connecting the IMPCO[®] Fuel System Analyzer" in analyzer instruction booklet. **WARNING: Do not disconnect ground wire while engine is running. Vehicle must be at operational temperature.**

Determine if the vehicle has feedback control during idle by observing the "COMPUTER COM-MAND" display. If the number displayed is constant, there is no feedback control during idle. **NOTE:** Some vehicles will revert to "open loop" operation if engine idle is prolonged and the oxygen sensor cools to below its operational temperature.

Check to determine if the IMPCO[®] Fuel Control System has been installed according to the recommended IMPCO[®] installation instructions as described in this bulletin.

If the vehicle has **feedback control** at idle, adjust the IMPCO[®] carburetor idle mixture adjustment screw until the "COMPUTER COMMAND" reading is approximately at 50. By setting the reading as close to 50 as possible, the onboard vehicle computer has full range to go rich or lean. **NOTE:** A vehicle with feedback control at idle will show a significant change in the "COMPUTER COMMAND" number upon turning the idle mixture adjustment screw.

For vehicles with no feedback control at idle. the following procedure should be used: (NOTE: Some manufacturers choose to add air from the air pump to the exhaust manifold at idle. Because of this, it is advisable to disconnect and plug the hose from the air pump to the manifold while idle mixture is being set. If this step is not followed, the extra air causes the oxygen sensor to continually sense oxygen. This, in turn, will cause the "LEAN" light to come on even though the actual fuel/air ratio may be correct. As a result, the mixtures might be adjusted too rich in an effort to compensate for the injected air. After idle mixture is properly set, remove plug and reconnect hose to exhaust manifold). Connect the analyzer as instructed above. Watch the "RICH/LEAN" lights as you adjust the idle screw. If the "RICH" light is on, adjust the screw toward lean until the oxygen sensor light just switches from "RICH" to

"LEAN". Slowly turn the screw back until "RICH" appears again. If the "LEAN" light was on when you started the adjustment, richen the idle mixture just to the point the "RICH" appears. The final adjustment should have the "RICH" mixture light on. **NOTE:** A vehicle with no feedback control at idle will show no change in the "COMPUTER COM-MAND" number upon turning the idle mixture adjustment screw.

A CO meter is not normally needed when the IMPCO[®] Fuel System Analyzer is used.

Power Mixture Adjustment of IMPCO[®] Feedback Carburetion System.

To adjust the W.O.T. power mixture using a dynamometer, set the power adjustment to 60-65% duty cycle reading on the FSA at 3000 RPM, W.O.T.

W.O.T. power mixture can be adjusted without a dynamometer by road testing and setting the power mixture control to 55-65% duty cycle reading on the FSA at W.O.T. **NOTE:** Due to the fast response of the FSA at W.O.T. excessive road speeds are not necessary for this test.

Adjusting Gasoline Fuel Mixtures for Optimum Engine Operation

The Analyzer can be used to adjust gasoline feedback carburetor systems. Adjustment procedures and specifications provided in commercial engine manuals should be followed. In most cases, special adjustment tools are required.

 \mathbf{k}^{\prime}

Final Road Check:

During the road test the "COMPUTER COM-MAND" should remain between 30 and 70 under normal "closed loop " driving operation. This verifies that the computer has the amount of control necessary to keep the fuel mixture correct.

During road test with alternate fuel, if the "RICH" or "LEAN" indicator light stays on with no flashing between them when driving at a steady speed under closed loop, there is a problem. If the "LEAN" light remains on, you probably do not have the correct gas valve for feedback, or a balance line needs to be installed to counteract the effect of high RAM air pressure. If the "RICH" light remains on, check to see if a .100" restrictor (J1-21) is installed in the elbow assembly attached to the IMPCO[®] converter.

ON ALL VEHICLES, THE KEY MUST BE ON AND THE ENGINE RUNNING TO GET THE DESIRED READINGS.

Feedback Adjustment With Dynamometer and CO Meter

- 1. All exhaust gas samples must be taken ahead of the catalytic converter by drilling a sample hole in the exahust pipe.
- 2. Warm engine up to normal operating temperature.
- **3.** Check and adjust idle (RPM) to manufacturer' specification.
- 4. Disconnect the vacuum hose from the Fuel Control Valve and plug hose. This will cause the Fuel Control Valve to be inoperative. The carburetor will then be at maximum rich.
- Adjust carburetor idle mixture to 1 to 2% CO. (Use "drive" if equipped with an automatic transmission)
- 6. Set the wide open throttle carburetor power adjustment to obtain a .2 to 1.0% CO reading, without loss of power.

7. Run the vehicle at road load speeds of 20-30-40 and 50 mph. with dynomometer horsepower load as follows:

4 cylinder		25 HP at 50 mph
6 cylinder	_	40 HP at 50 mph
8 cylinder	_	50 HP at 50 mph

The CO reading should read between .2 to 1.0%. If the CO reading is considerably higher than that, check to be sure the specified gas/air valve assembly for the IMPCO[®] Feedback System is installed.

- 8. Reconnect the vacuum hose to the Fuel Control Valve. The fuel mixture is now being controlled by the computer, which will result in a leaner mixture.
- **9.** Adjust idle speed to manufacturer's recommendations.

"TECH TIPS" ON IMPCO'S AFCP-1 INSTALLATION AND CHECK-OUT

Even though the FCP-1 is designed as an independent fuel control processor, it is very important that all existing onboard controls and sensors are working properly. Most trouble calls are due to malfunctions in the OEM system. Often the owners are unaware of these failures since mileage and performance usually are better than pre-computer vehicles. After verifying the OEM system is functioning properly, determine that the propane fuel system is also operating correctly. Refer to 23800-27 FSA-1, "Fuel System Analyzer Instruction." It offers information on checking out the IM-PCO[®] Closed Loop Feedback Systems.

Utilizing the IMPCO[®] FSA-1 Fuel System Analyzer, a tachometer or a good volt meter, perform system checks in the following order:

- 1. The black and brown ground wires must be attached securely to a chassis ground. Terminating each wire with suitable lugs, these two wires may be attached to a common chassis ground using a #8 or larger screw.
- 2. The red power wire should be attached to the propane/gasoline switch on dual-fuel models (see current model wiring diagram.) On propane only and FCP-1 stand-alone systems, be sure that + 12V DC is supplied in the "on" position. This wire must be equipped with a suitable fast-blow fuse rated at 3 amps.
- **3.** Determine that the white ignition wire is attached to the tachometer side of the ignition coil. This can be verified by connecting a shop tachometer to this lead. With the engine operating, RPM will be indicated on the tachometer.
- **4.** The violet wire is attached to the Fuel Control Valve (FCV) and should have a constant + 12 volts during operation.
- 5. The yellow wire is connected to the FCV. It varies the on-to-off duty cycle of the FCV up to a rate of 10 times per second. This controls air fuel ratio's under all conditions. Connect the Fuel System Analyzer (FSA-1) and adjust idle mixture so that 50 is showing on the FSA-1. This indicates that the FCP-1 is close to the center of its "range of authority" and able to properly control fuel mixtures under all conditions.

- 6. The green exhaust-gas oxygen (EGO) sensor connector wire of the FCP-1 should be spliced in parallel to the wire coming from the EGO sensor located in the exhaust manifold. The EGO sensor looks very similar to a spark plug. (On non-computer-controlled stand alone applications, the system requires that an EGO sensor be installed.). Connect the FSA-1 following instructions in 23800-27) "Fuel System Analyzer Instructions." Correct operation of the EGO sensor is indicated by flashing of the FSA-1 "Rich," OK, and "Lean" lights. If only the "Lean" light is lit, richen the mixture by momentarily pressing the manual primer button of the converter. If no change is indicated by the FSA-1, the EGO sensor is faulty or the FSA-1 is connected to the wrong wire if only the "Rich" light is lit, increase engine speed at no load. Then lean out fuel mixture until the engine starts to stumble indicating lean conditions. If no change is indicated by the FSA-1 lights, check for vacuum leaks.
- 7. The orange "fail/safe" indicator wire should be connected directly to the optional "fail/safe" indicator light available from IMPCO[®]. Install the "fail/safe" light on dashboard in a location visible to the driver. This light is only an indication that the FCP-1 is incapable of maintaining correct fuel mixtures. The FCP-1 will continue to try to control mixtures whether rich or lean while the light is on. The "fail/safe" light being on *does not necessarily* mean the FCP-1 is bad. You should verify all other component operations before replacing the FCP-1.
- 8. See page 5, photo #4 for installation of the gray wire.

FUEL MANAGEMENT SYSTEM PARTS LIST

AIR GAS VALVE ASSEMBLY

PART NO.	APPLICATION	PART NO.	APPLICATION
AV1-1447	Model 125	D-1051	Decal for LPG Only and dual fuel LPG/Gasoline
AV1-1447-2	Model 125 Silicone	D-1052	Decal for CNG only and dual fuel CNG/Gasoline
· · · · · · · · · -	Model 135M-10 Vacuum Lift Model 125M-10 Vacuum Lift Silicone	SPEC	IAL PARTS NOT SUPPLIED BY IMPCO®
AV1-1245	Model 225	PART NO.	SOURCE
AV1-1245-2 AV1-1651	Model 225 Silicone Model 425	TPS	Ford #EOAE9B989AB
Gas Valve On		Description:	Position Sensor; replaces OEM T.P.S. where necessary.
V2-49	Model 300A-1, CA300A-20	DPDP	
V2-50 V2-58	Model 300A-50, CA300A-70. Model 175A-2.	Dexcription:	Double pole double throw switch for Ford feed-
VZ-J0	Optional for CA175-1 (Anodized red)	,	back installation.
	FUEL CONTROL PARTS		
PART NO.	APPLICATION		
FCV	Fuel Control Valve, all feedback		
FEV	Fuel enrichment Valve (Use SV w/specified jet)		
SV	Starting Valve, used as Fuel Enrichment Valve		
VPV	Vacuum Power Valve, light-duty Chrysler feed- back installation		
J1-21	Jet .100. Balance Line Restrictor		
J1-20	Jet .062, SV		
J1-20-1	Jet .032, Starting Valve for FEV application		
J1-20-2	jet .050, Vacuum Power Valve		
J1-20-3	jet .075, Vacuum Power Valve		
J1-20-4 F4-2	Jet .100, Vacuum Power Valve Tube fitting, 1/4'' x 1/4'' I.D. Hose		
F4-2 F4-12	1/8" NPT to 3/8" Hose elbow, balance line		
F4-32	1/8" tee, balance line		
F4-33	1/8" nipple, balance line		
T1-13	Tube connector		

WARNING: IMPROPER INSTALLATION OR USE OF THIS PRODUCT MAY CAUSE SERIOUS INJURY AND/OR PROPERTY DAMAGE.

SERVICE TECHNICIANS AND USERS SHOULD CAREFULLY READ AND ABIDE BY THE PROVISIONS SET FORTH IN NATIONAL FIRE PROTECTION ASSOCIATION PAMPHLET #37 FOR STATIONARY ENGINES, #52 FOR CNG VEHICULAR FUEL SYSTEMS OR #58 FOR LPG SYSTEMS.

NSTALLERS

US INSTALLATIONS IN THE UNITED STATES MUST BE DONE IN ACCORDANCE WITH FEDERAL, STATE, OR LOCAL LAW, WHICHEVER IS APPLICABLE AND NATIONAL FIRE PROTECTION ASSOCIATION PAMPHLET #58, STANDARD FOR STORAGE AND HANDLING OF LIQUIFIED PETROLEUM GASES TO THE EXTENT THESE STANDARDS ARE NOT IN VIOLATION WITH FEDERAL, STATE OR LOCAL LAW. IN CANADA REFER TO CAN/CGA-B149.2, PROPANE INSTALLATION CODES.

CING INSTALLATIONS IN THE UNITED STATES MUST BE DONE IN ACCORDANCE WITH FEDERAL, STATE OR LOCAL LAW AND NATIONAL FIRE PROTECTION ASSOCIATION PAMPHLET #52, COMPRESSED NATURAL GAS (CNG) VEHICULAR FUEL SYSTEMS TO THE EXTENT THESE STANDARDS ARE NOT IN VIOLATION WITH FEDERAL, STATE OR LOCAL LAW. IN CANADA REFER TO CAN/CGA-B149.1 CNG INSTALLATION CODIS.

LPG AND/OR NATURAL GAS INSTALLATIONS ON STATIONARY ENGINES MUST BE DONE IN ACCORDANCE WITH FEDERAL, STATE OR LOCAL LAW AND INATIONAL FIRE PROTECTION ASSOCIATION PAMPHLET #37. STATIONARY COMBUSTION ENGINES AND GAS TURBINE ENGINES. TO THE EXTENT THESE STANDARDS ARE NOT IN VIOLATION WITH FEDERAL, STATE OR LOCAL LAW, FAILURE TO ABDE BY THE ABOVE WILL VOD ANY IMPCO WARRANTY ON THE PRODUCTS AND MAY CAUSE SERIOUS INJURY OR PROPERTY DAMAGE.

DUE TO THE INHERANT DANGER OF GASEOUS FUELS THE IMPCO PRODUCTS SHOULD NOT BE INSTALLED OR USED BY PERSONS NOT KNOWLEDGEABLE OF THE HAZARDS ASSOCIATED WITH THE USE OF GASEOUS RUELS.

ATTENTION: RISQUÉ DE DÉGÂTS MATÉRIELS ET/OU DE LÉSIONS CORPORELLES GRAVES EN CAS D'INSTALLATION OU D'USAGE INADÉQUAT.

TECHNICIENS D'ENTRETIEN ET UTILISATEURS LIRE ATTENTIVEMENT ET RESPECTER LES DISPOSITIONS FRÉAVES AU TITRE DE LA BROCHURE N° 37 DE LA NATIONAL FIRE PROTECTION ASSOCIATION AMÉRICAINE (LA NFPA) POUR LES MOTEURS FIXES. N° 52 Rour les systèmes véhiculaires au Gaz naturel comprimé ou n° 58 pour les systèmes au Gaz de Petrole Liquépié.

INSTALLATEURS

INSTITULATEURS AUX ÉTATS UNIS, LES INSTALLATIONS AU GAZ DE PÉTROLE LIQUÉFIÉ DOIVENT ÊTRE CONFORMES AUX LOIS FÉDÉRALES, D'ÉTAT OU LOCALES APPLICABLES, AINSI OU'AUX NORMES ÉTABLES AU TITRE DE LA BOCHURE N° 58 DE LA NFPA, RELATIVE AU STOCKAGE ET AU MANIEMENT DE GAZ DE PÉTROLE LIQUÉRÉS, DANS LA MESURE OÙ CES NORMES SONT ELLES-MÉMIES CONFORMES À LA LÉGISLATION FÉDÉRALE, D'ÉTAT OU LOCALE.

AU CANADA, S'EN RÉFÉRER À LA RÉGLEMENTATION CAN/CGA-B149.2 RELATIVE AUX INSTALLATIONS AU PROPANE.

AUX ÉTATS-LINS, LES INSTALLATIONS AU GAZ NATUREL COMPRIMÉ DOIVENT ÊTRE CONFORMES AUX LOIS FÉDÉRALES, D'ÉTAT OU LOCALES APPLICABLES, AINSI OU AUX NORMES ÉTABLES AU ITTRE DE LA BROCHURE N° 52 DE LA NFPA, RELATIVE AUX SYSTÈMES VEHICULAIRES AU GAZ NATUREL COMPRIME. DANS LA MESURE DÙ CES NORMES SONT ELLIS MÉMES CONFORMES À LA LÉGISLATION FÉDÉRALE. D'ÉTAT OU LOCALE.

AU CANADA, S'EN RÉFÉRER À LA RÉGLEMENTATION CAN/CGA-B149.1 RELATIVE AUX INSTALLATIONS AU GAZ NATUREL COMPRIMÉ.

LES INSTALLATIONS AU GAZ DE PÉTRICLE LIQUÉRÉ ET /OU AU GAZ NATUREL COMPRIMÉ SUR MOTEURS FIXES DOMENT ÊTRE CONFORMES AUX LOIS FÉDÉRALES. D'ÉTAT OU LOCALIS APPLICABLES, AINSI QU'AUX NORMES ETABLIES AU TITRE DE LA BOOCHURE N° 37 DE LA NEPA, RELATIVEAUX MOTEURS FIXES À COMBUSTION ET AUX TURBINES À GAZ, GANS LA MESURE DÙ CES NORMES SONT ELLF MÉMES CONFORMES À LA LEGISLATION FÉDÉRALE, D'ÉTAT OU LOCALE.

LE NON-RINGFECT DES DISPOSITIONS ÉTABLING CHOESSUS RENDRA NULLING TOUTES LES GARANTIES IMPCO RELATIVES AUX PRODUITS CONCERNÉS ET POURRA DONNER LIEU À DE SÉRIEUX DÉGÂTS MATÉRIELS OU LESIONS CORPORELLING.

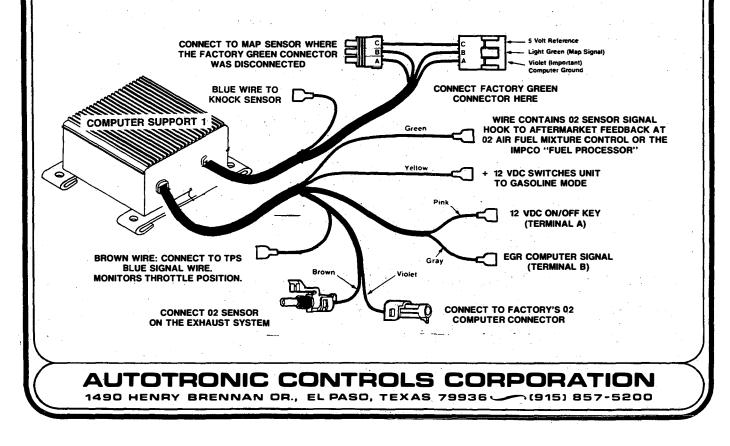
EN RAISON DU DANGER INHÉRENT AUX COMBUSTIBLES GAZEUX, LES PRODUITS IMPCO NE DEVRAIENT EN AUCUN CAS ÊTRE INSTALLÉS OU UTILISÍS PAR DES PERSONNES NON CONSCIENTES DIS RISQUES ASSOCIÉS À DE TELS COMBUSTIBLIS.

Reg. U.S. Pat. & Trn. Off.

COMPUTER SUPPORT 1 P/N 8690

PARTS INCLUDED IN THIS KIT

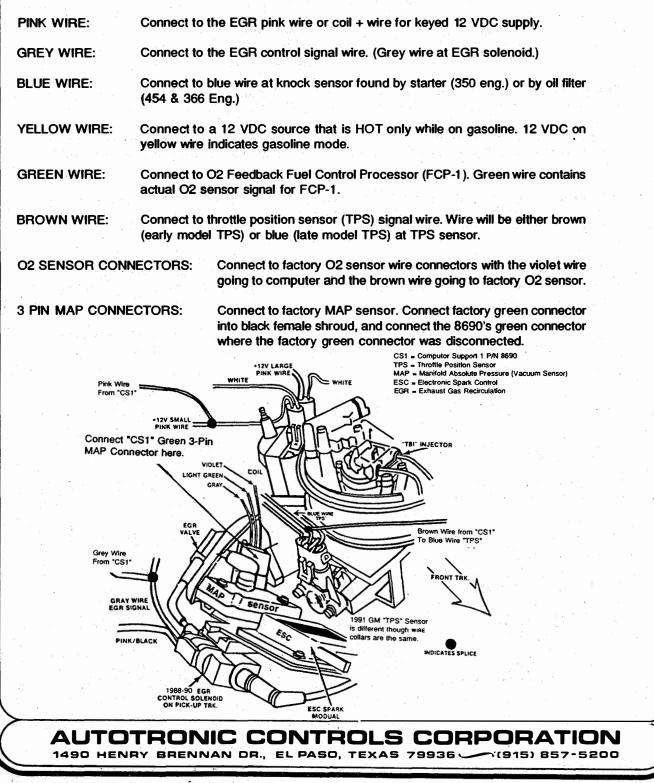
1-Computer Support 1 6-Wire Tap Devices 6-Fast0n Receptacles 1-Installation Instructions 4-Wire Ties 4-No. 6x3/4 Screws

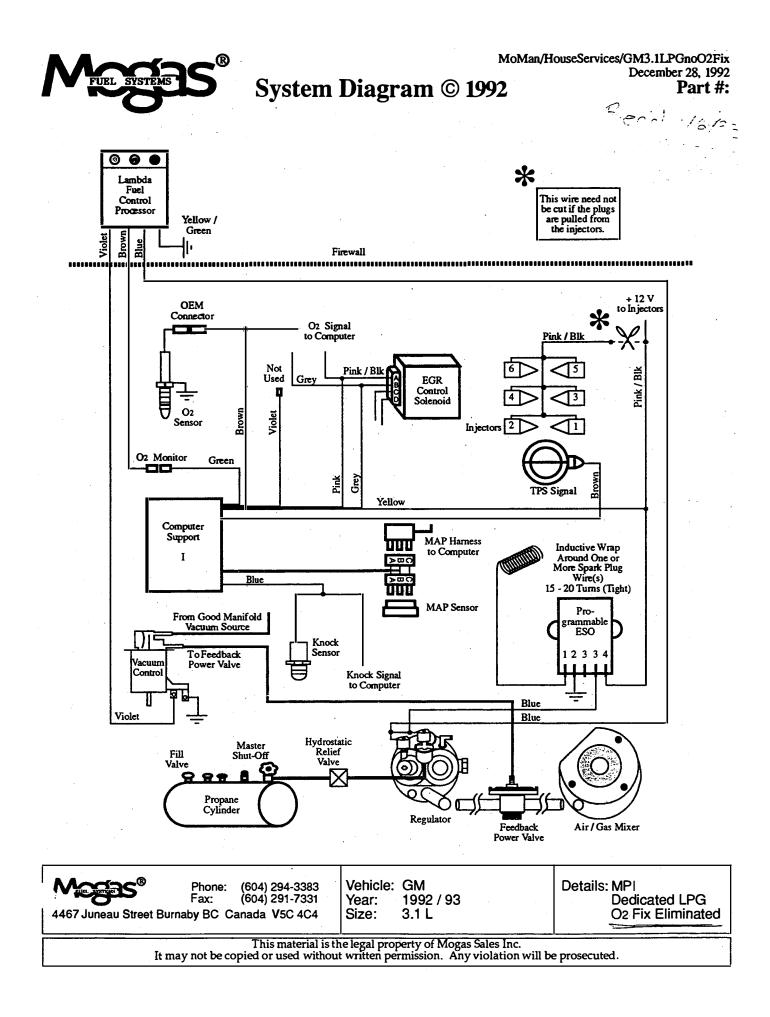

The **Computer Support 1** is designed to work in conjunction with an 02 Feedback Fuel Control System in order to correctly monitor "Service Engine" codes while on alternate fuels.

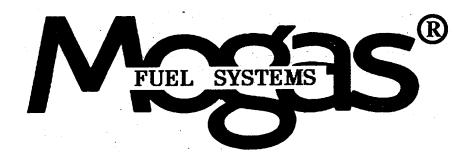
1.Supplies a correct 02 Feedback signal to the ECM. Prevents *FALSE* 02 sensor malfunction codes (13,44,45) while allowing *TRUE* failure conditions to be recognized and displayed by the factory computer.

2. Monitors ECM signals related to exhaust gas recirculation (EGR), and then responds with the correct sensor signals. Prevents *FALSE* "EGR" malfunction code (32) while allowing *TRUE* "EGR" failure conditions to be recognized and factory vehicle displayed.

3. Monitors "ECM" signals related to the "knock sensor", and then responds with the correct sensor signals. Prevents *FALSE* "knock sensor" malfunction code (43) and computer "limp-mode" spark timing retard on alternate fuels, which leads to poor driving characteristics, low milage, and high exhaust temperatures.


4. Monitors 02 sensor signals related to RICH/LEAN conditions in the exhaust, verifying that the 02 Feedback Fuel Control being used is effectively maintaining the correct AIR/FUEL ratios.


MOUNTING AND WIRE HOOK-UP


Mount the unit in a location where the cables will reach the exhaust O2 sensor, the EGR control solenoid, the knock sensor, and the MAP sensor. Do not mount on the engine or near the exhaust manifold. The extreme temperatures at these locations could cause damage to the unit. Use the sheet metal screws provided in the parts kit.

WIRE CONNECTIONS

MOGAS ECOLO

Natural Gas Fuel System

Installation Procedure Manual

Revised January 16, 1993

Contents

Glossarypage	2
Introductionpage	3
Pre-Conversion Evaluationpage	4
Pre-Conversion Inspection	4
Conversion Reportpage	5
Mogas Fuel System Layoutpage	6
Component Installation Procedurespage	7
Cylinder Size and Locationpage	8
Cylinder Installationpage	9
Self Vented Valvepage	11
Vented Valve Operating Principlespage	13
Vented Valve Installation Instructionspage	15
Vented Valve Wrench Assembly Instructionspage	18
Fill Valve and Master Shut-Off Assemblypage	19
Regulator Installationpage	20
Advantages of a Regulator with a Thermostatpage	21
Regulator Operationspage	22
Regulator Maintenancepage	23
Steel Lines and Fittingspage	27
Mixers and Fuel Flow Control Valvepage	29
Mogas ECOLO Fuel Flow Control Valvepage	30
Electronic Equipmentpage	31
Fuel Selector Switch and Gaugepage	31
Injector Disconnect Relay Kitpage	32
Gasoline Fuel Lock-off Solenoidpage	32
Timing Advance Processorspage	32
Leak Testing Procedures	33
Set-Up Procedurespage	33
Carburetted Engines Regulator and Fuel Set-Uppage	34
Computerized Engines Regulator and Fuel Set-Uppage	35
Closed Loop Fuel System Set-Up Instructionspage	36

Figures

Fig. 1	Typical Mogas ECOLO Closed-Loop Systempage	6
Fig. 2	Maintaining Clearance from the Ground	8
Fig. 3	Self-Venting Valve	14
Fig. 4		17
Fig. 5	Vented Valve Installation Detail	17
Fig. 6	Views of Vented Valve	18
Fig. 7	Fill Valve and Master Shut-Off Valve	19
Fig. 8	Regulator Mounting	20
Fig. 9	Regulator Parts	21
Fig. 10		22
Fig. 11	Regulator Maintenance	23
Fig. 12		23
Fig. 13	Regulator Maintenance	23
Fig. 14		24
Fig. 15	Regulator Maintenance	24
Fig. 16	Regulator Maintenance	25
Fig. 17	Regulator Maintenance	25
Fig. 18	Regulator Maintenance	26
Fig. 19		26
Fig. 20		26
Fig. 21	Expansion Loop Illustrated	28
Fig. 22	ECOLO Closed-Loop Feed-Back System	30

Glossary

CNG	Compressed Natural Gas
ECOLO	A Mogas Closed-loop Fuel Control System
EGR	Exhaust Gas Recirculation
GSS	Gear Select Switch
LED	Light Emitting Diode
LPG	Liquid Propane Gas
MAP	Manifold Absolute Pressure
NG	Natural Gas
NGV	Natural Gas Vehicle
NPT	National Pipe Thread
OEM	Original Equipment Manufacturer
PRD	Pressure Relief Device
SAE	Society of Automotive Engineering
Thermistor	Engine coolant temperature sensor

Mogas Fuel Systems Installation Procedure Manual Revised January 16, 1993

Introduction

The intent of this manual is to facilitate the installation of a Natural Gas Mogas Fuel System and to assist the technician in taking advantage of the system features to produce the best possible emissions, performance, and durability.

The suggestions contained herein are not intended to replace any applicable regulations in force at the time and place where the installation takes place or is destined to be in use.

The conversion technician MUST be thoroughly familiar with the regulations governing the installation of Compressed Natural Gas components on motor vehicles in the region(s) involved.

These regulations are usually issued and / or enforced by the State and / or Federal authorities having Jurisdiction, i.e. the Fire Department, Gas Safety Branch, Highway Patrol, Federal or Local Department of Transport, etc.

The local natural gas Utility or the American Gas Association / Canadian Gas Association can best assist in learning which authority and regulations are in force in the specific territory.

The technician is ultimately responsible to obtain a copy of these regulations and adhere to them when converting vehicles to run on Compressed Natural Gas.

Disclaimer

This manual is a guideline for qualified Automotive Technicians. MOGAS SALES Inc. declines any liability directly or indirectly related and / or caused by the interpretation or the execution of any part of this manual.

The technician will be a qualified, knowledgeable, responsible person. The interpretation, conclusions, final decisions and the quality of execution rest within his / her control.

Pre-Conversion Evaluation

Virtually any vehicle can be converted to natural gas, no matter how rare it is or how difficult it is to install the cylinder(s) or the equipment. Therefore, very little will be said about technical feasibility. Emphasis, however, should be placed on the worthiness of converting a vehicle.

The vehicle should be taken for a test drive in order to establish its good working condition, any possible computer codes and the rate of road performance on gasoline.

There are many factors that affect the final performance of natural gas vehicle conversion. A sound pre-conversion evaluation can prevent embarrassment and customer dissatisfaction.

- Perform a vehicle inspection for the purpose of:
 - Locating available space for the components and cylinder(s).
 - Identifying: the engine size; ignition type and model; fuel system type,

configuration and size of air intake / induction system.

- transmission type and gearing.
- differential gearing.
- vehicle load and service.
- towing habits
- driving habits.

Once you have gathered all the information above, we suggest that you consult with our sales personnel for availability of a system that will suit the vehicle you intend to convert.

Pre-Conversion Inspection

Prior to conversion, the vehicle should be taken for a test drive in order to establish its good working condition, any possible computer codes and the rate of road performance on gasoline.

Computer codes that affect the engine and transmission should be resolved before attempting conversion. An engine that does not run well on gasoline may run worse on natural gas. Compression and ignition must also be in top condition for an engine to run well on natural gas.

This is also a good time to assess the driver's habits and expectations. If the vehicle is underpowered on gasoline, because of a small engine or a poor choice of transmission / differential gear ratio, performance on natural gas may not be acceptable.

Prior to conversion, the engine should be thoroughly inspected. The inspection must include a compression test. A Conversion Report form is provided for your convenience.

All of the above may be time consuming, but trying to correct or explain engine problems after conversion is much more time consuming, costly and embarrassing.

·

			. <u> </u>		
			tratation Date	Ventry Repeaten Ho.	
			North Morth	Day 111-11	<u>I-1,1</u> I I
CUSTOMER	÷.,			CONVERSION SHOP	
Name: =			Warre		
Acchers		1	400-00		
				а С	
(24)	Substant in		C7	- N	
Physics					
Northe Mane Manke	'her				
Nanc4+12 vs	Lionee No		Cylinder Make/Size	Serial Number	Test
Cource e neo son Dest			wana size	· · · · · · · · · · · · · · · · · · ·	- Coale
		CU INCH	-		
		JTHES			• •
NGV CONVERSION EQUIPMEN	11 Seet 'n	_	•		
Dud Corve Merer and Madal	Senar Inc.			· · · · ·	
Mary Mary at 6 Mode	1,010				·
			· · · · ·	· · · · ·	
PRE-CONVERSION CHECK	D a				
Battery/Starler Battery Votage		Fail	5. Inlet Mentiold V At an idle	acuum "hg atmm	Pass Fail
Cranking Volts					
Starter Draw Test (amps)				Check	ōō
Coil Input Cranking.			6 Distributor Bator Constition		
Col Input Running	· —	·Н		······································	= =
Coil Output Volts	Ξ	ŏ		· Operation	
Col Polarity Correct			Shaft Condition.		
Spark Plug Condition			-	ce Operation	
High Tension Lead Condition			Timing Chain Sla	ck	
Compression or Cylinder Belence Check			7. Engine Cooling	System	
Cylinder Number 1	2	3	· 4 T	5 6 7	1 8
Compression Dry/Wet			<u> </u>		
Compression Test				ca 20%)	
	······································	_			· .
4. Carbureton/Fuel Injuction	Pass	Fail	8. Supervalor. Che		Yes No
Air Fitter Check			Repairs or Upgra	de Required	
Fuel Filter Check	····· H	H	To the best of	my subgrowint this vehicle is subjile for conver	ION 10 NGV
Carburator Operation		ŏ			
EFI Fault Codes Readout		ō			
				Cert. Installer Signature	
POST-CONVERSION TEST			•		
I. Finel Engine Adjustments			3. Fuel System - E	ngine to be at Operating Tempera	
Base timing gasoline deg. @		TPM ·	Idle rpm on gaso	line	
Base timing natural gas deg. @		. nom	idle rpm on natur	al gas	<u> </u>
Total centrilugal vacuum advance:				CO @ idle	
On gasoline deg. @		. rpm	HC @ 2500 rpm		
On natural gas deg. @ _		. nom			
			CU 👦 2500 mm	· · · · · · · · · · · · · · · · · · ·	
2. Road Test Switching Fuels		Fail			Pass Fail
Idle at Emergency Stop		Б	Fuel Leaks on Ga	soline	
General Engine Response				itural Gas	
Acceleration	— • • •	<u> </u>		••••••	
Deceleration		\square		je (Visus)	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Н			

## **Conversion Report**

t declare that the above vehicle has been converted to run on natural gas and that it has passed all of the required lests.

Can. Inizilar Syndon

# **Mogas Fuel System Layout**

- 1 Natural gas storage cylinder(s); store high pressure natural gas (3000 psi).
- 2 Master Shut-off; arrests the gas flow, when in the closed position.
- 3 Pressure Regulator; regulates the Natural Gas pressure from storage to supply pressure.
- 4 ECOLO Closed-loop Feed-back system's gas flow control valve.
- 5 Mixer; draws and mixes the gas with the air in the the engine intake system.
- 6 Injector Intercept Relay; interrupts the current to the injector(s), when energized (dual fuel systems).
- 7 Selector switch assembly; switches from fuel to fuel (dual fuel systems). It controls the Injector Intercept Relay and the natural gas shut-off solenoid by monitoring the ignition system High tension pulsing. It interrupts the current to the gas shut-off solenoid which is a normally closed device, allowing gas flow only when the engine is revolving and the ignition is operative. It also displays the fraction of fuel pressure left in the storage cylinder and the current fuel selection.
- 8 ECOLO Closed-loop Feed-back system's fuel control microprocessor; receives input from the EGR control, the Gear Select Switch and the O₂ sensor. It turns 9 • Fuel control vacuum

actuator on/off, in logic response to the processed Input data.

9 • ECOLO Closed-loop Feed-back system's fuel control vacuum actuator; receives input from the 8 • microprocessor and in turn controls the opening of the 4 • gas flow control valve.

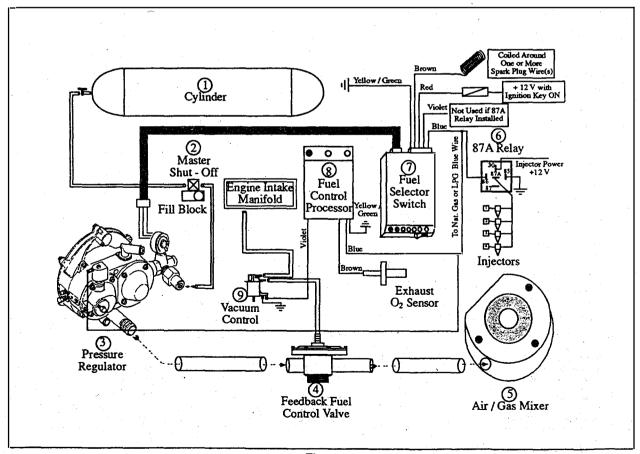


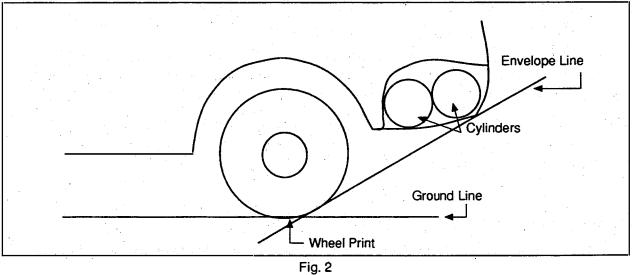

Fig. 1 Typical Mogas ECOLO Closed-loop System

### Component Installation Procedures

A general examination of the vehicle is necessary in order to efficiently pre-select the location and position of components. See page 4, Pre-Conversion Inspection.

More specifically:

- Read this manual prior to attempting the installation.
- Make sure that the correct conversion System is on hand.
- Establish the position the of the cylinder(s) in clear compliance with local installation regulations.
- Locate a handy spot on the driver side for the Gas Master Shut-off valve. Ideally the cylinder valve(s) should be on the same side of the vehicle as the Master Shut-off valve.
- Plan the routing of the high pressure line and its support to conform with local regulations and safe practices. The shortest route is not necessarily the best route.
- Ensure that the location of the master shut-off valve and the filler assembly will be well protected and easily accessible.
- Identify the ideal place for heater hose connections to insure good coolant circulation for the pressure regulator. Caution: On Air Conditioned vehicles the connection must be made before the temperature control valve.
- Select the location for the pressure regulator. Ideally it should be installed in a clear location, near the heater coolant hoses, away from the exhaust manifold and below the radiator coolant level. Consult the regulator installation section for more information.
- Ensure that the mixer or any other component, once installed, will remain clear of the engine hood and its hinges and will not interfere adversely with the function of any other device under the hood.


#### **Important note:**

In computerized vehicles make extra sure that you know beforehand where to find and intercept the wires for the fuel injectors and other sensors, because a mistake in this area may disarm some devices and / or may cause irreparable damage to the OEM computer.

# **Cylinder Size and Location**

Select a suitable size and location for the cylinder(s) keeping in mind:

- The size of the cylinder(s) is determined by the available space, after allowance for easy access to the cylinder valve(s) for installation and operation.
- The valve areas must be well protected from road hazards. Design, make and install a deflector or a shield if necessary.
- Avoid positioning the cylinder valve(s) close to vehicle extremities unless they are well behind a protective device i.e. a good solid bumper.
- Transverse mounting is safer than longitudinal. Cylinders mounted longitudinally should be provided with end brackets to absorb thrust forces.
- The location of the cylinder(s) should be 6 inches away from the exhaust system, or a heat shield should be provided, in accordance with jurisdictional authorities' regulations.
- The mounting area must be rigid, solid, able to take 20G longitudinally, 8G laterally.
- Whenever possible, the cylinder valve(s) should be on the same side of the vehicle as the master shut-off valve.
- Cylinders located under the vehicle carriage must ideally maintain the original clearance from the ground, not protruding below the original ground clearance line, or as specified by the local jurisdictional authorities.
- Cylinders installed under the rear over-hang must be contained within an imaginary line that starts at rear of the rear wheel print and extends to the lowest protrusion of the rear end body panel or member, Fig. 2, or as specified by the local jurisdictional authorities.



Maintaining Clearance from the Ground

Note: If the weight of the cylinder(s) affects the suspension trim noticeably, it may also affect the vehicle driveability. Suspension servicing and / or modification may be required. Consult local regulations; a vehicle should not be loaded beyond the manufacturer's specifications and tolerance.

# **Cylinder Installation**

Cylinders can be mounted inside the vehicle or outside, under the carriage. Steel cylinder(s) should be primed and painted with rust-proof and chip-proof paint before installation, even if they are destined inside the vehicle. The changes in gas temperature cause condensation, therefore cylinders are often wet.

### Cylinder valves:

The MOGAS' OMVL Vented Valve is the most sensible choice for cylinders that are destined to be installed inside the vehicle passenger compartment or inside a closed-in space. It vents itself and all relative attached fittings to the exterior of the vehicle.

#### The vented valve is more efficient and slick than its alternative: a plastic bag.

#### See details and Installation Instructions on the following pages.

Cylinders that are destined to be installed to the outside or under the carriage of the vehicle can be fitted with a regular, non vented valve, as venting is not required when a cylinder is installed in an open well ventilated area.

Non vented valves are available in different brands and configurations i.e. straight or angled at 90°. Each valve series requires a special wrench.

#### Valve wrenches are available from our stockroom, individually or in a complete set.

#### **Taper Threaded Valves :**

When installing a valve on a taper threaded (steel) cylinder, follow the valve manufacturer's instructions and your local Gas safety enforcement regulation as published and enforced by the jurisdictional authorities.

In the absence of directives or regulations as mentioned above, follow this procedure:

- Initially thread-in the cylinder valve, slightly lubricated, into the cylinder. Tighten it by hand until snug and mark the position of the valve in relation to the cylinder neck.
- With its appropriate wrench tighten, loosen and retighten the valve a few times until it has completed 1 to 1.5 revolutions, clockwise. Make a new mark to identify this new position of the valve in relation to the cylinder neck.
- Remove the value and clean-up the tank and value threads.
- Apply a thin coating of approved thread compound, only to the valve threads. Thread jamming is the real cause for sealing; the compound protects the threads from galling.
- Reinstall and tighten the valve 1/2 turn past the second mark, to 160 ft/lbs.

#### **Important Note :**

#### No matter what, DO NOT use an impact wrench to tighten the valve.

#### Parallel ( straight ) Thread Valves :

When installing a value on parallel threaded cylinders, follow the value manufacturer's instructions and your local Gas safety enforcement regulations as published and enforced by the jurisdictional authorities.

In the absence of directives or regulations as mentioned above, follow this procedure:

Most aluminum composite cylinders have two threaded openings, one at each end.

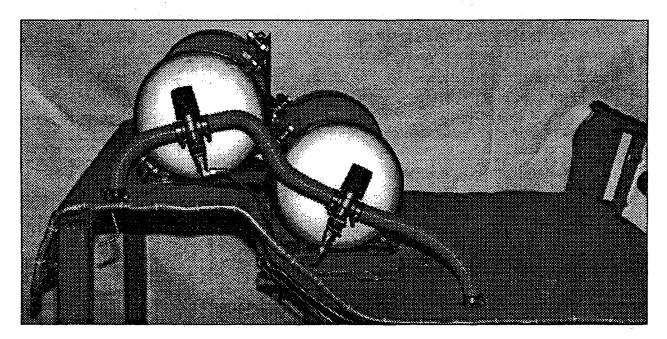
- Install the chosen cylinder valve with its O-ring and torque to 45 / 50 ft/lbs.
- Install the end cap with O-ring, with or without PRD* at the other end, and torque to 45 / 50 ft/lbs.

#### *A composite cylinder of 60" or more will have two PRDs, one at each end.

Consult the installation regulations issued / enforced by the local jurisdictional authorities.

#### **Important Note :**

#### No matter what, DO NOT use an impact wrench to tighten the valve.


#### **Cylinder fastening:**

Cylinders must be permanently well secured to the vehicle, to prevent them from breaking loose in case of collision or upset.

- Use good quality brackets. They are available from our stockroom in a variety of shapes and configurations to suit most reoccurring installation configurations.
- Avoid positioning the cylinder(s) close to vehicle extremities. Transverse mounting is safer than longitudinal. Cylinders mounted longitudinally should be provided with end brackets to absorb thrust forces.
- The mounting area must be rigid, solid, able to take 20G longitudinally, 8G laterally.
- Whenever possible, the cylinder valve(s) should be mounted on the same side as the master shut-off valve.
- Fasten the mounting bracket securely to the body of the vehicle. Use reinforcing and back plates, especially when fastening to sheet metal panels.

# Self Vented Valve for CNG / NGV Cylinders

This cylinder valve was designed to offer a neat and reliable cylinder installation within the passenger compartment of a motor vehicle.



Finished Installation Sectioned View

### **Main Features:**

- Integrated positive flush-through venting system.
- Easy manual cylinder shut-off.
- Standard Pipe-away Pressure Relief Device.
- Easy Installation.
- Universal mounting ability.

### **Integrated Flush-Through Venting System:**

This revolutionary feature is built into the valve body which, when connected to the permanent ventilation flanges (installed in the compartment floor or sides with the ribbed rubber hoses), provides excellent venting of all tubing and related fittings, as well as threaded joints and connections.

### Easy Manual Cylinder Shut Off:

The large, well designed knob stands free for easy access and operation as it **does not require** a plastic venting (bag) envelope / seal.

### Standard Pipe-Away Safety Pressure Relief:

This value is fitted to accept a standard pipe-away pressure relief device in compliance with National and /or Local Regulations. -

### **Easy Installation:**

This feature makes this valve unquestionably better than any other system currently in use worldwide. It makes venting bags and aprons of any kind obsolete !!!

### **Universal Mounting Ability:**

This value is available with threads to suit either steel or aluminum CNG / NGV Cylinders.

# **Valve Operating Principles**

(diagram on the following page Fig. 3)

The valve body has Venting Ports: (2), (3), (4) and (5) which vent any possible gas leak to the exterior. This is how it works:

Vent Port (2) will expel any leak contained by hose (1) that may occur at the valve to cylinder connection. Hose (1) will fit on cylinder necks ranging from 1.45" (37.0 mm) to 1.80" (45.0 mm) and is sealed by clamps (15). The above is unique to tapered threads cylinders.

On parallel (straight) Threaded cylinders the valve is sealed with an O-ring at the valve-tocylinder connection; therefore it does not have vent port (2), hose (1) and clamps (15).

Vent Port (3) will expel any leak that may occur at seal (6) and that would be contained inside the knob (7) which is sealed by the O-Ring (8) and clamping ring (9).

Vent Port (4) will expel any leak that may occur at the threaded ends of the mounting adapter (16) which is contained by hose (18) sealed by clamps (19).

All Vent Ports are connected to Venting Manifold port (5).

Beside each end of Venting Manifold (5) there is a High Pressure Gas Inlet / Outlet (10).

Each end of the venting manifold (5) and the Gas Inlet / Outlet tubing (12) will be ducted inside the venting hose (13) which, when sealed by clamps (15) will vent valve(s) to the outside of the vehicle via flanges (25). This will form a positive venting loop. Fresh air entering the leading flange will exhaust by the trailing flange, page 17.

The P.R.D. (17) is vented outside the vehicle via port (23) fitting (26) and tubing (27).

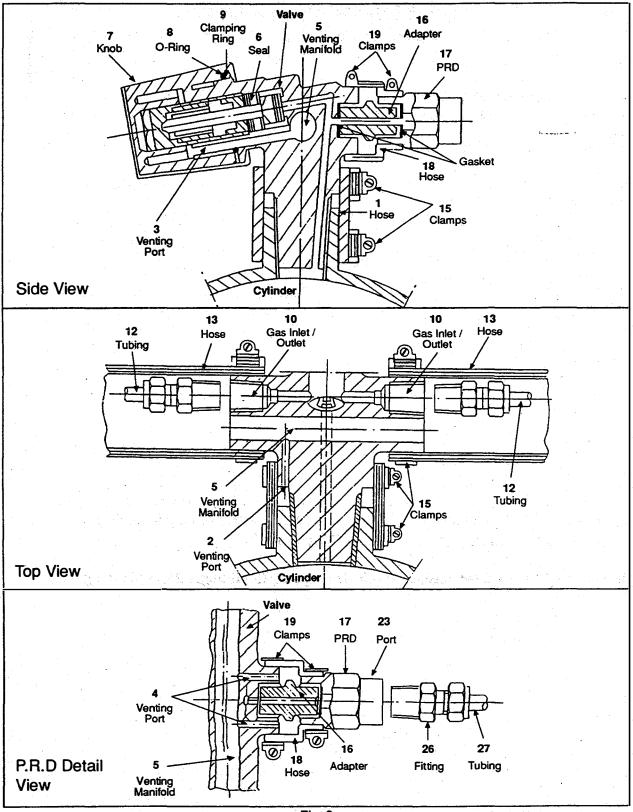



Fig. 3 Self-Venting Valve

# **Installation Instructions**

1. **CLEAN-UP** the cylinder and valve threads and proceed as follows:

#### For Taper Threaded Cylinders :

- Initially thread-in the cylinder valve, slightly lubricated, into the cylinder. Tighten it by hand until snug. Mark the position of the valve in relation to the cylinder neck.
- With the special wrench # 09.22.111 (see page 18) tighten, loosen and retighten the valve a few times until the valve has completed 1 to 1.5 revolutions, clockwise. Make a new mark to identify this new position of the valve in relation to the cylinder neck.
- Remove the valve and **clean-up** the tank and valve threads.
- Apply a thin coating of approved thread compound, only to the valve threads. Thread jamming is the real cause for sealing; the compound protects the threads from galling.
- Slide the special rubber hose (1) between the valve and the neck of the cylinder, without clamps (25). SEE NOTE: 1
- Reinstall the valve onto the cylinder and with the special wrench # 09.22.111 torque as per the cylinder manufacturer's specifications, in compliance to local regulations on Gas Tapered Thread joints.

In absence of the above tighten the valve 1/2 turn past the second mark, to 160 ft/lbs. DO NOT USE AN IMPACT WRENCH.

• Install fittings and plugs into the valve(s) as required for the desired tubing configuration.

#### For Parallel Threaded Cylinders :

- Clean the threads on the cylinder and on the valve.
- Slide the O-ring onto the valve shank.
- Install the valve into the cylinder by hand.
- With the special wrench # 09.22.111 (see page 18) torque to the cylinder manufacturer's specifications. In absence of the above torque to 45 / 50 ft. lb. DO NOT USE AN IMPACT WRENCH.
- Install fittings and plugs into the valve(s) as required for the desired tubing configuration.
- Position the cylinder(s) in the bracket(s), in the designated place on the vehicle, with the valve pointing in the chosen direction.
   DO NOT STRAP THE CYLINDER(S) DOWN YET.
  - Determine the safest well sheltered tubing route, and chalk mark the chosen location of the pressure relief tubing exit(s) and vent flanges (25).
  - BE SURE the venting flanges and tubes will vent to the OPEN AIR through and to the outside of boxed frame structures, away from closed pockets.
  - Move the cylinders aside, as you see fit, for working comfort.
  - Drill two 1.25" (32.0 mm) holes in the locations destined for the vent flanges (25).
  - Drill one hole for each and to the size of the rubber grommet(s) assigned to the PRD(s) vent-down tube(s).
- Note: 1) Special hose (1) can be rolled onto itself and the ribbed hose (13) can be backed, compressed onto itself, to make room for leak testing.

- 3. Install the rubber grommet(s) in the hole(s) designated for the PRD(s) venting tube(s).
  - Apply a thin coat of caulking compound to the lower lip of flanges (25) and position them with leading edges opposed as shown on page 17.
  - Fasten the two flanges (25) to the floorboard (22) with self-tapping screws (24).
- 4. Reposition the cylinder(s) and fasten into place.
  - Prepare the tubing as to planned routing. REMEMBER: the engine supply and the fuelling valve line if separate will be ducted or run through flanges (25) to the outside of the vehicle.
- 5. Install the pressure relief tubing (27) and route it through the grommeted hole.
  - Cut the vent hose (13) to lengths for smooth and compact routing.
  - Install all high pressure tubing and vent hoses (13) at the same time.

DO NOT FASTEN THE VENT HOSE ENDS AT THIS TIME. SEE NOTE :1, page 15.

- 6. Leak test all joints, tubing and connections as per local regulation. In the absence of the above proceed as follows:
  - Close the cylinder valve(s) completely and pressurize, with caution, the high pressure system tubing. Input the pressure test gas from the refuelling receptacle. This test will take very little gas and will not pose a hazard. Depending on local ruling an inert gas like nitrogen may have to be used instead.
  - Make use of a good gas leak detector and a good leak testing fluid. At times the fluid is more helpful in spotting the exact leak location.
  - If a compression joint leaks: discharge the pressure out of the system, tighten the fitting nut by 1/8 of a turn, repressurize the system and retest for leaks. Repeat this operation if needed. If the leak persists after tightening the fitting 1/4 turn past the original correct installation procedure, discharge the pressure from the system and replace that fitting. Tightening the fitting further may stress it beyond safe acceptability. Check the tubing portion near the joint sealing surfaces for scratches. It may be a good idea at this time to cut the tube tail end off and to install a new fitting nut and ferrules.
  - Note: The built-in compression fittings on the vented valve(s) and Pressure Regulator, identified by their male nut, require 2 turns to seal as opposed to 1 1/4 turn required for fittings with a female nut. Nut and ferrules need to be replaced after 3/4 turn over-torque.
  - If an NPT connection is leaking: discharge the pressure from the system, loosen the compression fitting side of that fitting or joint to allow rotation, tighten the fitting NPT joint, and retighten the compression fitting no more than 1/4 turn past the snug point.
  - After correcting all leaks in the system, pressurize it to the full 3600 PSI. If the system is leak-free open one cylinder valve at a time and proceed to refuelling, one cylinder at a time, with caution. Check the cylinder-to-valve threaded connection for leaks; STOP if a leak comes to your attention. Keep the cylinder(s) that are leak-free shut. Empty the cylinder that has a leak in compliance with safety rules /regulations, repair he leak and repeat the procedure until leak-free.
- 7. Once cylinder-to-valve threaded connection(s) are leak-free: slip hose (1), (tapered threaded cylinder(s) ONLY) and tubes (13) onto their collets; fasten with clamps (15).

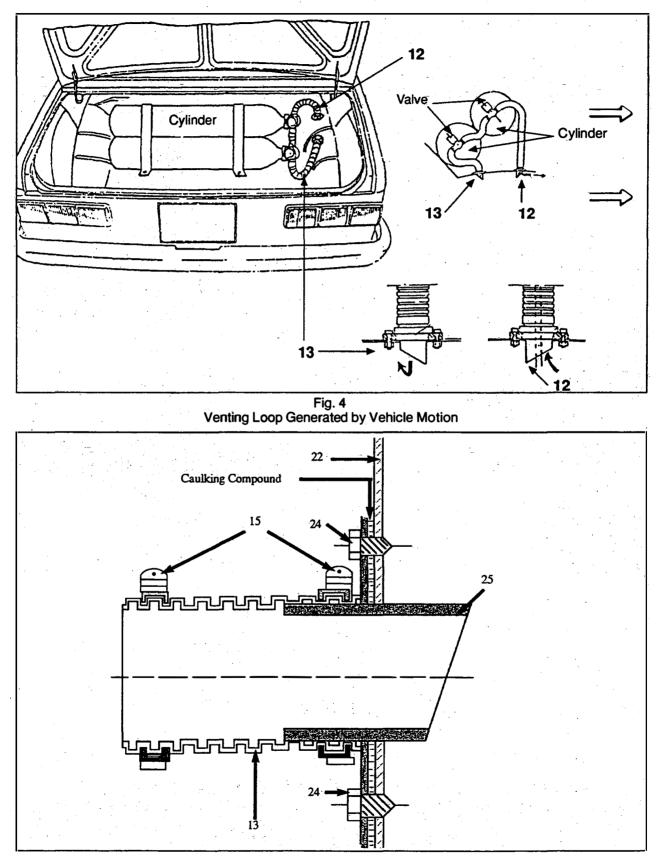



Fig. 5 Vented Valve Installation Detail

# Vented Valve Wrench Part #: 09.22.111 **Assembly Instructions** R A Side View B **Exploded View Top View** Fig. 6

Views of Vented Valve

- 1. Slide the two side pieces (A) as in the Exploded View onto the Vented Valve and as completed in the Side View.
- 2. Slide the top piece (B) so that the post from each side piece (A) fits neatly into the holes of the top piece (B) as shown in the Top View with the nut offset away from the handle.

Torque Specs:

Cylinders with NPT threads: As per cylinder manufacturer's specifications and local regulations on Gas tapered threaded joints. In the absence of the above refer to page 15.

Cylinders with Straight threads and O-Ring: As per cylinder manufacturer's specifications and local regulations. In the absence of the above refer to page 15.

#### DO NOT USE IMPACT WRENCHES

### Fill Valve and Master Shut-Off Assembly

The method of refuelling, quick versus slow fill, will determine where the fill valve should be located. The master shut-off valve will be in a location that is practical, easy for the driver to access and in compliance with local regulations.

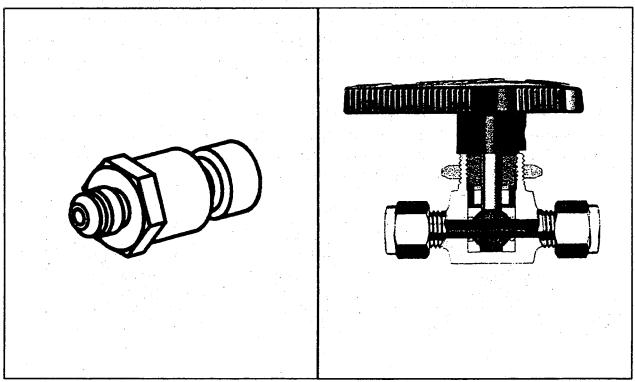



Fig. 7 Fill Valve and Master Shut-Off Valve

For a "Quick Fill" refuelling system, the most common location for the fuel receptacle is under the hood. Since the hood must be opened in order to refuel, it is much less likely for the driver to drive away while the refuelling drop hose is still attached to the vehicle.

For a "Slow Fill" system, the front grills or the rear end panels are commonly selected locations. Exercise care to ensure that the fill valve is well protected from possible collision. Include a back-check valve with your refuelling valve, located as far from the refuelling receptacle as possible, to prevent undesirable fuel discharge in the unfortunate event that the refuelling valve or its tubing may be damaged or severed by collision.

The fill valve mounting bracket must be fastened to a rigid metal surface and be easily accessible with the refuelling nozzle (drop line). It should be located as far away from electrical and heat sources as is practically possible.

If the location chosen for the installation does not offer sufficient protection from the weather and other road hazards the assembly should be enclosed in a protective box.

### **Regulator Installation**

- Ideally, the regulator should be placed near the heater coolant hoses, below the radiator coolant level, if possible within three feet of the mixer, and in a spacious area to avoid having to remove it when servicing the engine.
- The coolant hoses for the regulator should be slightly longer than needed. The extra length is to be formed into a U shape to prevent heat transfer from the engine to the regulator thermostat as this will cause a false temperature reading. The extra hose length is also handy when performing maintenance tasks, as disconnecting the regulator from the bracket, the high pressure tubing and the wiring to it, will allow it to move out of the way without having to disconnect the hoses.
- The regulator should be well fastened, preferably to the vehicle body, in the engine compartment in a vertical position (as shown here below) and in longitude with the driving direction of the vehicle. If the regulator must be mounted in an angle, it can be rotated up to 90° (transversely), provided the support cover is mounted towards the front of the vehicle.

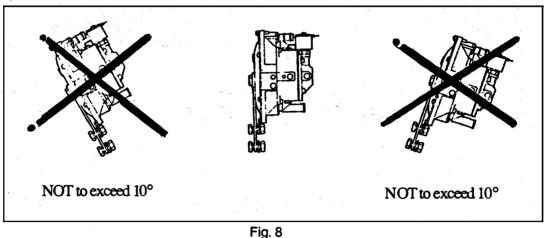



Fig. 8 Regulator Mounting

#### • WARNING!!

- Install the regulator away from the exhaust manifold(s), to avoid uncontrolled overheating of GAS output.
- Install the regulator below the radiator coolant level. Whenever the regulator must be mounted above the radiator coolant level, bleed the regulator coolant circuit before sealing the radiator cap. Air pockets within the water jacket will disrupt the coolant temperature exchange.
- Installing the regulator on the engine may cause uncontrolled behavior, caused by the engine torque moment and vibrations.
- Protect the regulator support cover VENT from the radiator fan(s) direct air rarn as it may alter the regulator's accurate performance.

### Advantages of a Regulator with a Thermostat

#### Stable Carburetion

The regulator's thermostat will maintain the regulator coolant temperature flow in the region of 122°F (50°C), while engine running at operating temperature, regardless of fuel storage pressure. Thus keeping the Gas output temperature and density stable and the air / fuel ratio consistent.

#### **Energy Efficiency**

As the gas temperature is kept reasonably constant in the regulator, the engine enjoys accurate fuelling thus optimizing energy efficiency and performance.

#### Longer Regulator Life

All regulator parts last longer because its temperature is moderate and remains reasonably constant.

### **Caution:**

#### Coolant Hoses Installation

Since the thermostat is incorporated in one of the regulator coolant connectors (elbow) attention must be given to the COOLANT CIRCULATION DIRECTION.

The hot coolant from the engine must enter the regulator via the open port connector. The cooled coolant must exit the regulator through the port housing the thermostat, on its way to the coolant pump suction or return to the radiator, in that order of preference.

#### **Optional Thermostat Location**

The thermostat may be located at either the upper or the lower coolant connector socket of the regulator. When installed in the upper coolant connector socket, however, it makes air bleeding much easier.

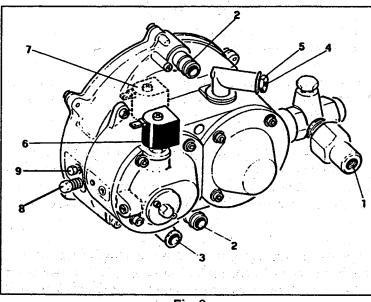
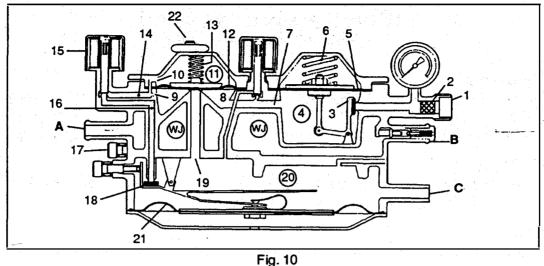



Fig. 9 Regulator Parts

#### Part # Part Name


1

2

4 5

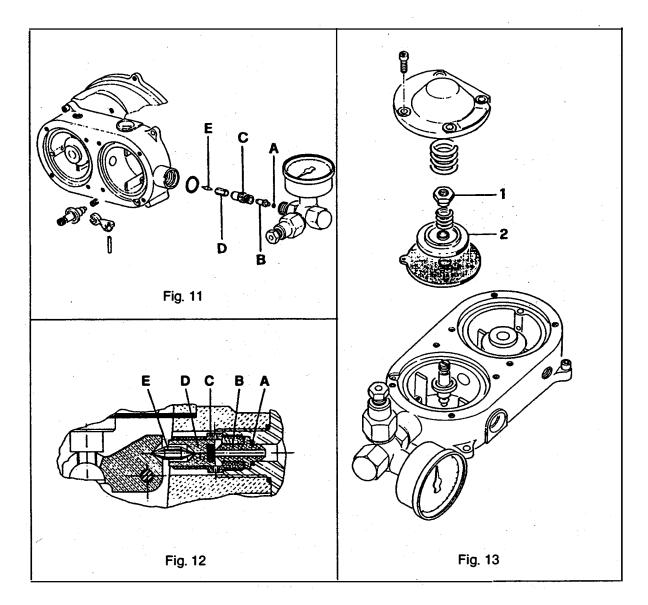
8

- Gas Inlet
- Gas Outlet or Plug
- 3 Water Inlet (open port)
  - Water Outlet orifice
  - Thermostat
- 6 Solenoid Valve7 Electric Priming
  - Electric Priming Option 1
  - Sensitivity Adjustment Screw
- 9 Positive Idle Adjustment Screw



Regulator Cross Section

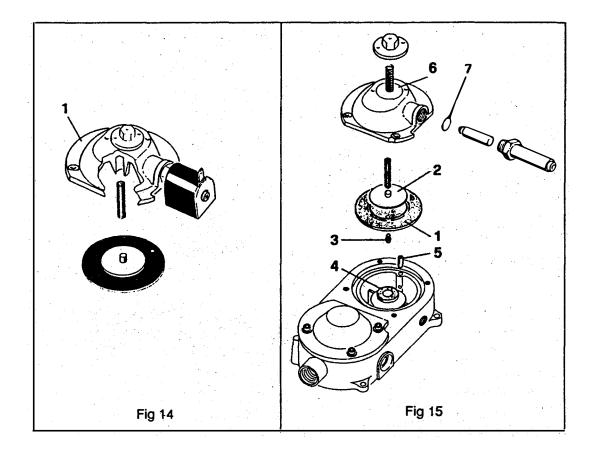
# **Regulator Operations**


(See Fig. 10 for items referred to on this page.)

The CNG/NGV enters the regulator at the gas inlet connector (1). A filter (2) stops any solid impurities from entering the regulator.

- Stage 1: The high-pressure valve (3) is controlled by the diaphragm (5) mechanism and spring (6); it regulates the gas flow into chamber (4), (7) and (8) to working pressure: 24 PSIG +/- 4.
- Stage 2: Diaphragm (12) is controlled by pressure differential of chamber (8) & (11) and spring (13); it regulates the gas flow into chamber (20), to delivery pressure: 0 PSIG +/- 0.01.
- Stage 3: Item (22) is not detailed in Fig. 9. It regulates the gas flow into port (14) and Pilot port (16) to 19 PSIG +/- 1.
- Shut-Off solenoid (15) intercepts the gas flow from port (14) to Pilot port (16). This solenoid is normally closed; it stops the gas flow altogether; it must be energized to allow gas flow throughout the pressure regulator.
- Stage 4: When solenoid valve (15) is open gas flows to the positive idle adjustment screw (17) and to the low-pressure valve (18). Valve (18) is controlled by the diaphragm (21) mechanism which is connected to the mixer through port (C) and responds to the engine / mixer gas demand, in the form of vacuum.
- Closed-loop: Vacuum from the Mixer will cause valve (18) to open; this in turn will lower gas pressure in chamber (11). Thus diaphragm (12) will compress spring (13) allowing gas flow into chamber (20) through main gas port (19). Gas discharge into chamber (20) will also make up the pressure differential of chamber (8) & (11) through Pilot port (16) causing a smooth and immediate response to engine Mixer varying gas demands.

The decompression of natural gas, depending on supply pressure, causes the temperature of the gas to drop considerably. To prevent freezing, the regulator is connected to the engine cooling system. Hot coolant enters the regulator through port (A), passes through water jacket (WJ) and exits through port (B). A special thermostat lodged inside port (B) maintains the regulator's working temperature of approximately 122°F (50° C), thus maintaining a stable gas density throughout the working range and conditions.


# **Regulator Maintenance**



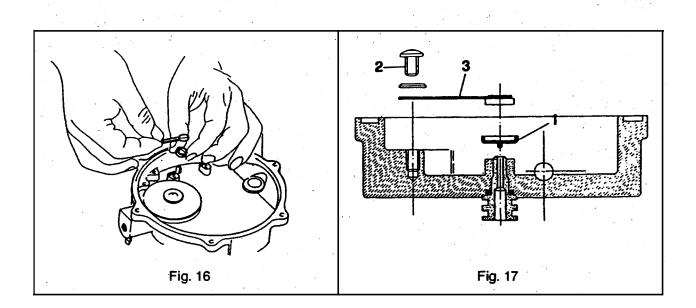
When re-assembling the plate (2, Fig. 13), take care with the diaphragm centering ring.

The nut (1, Fig. 13) must be screwed, without force, until flush with the stem.

### **Regulator Maintenance**



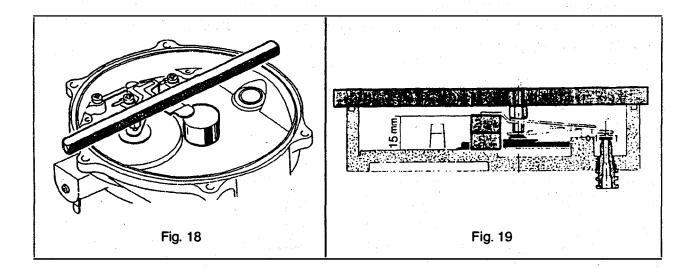
The diaphragm (1, Fig. 15) must be secured to the plate with the proper Ogiva screw (3, Fig. 15) using a drop of LOCKTITE. Tighten the diaphragm enough that it does not spin on the plate, but be careful not to over-tighten causing swelling of the diaphragm.


Make sure that the diaphragm (1, Fig. 15) is centered with respect to the sleeve (4, Fig. 15) and aligned with the tube (5, Fig. 15).

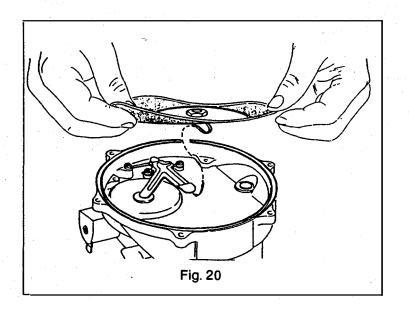
Replace the O-ring on the solenoid piston (7, Fig. 15). When re-assembling the cap (1, Fig. 14) make sure that the spring enters the guide properly.

### **Regulator Maintenance**

To reassemble the low pressure valve leaf spring use the centering tool (1) Fig. 17. Tighten the holding screw (2) Fig. 17 while holding the pad inside the tool.


Check that the leaf spring pad is perfectly centered. It should be going in and out of the centering tool freely, after the hold screw has been tightened. Also check that the Pad is closing on its seat evenly, by pushing it at its center dimple toward the seat. Bend the leaf spring (3, Fig. 17) gently, if needed, to obtain good alignment.




### **Regulator Maintenance**

Re-assemble the low pressure lever and then check the height as indicated below.

If the appropriate gauges are not available comply with the measurement in Fig. 19.



To re-assemble the low pressure diaphragm, fasten it with the appropriate spring to the low pressure lever, take care in placing the curved part of the spring at the deep end.



# **Steel Lines and Fittings**

At this point, you should have all your major components installed. The next steps are routing, preparation, and assembly of lines and fittings.

All CNG fuel lines between the cylinder and the high pressure side of the regulator, as well as the branches to other fittings must be made from approved high-pressure steel. The line must withstand a pressure of four times the working pressure and each connection in the line must positively lock the tubing in the union by means of a bite type steel compression fitting.

The tubing is annealed and can be shaped with a proper bending tool. Because however, it will harden as it is worked, you must obtain the correct shape with the least amount of bending.

Be careful that the fuel line alignment is exact at the unions before making the connections.

Do not rely on the union nut to pull the line into correct alignment, as this will put stress on the joint. To check the alignment as you make the connections, make sure that the union nut runs freely, by hand.

You must be able to visually inspect the line along its whole length, as well as all the connections used in the line. Use the fewest connectors possible, to reduce potential leak sources.

The natural gas line must be taken from the cylinder to the regulator by a route that does not pass through the driver or the passenger space. Usually the route is under the floor pan or along the chassis. If the cylinder is fitted inside the vehicle body, the line should take the shortest convenient route to the outside. Keep the line away from body protrusions to prevent it from being damaged by impact. Construct a guard to protect any section of the line that is particularly vulnerable to mechanical and road damage.

If you must run the line close to the exhaust, shield it from direct radiated heat.

Do not run the line through boxed body sections or through the inside of the vehicle. Whenever the fuel line passes through a panel make an oversized hole and protect it with a grommet, centering the line in the hole. Clearance should allow good visual inspection throughout the passage.

Route the steel tube from one component to the next to determine the length required. For a short line, include enough material for one vibration loop of approximately 2 1/2" in diameter (6.5 cm). Add to the total measurement of the line about 8" per loop, Fig. 21.

A longer tube which requires securing at approximately 24" (60 cm) intervals needs vibration loops at both ends. Remember that vibration loops are needed to absorb vibrations, and are not just for appearance.

If the length of the line or the surrounding space does not allow for a loop, a 180° curve in the line will serve the same purpose. Before bending the tube allow at least 1.5" (32 cm) of straight ends for the compression fitting. Cut the ends of the tube at a right angle, and if the edges are rough file them smooth. Be careful not to scratch the tubing, as this will cause a leak.

Deburr the ends of the tube with a deburring tool, being careful that the tool does not leave the wall of the tube too thin. Do not mark, scratch or twist the tubing. Use compressed air to clear the tube of chips and filings.

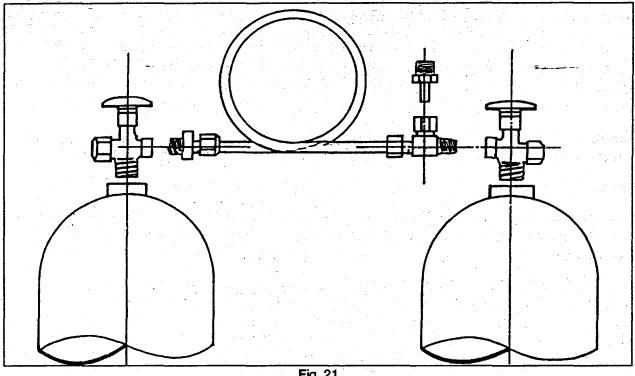



Fig. 21 Expansion Loop Illustrated

### Fittings

As you know, the purpose of any tube fitting is to form a reliable tube/line connection which will seal the fluid media being used in the system or application.

Each fitting manufacturer has its own recommendations for fitting installation. You should follow their instructions.

As a general rule, tube fittings come to you completely assembled, finger tight. They are ready for immediate use. Disassembly before use can result in dirt or other foreign material getting into the fitting and this will cause undesirable leaks.

Most fittings are installed in three easy steps:

- 1. Simply insert the tubing into the fitting nut and ferrules and into the fitting; make sure that the tubing rests firmly on the shoulder of the fitting and that the nut is finger tight.
- 2. Before tightening the fitting, scribe / mark the nut at the 12:00 o'clock position.
- 3. Now, while holding the fitting body steady with a wrench, tighten the nut 1 1/4 turns. Watch the scribe mark make one complete revolution and continue to the 3:00 o'clock position. In this way, the fitting has been properly installed.

# **Mixers and Fuel Flow Control Valve**

The p rpose of the mixer is to draw fuel from the pressure regulator and to mix it, in the right proportion with air, for the best possible results in emissions, performance and economy.

Mogas offers many models of mixer, the most popular type being:

- 1. In-Line
- 2. Lift Plate
- 3. Fix Gap
- 4. Special Application

The type of mixer to be used is determined by engine displacement, air intake configuration, type of fuel delivery system and under-the-hood clearance.

All MOGAS mixers are of modular design. Many interchangeable mounting flanges and adapters are available. Please consult our main catalog.

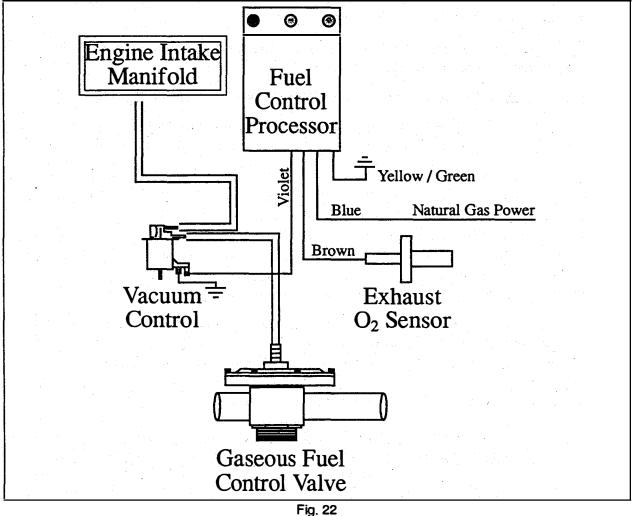
Our stockroom staff will be happy to assist in choosing the right fit, size and calibration.

The mixer must be well secured to the air intake system, in a leak-free manner. When the mixer is installed inside the air cleaner assembly, a longer fastening stud is often required.

- Make sure to install it well inside the anchor threads and use the lock nut to prevent the stud from coming loose during use or at the time of service.
- Make sure the air horn gasket is in good service shape.
- Fasten the air filter base to the throttle body with the lock nut and large washer so that the mixer seal will not have to be disturbed every time the air filter is replaced.

When installing vacuum lift mixers, ensure that:

- The three way vacuum solenoid is installed in a reasonably cool spot away from the firewall to prevent the clicking noise being heard from inside the vehicle.
- The three way vacuum solenoid is properly connected so that it is energized during CNG operation only.
- The vacuum source for the above is intake manifold vacuum.


For more details on availability please consult a current copy of our main catalog. Technical information is included in the Mogas Natural Gas Fuel System Description and Operation Manual.

Appendix A contains a fair representation of the most frequently used mixers.

# MOGAS ECOLO Closed-loop Feed-back Fuel Flow Control

The ECOLO fuel flow control value is installed between the pressure regulator and the mixer, as near as possible to the mixer assembly. It is supplied with an assembly diagram, as shown below.

The Mogas ECOLO closed-loop Feed-back fuel control will increase and decrease the fuel flow in response to the  $O_2$  signal and other input data. It is designed to maintain ideal air / fuel ratio and to fulfill the expectations of the O.E.M. computer diagnostics.



ECOLO Closed-Loop Feed-Back System

If the engine tuning deteriorates beyond the ECOLO System control, or if the ECOLO itself is temporarily out of order, the O.E.M. computer diagnostics will turn on the "check engine" light and record the associated trouble code.

# **Electronic Equipment**

In modern computerized vehicles, wiring is the most critical phase of the installation. At this stage of the installation:

- Be careful in interfacing with computer sensors. There is little or no room for error.
- Do not use temporary connections, electric tape, "crimp-on" connectors.
- Route your wiring so that it is not in the way of parts that need routine maintenance or may need replacement. Make it easy for the next technician; use the wire harnesses supplied and follow the colour coding throughout the whole installation, if a wire(s) need be extended.

In our experience many electrical malfunctions on natural gas systems occur after the engine has been serviced or repaired. Poor connection will likely loose conductivity when the wires are disturbed by the repairer.

- Soldering all connections is a must. Use good quality resin core solder, not acid core. Acid core will corrode the wires and in due time will create resistance and generate trouble codes in the computer. These malfunctions are difficult and expensive to trace.
- All wiring should be well routed and well protected; use a loom wherever possible.
- Secure the loom so that it is held tightly away from high voltage wires and heat sources.
- When wiring must run close to the engine (or on top of the engine itself), consider that the engine will be very hot when running, and that wires, hoses, nylon ties, and other objects that appear to be secure will relax and tend to fall down. If wires fall on hot surfaces they melt and ground, resulting in devastating consequences for the on-board computer and all other electronic devices.

# **Fuel Selector Switch and Gauge**

The installation of the fuel selector switch and gauge is a straightforward operation. However, there are certain points which should be emphasized. These points are:

- Ask where the customer prefers the fuel switch and gauge.
- Place the switch where the driver can reach it comfortably without being distracted from driving.
- Place the fuel gauge where it can be easily read even in full light.
- Place both units out of the way of other controls, and of the driver's knees while entering the vehicle.

logas offers a variety of switch and gauge configurations to suit customer operation. Consult our main catalog or better yet, ask our staff for assistance.

Appendix B contains a fair representation of most frequently used Switches and Gauges.

# **Injector Disconnect Relay Kit**

Fuel injected vehicles are fitted with an injector disconnect relay kit. Each kit is supplied with the appropriate relay kit or harness as is best for simplicity and reliability. All injector control systems are designed to fail-safe into gasoline mode, but can be easily modified to achieve the opposite function. Please consult our technical staff for a particular vehicle requirement.

Appendix C contains a fair representation of injector control wiring diagram. Each kit is supplied with its relative wiring instructions.

# **Gasoline Fuel Lock-off Solenoid**

Carburetted vehicles are fitted with a gasoline lock-off solenoid valve, to stop the flow of gasoline while operating on natural gas. When installing this valve, we recommend that:

- The valve be installed away from the fuel pump, as close as possible to the carburetor. This will allow the gasoline line downstream of the lock-off valve to drain completely and thus prevent the gasoline from sitting in a vertical column, slowly evaporating because of engine heat. The fumes from this evaporation mix with the natural gas - air mixture and affect the vehicle's idle stability and emissions. The closer the gasoline lockoff is to the carburetor, the shorter is the Gasoline to Natural Gas switch-over time.
- The value be installed well clear of the engine or any other source of intense heat. Excess heat will cause deterioration of the value internal components.
- Metal tubing be used downstream from the valve to the carburetor. Neoprene hose when empty will dry, deteriorate, and cause hazardous gasoline leaks.
- Good electrical ground be established, along with solid wiring connections. Like most lock-off solenoids this valve is normally closed; failure to open will not allow the engine to operate on gasoline.

# **Timing Advance Processors**

Most computer controlled vehicles do not need a timing advance processor.

Occasionally, a particular vehicle may require the installation of such a device to enhance its performance. Our experience suggests that the reason for poor performance lies elsewhere.

However, if you need a timing advance processor consult our our main catalog, making sure the addition of a spark advance device is not in violation of emission certification. Our technical staff will be happy to usist as to which unit to install or NOT to install.

Each unit is supplied with ample documentation on installation, wiring diagrams and set-up procedures.

### **Leak Testing Procedures**

#### **Carburetted Engines Only**

Before checking the system for natural gas leaks, it is necessary to ensure that there are no leaks in the gasoline delivery system. Disable the ignition by disconnecting the power wire to the coil, and crank the engine long enough to bring the fuel pressure up to working pressure. The use of a pressure gauge at this time will confirm fuel pump efficiency.

Check the whole gasoline fuel system for leaks, especially at the gasoline solenoid valve and at all areas where work was done.

The entire natural gas system must be thoroughly tested for leaks, before the first fill-up. The vent kit on internally mounted cylinders is not supposed to be completely fitted until after the system has been tested and found to be well sealed (leak free).

Before filling the cylinders, double check every connection on the vehicle system, then:

- Close the cylinder valve(s) completely and pressurize, with caution, the high pressure system tubing. Input the pressure test gas from the refuelling receptacle. This test will take very little gas and will not pose a hazard. Depending on local ruling an inert gas like nitrogen may have to be used instead.
  - Make use of a good gas leak detector and a good leak testing fluid. At times the fluid is more helpful in spotting the exact leak location.
  - If a compression joint leaks: discharge the pressure out of the system, tighten the fitting nut by 1/8 of a turn, repressurize the system and retest for leaks. Repeat this operation if needed. If the leak persists after tightening the fitting a 1/4 turn past the original correct installation procedure, discharge the pressure from the system and replace that fitting. Tightening the fitting further may stress it beyond safe acceptability. Check the tubing portion near the joint sealing surfaces for scratches. It may be a good idea at this time to cut the tube tail end off and to install new fitting nut and ferrules.
  - Note: The built-in compression fittings on the vented valve(s) and Pressure Regulator, identified by their male nut, require 2 turns to seal as opposed to 1 1/4 turn required for fittings with a female nut. Nut and ferrules need to be replaced after 3/4 turn over-torque.
  - If an NPT connection is leaking: discharge the pressure from the system, loosen the compression fitting side of that fitting or joint to allow rotation, tighten the fitting NPT joint, and retighten the compression fitting no more than 1/4 turn past the snug point.
  - After correcting all leaks in the system, pressurize it to the full 3600 PSI. If the system is leak-free open one cylinder valve at a time and proceed to refuelling, one cylinder at a time, with caution. Check cylinder-to-valve threaded connection for leaks; STOP if a leak comes to your attention. Keep the cylinder(s) that are leak-free shut, empty the cylinder that has a leak in compliance with safety rules /regulations, repair the leak and repeat the procedure until leak-free.

### **Set-Up Procedures**

The set-up of a natural gas system is the key to optimum performance and customer satisfaction. This section covers set-up procedures for the following systems:

1. Carburetted Engines	Open Loop & Closed Loop Systems
2. Fuel Injected Engines	Open Loop & Closed Loop Systems

### **Carburetted Engines Regulator and Fuel Set-Up**

 Start the engine on gasoline. Position the fuel selector switch to the "empty carburetor" function, making sure to pump the accelerator pedal when the carburetor bowl is nearly empty to completely drain the accelerator pump of fuel. Turn the engine OFF, set the fuel selector to Natural Gas and fully OPEN the Nat Gas

cylinder(s) and Master Shut-Offs.

- Note: Each and every Regulator is tested and tuned at the plant before being released for sale. Do not tamper with it unless there is a strong possibility that it may not be set correctly. To reset the pressure regulator to base setting, proceed from point 2) and there after. If the regulator is believed to be in good order proceed from point 6) and there after.
- CLOSE gently and completely the Positive idle screw (8mm hex) & the Sensitivity screw (10mm hex) on the side of the pressure regulator.
   Disconnect the Gas vapor hose and the regulator run / shut-off solenoid power wire.
- 3) Energize the regulator's run / shut off solenoid with a jumper wire (constant battery power). There should be NO gas output from the regulator / vapor hose or very little.
- 4) OPEN the sensitivity screw (10 mm hex) gently until Gas starts or increases flowing from the regulator / vapor hose. Leave it at this setting if the screw is equipped with a stay spring. Lock the lock nut when provided.
- 5) Remove the jumper wire and reconnect all systems to running condition.
- 6) While cranking to start the engine, OPEN the Positive idle screw. Continue opening and adjusting it, until the engine fires well, starts and idles well.
- 7) Wire-in a HIGH IMPEDENCE milli-volt-meter to the exhaust's O₂ sensor. Start and run the engine until the operating temperature is stable. Bring engine RPM to 3,000 and hold steady. Adjust the Gas Flow control valve for the best air / Gas mixture. The Volt meter should read O₂ sensor output of 0.950 volts +/- 0.025 volts. Return the engine to Idle. While monitoring the milli-volt meter, set the positive Idle screw to read toggling 0.400 to 0.700 volts.
  - **Note:** Be aware of the fuel tank fumes purging canister; it may be saturated and need servicing.
- 8) ONLY IF NEEDED, fine tune the Sensitivity screw for best idle and exhaust emission; it should read toggling 0.400 to 0.700 volts with the transmission in Drive and the air conditioning ON. Also check for engine stalling while operating the power steering.

#### Proceed to Set-Up Instructions on page 36 & 37

# **Computerized Engines Regulator and Fuel Set-Up**

- Set the fuel selector to Gasoline, start the engine and bring it to operating temperature. Set the curb idle speed to the higher limit of the manufacturer's specifications. Turn the engine OFF, set the fuel selector to Natural Gas and fully OPEN the Nat Gas cylinder(s) and Master Shut-Off(s).
  - Note: Each and every Regulator is tested and tuned at the plant before being released for sale. Do not tamper with it unless there is a strong possibility that it may not be set correctly. To reset the pressure regulator to base setting, proceed from point 2) and there after. If the regulator is believed to be in good order proceed from point 6) and there after.
- CLOSE gently and completely the positive idle screw (8mm hex) & the Sensitivity screw (10 mm hex) on the side of the pressure regulator.
   Disconnect the Gas vapor hose and the regulator run / shut off solenoid power wire.
- 3) Energize the regulator's run / shut-off solenoid with a jumper wire (constant battery power). There should be NO gas output from the regulator / vapor hose or very little.
- 4) OPEN the sensitivity screw (10 mm Hex) gently until Gas starts or increases flowing from the regulator / vapor hose. Leave it at this setting if the screw is equipped with a stay spring or lock the lock nut when provided.
- 5) Remove the jumper wire and reconnect all systems to running condition.
- 6) Open the Idle screw (8mm Hex) one half a tum for initial setting.
- 7) Wire-in a HIGH IMPEDENCE milli-volt-meter to the exhaust's O₂ sensor. Start and run the engine until the operating temperature is stable. Bring engine RPM to 3,000 and hold steady. Adjust the Gas Flow control valve for the best air / Gas mixture. The Volt meter should read O₂ sensor output of 0.950 volts +/- 0.025 volts. Return the engine to Idle. While monitoring the milli-volt meter, set the positive Idle screw to read toggling 0.400 to 0.700 volts.
  - Note: Be aware of the fuel tank fumes purging canister; it may be saturated and need servicing.
- 8) ONLY IF NEEDED, fine tune the Sensitivity screw for best idle and exhaust emission; it should read oggling 0.400 to 0.700 volts with the transmission in Drive and the air conditioning ON. Also check for engine stalling while operating the power steering.

#### Proceed to Set-Up Instructions on page 36 & 37

### Closed Loop Fuel System Set-Up Instructions

### **Before conversion:**

Set and connect a good quality High impedence digital Millivolt meter to the  $O_2$  sensor-signal wire. Take the vehicle for a test run.

### On the Dynamometer:

If a dynamometer is available drive the vehicle ON Gasoline fuel selection and take notice of the general  $O_2$  sensor volt pattern; record it if necessary. Pay particular attention to the toggling voltages when at part load (cruising speeds) and the maximum voltage when loaded and at full throttle acceleration. A second person to read and record the voltmeter readings may be helpful. Make sure that the engine is running as well as expected and that there are no trouble codes recorded in the diagnostic system.

### On the Road:

Find a road where you are familiar with the traffic pattern and paying attention to the traffic signals and the traffic around you, drive the vehicle ON Gasoline fuel selection; take notice of the general  $O_2$  sensor volt pattern and record it. Pay particular attention to the toggling voltages when at part load (cruising speeds) and the maximum voltage when loaded and at full throttle acceleration. A second person to read and record the voltmeter readings is a must. Make sure that the engine is running as well as expected and that there are no trouble codes recorded in the diagnostic system.

### After conversion:

Once the MOGAS Fuel System installation has been completed, as per this manual suggestions and within its guidelines, start the engine ON Gasoline and bring it to working temperature.

- Switch the fuel selector to Nat Gas operation.
- Remove the vacuum line from the fuel flow control valve bellow; plug it to avoid air leaking into the intake manifold; bring the engine to 3500 RPM and hold steady.
- Adjust the fuel control screw to read the full throttle voltage recorded earlier, when test running the vehicle ON Gasoline fuel on the Dyno or the Road, or 0.950 volts +/- 0.025 volts.
- Reconnect the vacuum line to the fuel flow control valve bellow.

#### The vehicle is now ready for the final test drive and fine tuning.

Continued....

#### On the Dynamometer:

- Bring the engine under full load at 3500 RPM and look for the highest voltage; it should be near the value recorded during gasoline testing. This may very well be .900 to .950 volts. If too far from the above:
- Remove the vacuum line from the Fuel control bellow; plug it to avoid air leaking into the intake manifold; bring the engine to 3500 RPM and hold steady.
- Adjust the fuel control screw to read the full throttle voltage recorded earlier, when test running the vehicle ON Gasoline fuel on the Dyno or the Road, or 0.950 volts +/- 0.025 volts.
- Reconnect the vacuum line to the fuel flow control valve bellow.
- Relieve the load; reconnect the vacuum line to the fuel flow control valve; bring the engine to part load and simulate a cruising condition, 2000 to 2500 RPM. The voltmeter will now toggle in or near the range noted during the Gasoline part load condition test run.
- Increase the load until you are at full throttle; the voltmeter now should read the full voltage as per the earlier pass. You are ready for the final road test.

#### On the Road:

If a dynamometer is not available use caution in tuning the system on the road; find a road where you are familiar with the traffic pattern and pay attention to the traffic around you. A second person to read the volumeter is a must.

- Bring the engine under full load at 2500 RPM and look for the highest voltage; it should be near the value recorded during gasoline testing. This may very well be .900 to .950 volts. If too far from the above:
- Adjust the fuel control screw in quarter turn increments in the desired direction, anticlockwise for richer mixture, clockwise for leaner mixture.
- Repeat the full load test until the correct voltage is obtained; once the reading is near the desired value the adjustments can be moderated to one eighth of a turn or even less.
- Now, bring the engine to part load, cruising condition, 2000 to 2500 RPM. The voltmeter will now toggle in or near the range noted during the Gasoline part load condition test run.
- Increase the load for acceleration; the voltmeter now should read high in the .800 volt region.
- Slow down, then accelerate fully for a fast departure. Maximum voltage should reappear as per the earlier set-up test. The vehicle is ready for delivery.

APPENDIX B

FTP TEST DATA

#### SOUTHWEST RESEARCH INSTITUTE - DEPARTMENT OF EMISSIONS RESEARCH FTP - VEHICLE EMISSIONS RESULTS -PROJECT_08-5343-001

TEST NO. L1-00-EEE1 RUN VEHICLE MODEL 91 CHEVY LUMINA ENGINE 3.1 L(192. CID) V-6 TRANSMISSION A4 BAROMETER 747.01 MM HG(29.41 IN HG) RELATIVE HUMIDITY 24. PCT BAG RESULTS	VEHICLE NO.CRC- DATE 11/6/92 BAG CART NO. 2 DYNO NO. 2 CVS NO. 8 DRY BUIB TEMP. ABS. HUMIDITY	-6 2 2 23.3 DEG C(74.0 DEG F) 4.3 GM/KG	TEST WEIGHT 1758 ACTUAL ROAD LOAD GASOLINE EM-1540 ODOMETER 66991. C = .866 H = .13 FUEL DENSITY = 6. NOX HUMIDITY CORR	KG( 3875. LBS) 3.8 KW( 5.1 HP) -F KM( 41626. MILES) 4 0 = .000 16 ECTION FACTOR .83
BAG RESULTS				
BAG NUMBER	1	2	3	
BAG NUMBER DESCRIPTION	COLD TRANSIENT	STABILIZED	HOT TRANSIENT	
	1070 0 (50 0)	1070 0 (50 0)	1070 0 (50 0)	
BLOWER DIF P MM. H2U(IN. H2U)	12/0.0 (50.0)		12/0.0 (50.0)	
BLOWER INLET P MM. H2U(IN. H2U)	939.8 (37.0)	939.8 (37.0)	939.8 (37.0)	
BLOWER INLET TEMP. DEG. C(DEG. F)	43.3 (110.0)	41.7 (107.0)	42.2 (108.0)	
BLOWER REVOLUTIONS	19145.	32870.	19145.	
TOT FLOW STD. CU. METRES(SCF)	133.8 (4725.)	230.7 (8147.)	134.2 (4738.)	
THC SAMPLE METER/RANGE/PPM	58.6/ 2/ 59.	9.8/ 2/ 10.	19.8/ 2/ 20.	
THC BCKGRD METER/RANGE/PPM	5.7/ 2/ 6.	6.6/ 2/ 7.	7.0/ 2/ 7.	
CO SAMPLE METER/RANGE/PPM	76.3/ 13/ 184.	34.5/ 12/ 33.	47.4/ 13/ 111.	
CO BCKGRD METER/RANGE/PPM	.7/ 13/ 2.	.9/ 12/ 1.	.3/ 13/ 1.	
CO2 SAMPLE METER/RANGE/PCT	81.2/ 14/ .6809	69.0/ 14/ .4856	76.7/ 14/ .6018	
CO2 BCRGRD METER/RANGE/PCT	13.0/ 14/ .0438	13.2/ 14/ .0446	13.1/ 14/ .0442	
NOX SAMPLE METER/RANGE/PPM	60.3/ 1/ 15.0	21.2/ 1/ 5.3	30.3/ 1/ 7.6	
NOX BCKGRD METER/RANGE/PPM	.8/ 1/ .2	1.0/ 1/ .3	.9/ 1/ .2	
DILUTION FACTOR	19.01	27.36	21.80	
THC CONCENTRATION PPM	53.	3.	13.	
CO CONCENTRATION PPM	179.	32.	108.	
CO2 CONCENTRATION PCT	.6394	.4426	.5596	
NOX CONCENTRATION PPH	14.8	5.1	7.4	
THC MASS GRAMS	4.102	.458	1.015	
CO MASS GRAMS	27.882	8.621	16.838	
CO2 MASS GRAMS	1566.4	1869.6	1374.7	
NOX MASS GRAMS	3.132	1.851	1.563	
DESCRIPTION BLOWER DIF P MN. H2O(IN. H2O) BLOWER INLET P MN. H2O(IN. H2O) BLOWER INLET TEMP. DEG. C(DEG. F) BLOWER REVOLUTIONS TOT FLOW STD. CU. METRES(SCF) THC SAMPLE METER/RANGE/PPM CO SAMPLE METER/RANGE/PPM CO SAMPLE METER/RANGE/PPM CO SCRGRD METER/RANGE/PPM CO2 SAMPLE METER/RANGE/PCT NOX SAMPLE METER/RANGE/PCT NOX SAMPLE METER/RANGE/PPM NOX BCKGRD METER/RANGE/PPM DILUTION FACTOR THC CONCENTRATION PPM CO2 CONCENTRATION PPM CO2 CONCENTRATION PPM THC MASS GRAMS CO MASS GRAMS CO2 MASS GRAMS NOX MASS GRAMS THC GRAMS/MI CO2 GRAMS/MI NOX GRAMS/MI NOX GRAMS/MI PUEL ECONOMY IN MPG RUN TIME SECONDS	1 150	110	290	
	1.150	•117	.200	
	/.010	2.230 A05 A	200 0	
NOY CDANS/NT	435.0	403.4	300.0	
RIDE POONONY THINDO	•0/0	.40L 10 125	•432 33 945	
RUN TIME SECONDS	505.	868.	506.	
WEASURED DISTANCE MI	3.57	3.85	3.62	
SCF, DRY	.986	.988	.987	
	• 700	•700	• 70 /	
COMPOSITE RESULTS				3-BAG (4-BAG)
TEST NUMBER L1-00-EEE1		CARBON DI	OXIDE G/MI	446.7 ( .0)
BAROMETER MH EG 747.0		FUEL ECON		19.522 ( .00)
HUNIDITY G/KG 4.3		HYDROCARB		.377 (.00)
TEMPERATURE DEG C 23.3		CARBON MO		4.058 ( .00)
			NITROGEN G/HI	.549 (.00)
		OALDES OF	MITINGER CLUT	

SOUTHWEST RESI	EARCH INSTITUTE - DEPART	NENT OF ENISSIONS RESEA	ARCH	
SOUTHWEST RESI Lit Veh / Foel TEST NO. L1-00-EEE2 RUN VEHICLE MODEL 91 CHEVY LUHINA ENGINE 3.1 L(192. CID) V-6 TRANSMISSION A4 BAROMETER 738.12 MM HG(29.06 IN HG) RELATIVE HUNIDITY 33. PCT BAG RESULTS	FTP - VEHICLE EMIS	SIONS RESULTS -		
Ĩ.	PROJECT 08-5	343-001		
Veh / Fuel				
TEST NO. L1-00-EEE2 RUN	VEHICLE NO.CRC-	6	TEST WEIGHT 175	8. KG( 3875. LBS)
VEHICLE MODEL 91 CHEVY LUMINA	DATE 11/23/92		ACTUAL ROAD LOAD	3.8 KW( 5.1 HP)
ENGINE 3.1 L(192. CID) V-6	BAG CART NO. 2		GASOLINE EM-1540	D-F
TRANSMISSION A4	DYNO NO. 2		ODOMETER 67031.	KM( 41651, MILES)
	CVS NO. 8		C = .866 H = .12	$34 \ 0 = .000$
BAROMETER 738,12 MM HG(29,06 TN HG)	DRY BULB TEMP.	22.8 DEG C(73.0 DEG F)	FUEL DENSITY = $6$	.16
RELATIVE HINTDITY 33. PCT	ABS. HUMIDITY	5.8 GM/KG	NOX HUMIDITY COR	RECTION FACTOR
BAG RESULTS				
BAG RESOLTS BAG NUMBER DESCRIPTION	1	2	3	
DESCRIPTION	בי האפדראנים הנורים	STARTLIZED	דראיד דאג כדי דאיד	
DESCRIPTION				
DESCRIPTION BLOWER DIF P MM. H20(IN. H20) BLOWER INLET P MM. H20(IN. H20) BLOWER INLET TEMP. DEG. C(DEG. F) BLOWER REVOLUTIONS TOT FLOW STD. CU. METRES(SCF) THC SAMPLE METER/RANGE/PPM THC BCKGRD METER/RANGE/PPM CO SAMPLE METER/RANGE/PPM CO BCKGRD METER/RANGE/PPM CO2 SAMPLE METER/RANGE/PCT CO2 BCKGRD METER/RANGE/PCT NOX SAMPLE METER/RANGE/PPM DILUTION FACTOR THC CONCENTRATION PPM CO2 CONCENTRATION PPM CO2 CONCENTRATION PPM THC MASS GRAMS CO2 MASS GRAMS	1270.0 (50.0)	1270.0 (50.0)	1270.0 (50.0)	
BLOWER INLET P MM. H2O(IN. H2O)	965.2 (38.0)	965.2 (38.0)	965.2 (38.0)	
BLOWER INLET TEMP. DEG. C(DEG. F)	43.3 (110.0)	43.3 (110.0)	43.3 (110.0)	
BLOWER REVOLUTIONS	19176.	32890.	19151.	
TOT FLOW STD. CU. METRES(SCF)	131.7 (4651.)	225.9 ( 7977.)	131.5 ( 4645.)	
THC SAMPLE METER/RANGE/PPM	53.6/ 2/ 54	11.9/ 2/ 12.	21.5/2/21	
THC BOKGRD METER/RANGE/PPM	7.7/ 2/ 8.	8.3/ 2/ 8.	7.9/ 2/ 8.	
CO SAMPLE METER/RANGE/PPM	65 1/ 13/ 155	56.9/ 12/ 56.	68.3/ 13/ 163.	
CO BCKCRD WETER/PANCE/DDW	1 1/ 13/ 3	2.2/12/2.	1 0/ 13/ 2	
	$\frac{1.1}{22}$ $\frac{1.1}{2}$ $\frac{1.1}{2}$ $\frac{1.1}{2}$	60 7/ 1A/ A053	77 6/ 14/ 6169	
CO2 BAR DE HETEN KANGE/FCI	14 9/ 14/ 0515	1/0 / 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0 = 1/0	1/10/14/0515	
NOV CANDIE NEWED /DANCE /DDN	14.5/ 14/ .0015	14.5/14/.0015	14.3/ 14/ .0515	
NON DARFLE MEIER/RANGE/FFM	4/.5/ 1/ 11.5	14.0/ 1/ J.J 0/ 1/ D	20.3/ 1/ /.1	
NUA DURGED MEILEN/RENGE/PPM DII DUTON EXCHOOD	.0/ 1/ .2	•0/ 1/ •2	•0/ 1/ •2	
MIC CONCENTED TO DDA	10.31	20.70	21.10	
	40.	4. 50	14.	
CO CONCENTRATION PPM	149.	23.	15/.	
COZ CONCENTRATION PCT	.002/	.445/	.00/9	
NUX CONCENTRATION PPM	11.8	3.3	0.9	
THE MASS GRAMS	3.516	.509	1.059	
CU MASS GRAMS	22.834	13.809	24.115	
CUZ MASS GRAMS	1598.3	1843.6	1367.6	
NOX MASS GRAMS	2.562	1.237	1.495	
THC GRAMS/MI	.984	.133	.296	
CO GRAMS/MI	6.390	3.616	6.743	
CO2 GRAMS/HI	447.3	482.8	382.4	
NOX GRAMS/MI	.717	.324	.418	
FUEL ECONOMY IN MPG	19.261	18.138	22.509	
RUN TIME SECONDS	506.	868.	506.	
MEASURED DISTANCE MI	3.57	3.82	3.58	
SCF, DRY	.983	.985	.984	
	• 70J	05		
COMPOSITE RESULTS				3-BAG (4-BAG)
TEST NUMBER L1-00-EEE2		CARBON DI	OXIDE G/MI	447.8 ( .0)
BAROMETER MM HG 738.1		FUEL ECON		19.412 ( .00)
HUMIDITY G/KG 5.8			ONS (THC), G/MI	.355 ( .00)
TEMPERATURE DEG C 22.8		CARBON MO		5.055 (.00)
			NITROGEN G/MI	.432 ( .00)

	FTP - VEHICLE ENIS PROJECT 08-5	SIONS RESULTS - 343-001		
TEST NO. L2-00-EEE1 RUN VEHICLE MODEL 92 CHEVY LUMINA ENGINE 3.1 L(192. CID) V-6 TRANSMISSION A3 BAROMETER 746.76 MM HG(29.40 IN HG) RELATIVE HUMIDITY 22. PCT BAG RESULTS	VEHICLE NO.92P DATE 12/11/92 BAG CART NO. 2 DYNO NO. 3 CVS NO. 2 DRY BULB TEMP. ABS. HOMIDITY	22.2 DEG C(72.0 DEG P) 3.7 GM/KG	TEST WEIGHT 1758 ACTUAL RÖAD LOAD GASOLINE EM-1540 ODOMETER 28680. C = .866 H = .13 FUEL DENSITY = 6. NOX HUMIDITY COR	8. KG( 3875. LBS) 3.8 KW( 5.1 HP) )-F KM( 17821. HILES) 34 0 = .000 .16 RECTION FACTOR .81
BAG NUMBER DESCRIPTION		2 STABILIZED		
DESCRIPTION	COLD TRANSLENT	STABILIZED	HUT TRANSLENT	
DESCRIPTION BLOWER DIF P MM. H20(IN. H20) BLOWER INLET P MM. H20(IN. H20) BLOWER INLET TEMP. DEG. C(DEG. F) BLOWER REVOLUTIONS TOT FLOW STD. CU. METRES(SCF) THC SAMPLE METER/RANGE/PPM THC BCKGRD METER/RANGE/PPM CO SAMPLE METER/RANGE/PPM CO BCKGRD METER/RANGE/PPM CO BCKGRD METER/RANGE/PPM CO BCKGRD METER/RANGE/PPM NOX SAMPLE METER/RANGE/PCT NOX SAMPLE METER/RANGE/PPM DILUTION FACTOR THC CONCENTRATION PPM CO CONCENTRATION PPM CO CONCENTRATION PPM THC MASS GRAMS CO MASS GRAMS CO2 MASS GRAMS NOX MASS GRAMS THC GRAMS/MI CO2 GRAMS/MI NOX GRAMS/MI	711.2 (28.0) 762.0 (30.0) 42.8 (109.0) 40419. 76.0 (2682.) 59.2/2/59. 4.6/2/5. 83.7/13/204. .3/13/1. 62.0/1/1.1478 2.5/1/.0437 27.8/2/27.9 .2/2/.2 11.42 55. 198. 1.1079 27.7 2.408 17.470 1540.8 3.265 .670 4.861 428.8 .909	711.2 (28.0) 762.0 (30.0) 40.6 (105.0) 69441. 131.0 (4627.) 11.1/ 2/ 11. 4.8/ 2/ 5. 63.3/ 12/ 62. .4/ 12/ 0. 85.9/ 14/ .7744 12.8/ 14/ .0430 22.1/ 1/ 5.5 .3/ 1/ .1 17.14 7. 60. .7339 5.5 .497 9.203 1760.7 1.114 .128 2.372 453.9 .287	711.2 (28.0) 762.0 (30.0) 43.3 (110.0) 40439. 75.9 (2681.) 22.7/ 2/ 23. 4.8/ 2/ 5. 58.9/ 13/ 139. .0/ 13/ 0. 54.8/ 1/1.0157 2.6/ 1/ .0455 33.8/ 1/ 8.5 .4/ 1/ .1 12.99 18. 135. .9737 8.4 .799 11.977 1353.6 .987 .222 3.328 376.1 .274	
FUEL ECONOMY IN MPG	20.222	.287 19.361	23.211	
RUN TIME SECONDS	505.	868.	505 <b>.</b>	
MEASURED DISTANCE MI	3.59	3.88	3.60	
SCF, DRY	.982	.986	.984	
CONPOSITE RESULTS TEST NUMBER L2-00-EEE1	. 302	CARBO: DIO		3-BAG (4-BAG) 427.4 (.0)

SOUTHWEST RESEARCH INSTITUTE - DEPARTMENT OF EMISSIONS RESEARCH

test number	]	l <b>2-00-eee</b> 1	CARBO: DIOXIDE	G/MI	427.4	(	.0)	
BAROMETER	MM HG	746.8	FUEL ECONOMY	MPG	20.473	(.	.00)	
HUMIDITY	G/KG	3.7	HYDROCARBONS (TEC)	G/MI	.266	(	.00)	
TEMPERATURE	DEG C	22.2	CARBON MONOXIDE	G/MI	3.149	(	.00)	
			OXIDES OF NITROGEN	G/MI	.412	(	.00)	

SOUTHWEST RESEARCH INSTITUTE - DEPARTMENT OF EMISSIONS RESEARCH FTP - VEHICLE EMISSIONS RESULTS - PROJECT 08-5343-001					
TEST NO. 12-00-EEE2 RUN VEHICLE HODEL 92 CHEVY LUNINA ENGINE 3.1 L(192. CID) V-6 TRANSMISSION A3 BAROMETER 745.74 MM HG(29.36 IN HG) RELATIVE HUMIDITY 64. PCT BAG RESULTS	VEHICLE NO.92P DATE 12/29/92 BAG CART NO. 2 DYNO NO. 2 CVS NO. 8		TEST WEIGHT 1758 ACTUAL ROAD LOAD GASOLINE EM-1540 ODOMETER 28712. C = .866 H = .13	. KG( 3875. LBS) 3.8 KW( 5.1 HP) -F KM( 17841. MILES) 4 0 = .000	
BAROMETER 745.74 MM HG(29.36 IN HG)	DRY BULB TEMP. 1	26.1 DEG C(79.0 DEG F	) FUEL DENSITY = 6.	16	
RELATIVE HUMIDITY 64. PCT	ABS. HUMIDITY 11	3.9 GH/KG	NOX HUMIDITY CORE	RECTION FACTOR 1.12	
BAG RESULTS			2		
BAG NUMBER	1	2	3		
DESCRIPTION	COLD TRANSIENT	STABILIZED	HOT TRANSIENT		
DESCRIPTION	1244.6 $(49.0)$	1244.6 (49.0)	1244.6 (49.0)		
BLOWER DIF P MM. H20(IN. H20)	939.8 $(37.0)$	939.8 (37.0)	939.8 (37.0)		
BLOWER INLET P MM. H20(IN. H20)	43.3 $(110.0)$	43.3 (110.0)	43.3 (110.0)		
BLOWER INLET TEMP. DEG. C(DEG. F)	19154.	32866.	19151.		
BLOWER REVOLUTIONS	133.8 $(4725.)$	229.6 ( $8106.$ )	133.8 (4723.)		
TOT FLOW STD. CU. METRES(SCF)	57.1/ 2/ 57.	17.5/ 2/ 17.	23.0/ 2/ 23.		
THC SAMPLE METER/RANGE/PPM	9.7/ 2/ 10.	12.7/ 2/ 13.	12.4/ 2/ 12.		
CO SAMPLE METER/RANGE/PPM	57.1/ 14/ 259.	57.2/ 12/ 56.	43.0/ 13/ 100.		
CO SCARD METER/RANGE/PPM	.2/ 14/ 1.	.5/ 12/ 0.	.0/ 13/ 0.		
CO SCARD METER/RANGE/PPM	83.6/ 14/ .7271	71.2/ 14/ .5166	79.9/ 14/ .6571		
CO SCARD METER/RANGE/PPM	12.5/ 14/ .0418	12.8/ 14/ .0430	13.2/ 14/ .0446		
CO SCARD METER/RANGE/PPM	55.4/ 1/ 13.8	6.8/ 1/ 1.7	14.1/ 1/ 3.5		
CO SCARD METER/RANGE/PPM	.0/ 1/ .0	.0/ 1/ .0	.0/ 1/ .0		
NOX SAMPLE METER/RANGE/PPM	17.68	25.58	20.03		
NOX SCARD METER/RANGE/PPM	48.	5.	11.		
DILUTION FACTOR	249.	54.	97.		
THC CONCENTRATION PPM	.6876	.4753	.6147		
CO CONCENTRATION PPM	13.8	1.7	3.5		
CO CONCENTRATION PPM	3.697	.701	.865		
THC HASS GRAMS	38.810	14.366	15.038		
CO MASS GRAMS	1684.5	1997.5	1505.4		
NOX MASS GRAMS	3.947	.839	1.013		
THC GRAMS/MI	1.017	.179	.240		
CO GRAMS/MI	10.678	3.674	4.179		
CO2 GRAMS/MI	463.5	510.8	418.4		
NOX GRAMS/MI	1.086	.214	.282		
FUEL ECONOMY IN MPG	18.343	17.147	20.831		
RUN TIME SECONDS	505.	868.	506.		
MEASURED DISTANCE MI	3.63	3.91	3.60		
SCF, DRY	.973	.975	.973		
COMPOSITE RESULTS TEST NUMBER 12-00-EEE2 BAROMETER MM HG 745.7 HUNIDITY G/KG 13.9 TEMPERATURE DEG C 26.1		CARBON M	•	3-BAG       (4-BAG)         475.8       (.0)         18.277       (.00)         .369       (.00)         5.263       (.00)         .413       (.00)	

#### SOUTHWEST RESEARCH INSTITUTE - DEPARTMENT OF EMISSIONS RESEARCH FTP - VEHICLE EMISSIONS RESULTS -

PROJECT 08-5343-001

TEST NO. L2-00-EEE3 RUN VEHICLE MODEL 92 CHEVY LUMINA ENGINE 3.1 L(192. CID) V-6 TRANSMISSION A3 BAROMETER 744.98 MM HG(29.33 IN HG) RELATIVE HUMIDITY 62. PCT BAG RESULTS	VEHICLE NO.92P DATE 12/30/92 BAG CART NO. 2 DYNO NO. 2 CVS NO. 8 DRY BULB TEMP. ABS. HUMIDITY 1	23.9 DEG C(75.0 DEG F) 1.8 GM/KG	TEST WEIGHT 1758 ACTUAL ROAD LOAD GASOLINE EM-1540 ODOMETER 28730. C = .866 H = .13 FUEL DENSITY = 6. NOX HUMIDITY CORF	8. KG( 3875. LBS) 3.8 KW( 5.1 HP) )-F KM( 17852. MILES) 34 0 = .000 16 RECTION FACTOR 1.04
BAG NUMBER	1	2	3	
	COLD TRANSIENT	STABILIZED	HOT TRANSIENT	
DESCRIPTION BLOWER DIF P MM. H20(IN. H20) BLOWER INLET P MM. H20(IN. H20) BLOWER INLET TEMP. DEG. C(DEG. F) BLOWER REVOLUTIONS TOT FLOW STD. CU. METRES(SCF) THC SAMPLE METER/RANGE/PPM CO SAMPLE METER/RANGE/PPM CO SCKGRD METER/RANGE/PPM CO SCKGRD METER/RANGE/PPM CO2 SAMPLE METER/RANGE/PPM CO2 SAMPLE METER/RANGE/PPM NOX SAMPLE METER/RANGE/PPM NOX BCKGRD METER/RANGE/PPM DILUTION FACTOR THC CONCENTRATION PPM CO2 CONCENTRATION PPM CO2 CONCENTRATION PPM THC MASS GRAMS CO2 MASS GRAMS NOX MASS GRAMS	$\begin{array}{c} 1244.6 & (49.0) \\ 939.8 & (37.0) \\ 43.3 & (110.0) \\ 19165. \\ 133.7 & (4722.) \\ 52.9/ & 2/ & 53. \\ 11.2/ & 2/ & 11. \\ 79.3/ & 13/ & 192. \\ .2/ & 13/ & 0. \\ 82.7/ & 14/ & .7094 \\ 13.6/ & 14/ & .0462 \\ 52.5/ & 1/ & 13.1 \\ 1.2/ & 1/ & .3 \\ 18.27 \\ & 42. \\ 185. \\ .6658 \\ 12.8 \\ 3.261 \\ 28.864 \\ 1630.0 \end{array}$	1244.6 (49.0) 939.8 (37.0) 43.3 (110.0) 32872. 229.3 (8098.) 13.8/ 2/ 14. 11.1/ 2/ 11. 42.7/ 12/ 42. .4/ 12/ 0. 70.5/ 14/ .5066 13.8/ 14/ .0470 7.3/ 1/ 1.8 .5/ 1/ .1 26.17 3. 40. .4614 1.7 .413 10.666 1937.2	1244.6 (49.0) 939.8 (37.0) 43.3 (110.0) 19151. 133.6 (4717.) 25.6/ 2/ 26. 11.4/ 2/ 11. 45.4/ 13/ 106. .2/ 13/ 0. 79.4/ 14/ .6481 14.0/ 14/ .0478 12.0/ 1/ 3.0 .2/ 1/ .1 20.27 15. 102. .6027 3.0 1.137 15.839 1474.2	
NOX MASS GRAMS	3.398	.780	.787	
THC GRAMS/MI CO GRAMS/MI CO2 GRAMS/MI NOX GRAMS/MI FUEL ECONOMY IN MPG RUN TIME SECONDS MEASURED DISTANCE MI SCF, DRY	.912 8.072 455.9 .950 18.810 505. 3.58 .973	.108 2.783 505.6 .204 17.378 867. 3.83 .975	.316 4.407 410.2 .219 21.207 506. 3.59 .974	
COMPOSITE RESULTS TEST NUMBER L2-00-EEE3 BAROMETER MH HG 745.0 HUMIDITY G/KG 11.8 TEMPERATURE DEG C 23.9		CARBON DIO FUEL ECONO HYDROCARBO CARBON MOI OXIDES OF	DMY MPG DNS (THC) G/MI NOXIDE G/MI	3-BAG         (4-BAG)           469.0         (         .0)           18.598         (         .00)           .332         (         .00)           4.329         (         .00)           .363         (         .00)

	PROJECT 08-5	SIONS RESULTS -	EARCH	
TEST NO. L2-00-RFA1 RUN VEHICLE MODEL 92 CHEVY LUMINA ENGINE 3.1 L(192. CID) V-6 TRANSMISSION A3	<b>VEHICLE NO.92P</b> DATE 12/31/92 BAG CART NO. 2 DYNO NO. 2		TEST WEIGHT 1753 ACTUAL ROAD LOAD GASOLINE EH-1219 ODOMETER 28759.	8. KG( 3875. LBS) 3.8 KW( 5.1 HP) 5-F KM( 17870. MILES)
BAROMETER 744.73 MM HG(29.32 IN HG) RELATIVE HUMIDITY 49. PCT	CVS NO. 8	25.0 DEG C(77.0 DEG F 9.9 GH/KG	C = .866 H = .12 FUEL DENSITY = 6 NOX HUMIDITY COR	34 0 = .000 .16 RECTION FACTOR .97
BAG RESULTS				
BAG NUMBER	1	2 STABILIZED	3	
DESCRIPTION	COLD TRANSIENT	<b>STABILIZÉD</b>	HOT TRANSIENT	
BLOWER DIF P MM. H2O(IN. H2O) BLOWER INLET P MM. H2O(IN. H2O) BLOWER INLET TEMP. DEG. C(DEG. F) BLOWER REVOLUTIONS	1270.0 (50.0)	1270.0 (50.0)	1270.0 (50.0)	
BLOWER INLET P MM. H20(IN. H20)	965.2 (38.0)	965.2 (38.0)	965.2 (38.0)	
BLOWER INLET TEMP. DEG. C(DEG. F)	43.3 (110.0)	43.3 (110.0)	43.3 (110.0)	
BLOWER REVOLUTIONS	19168.	32880.	19158.	
TOT FLOW STD. CU. METRES(SCF) THC SAMPLE METER/RANGE/PPM	133.1 ( 4699.)	228.3 (8060.)	133.0 (4696.)	
THC SAMPLE METER/RANGE/PPM	52.6/ 2/ 53.	16.0/ 2/ 16.	25.1/ 2/ 25.	
THC BCKGRD METER/RANGE/PPM	11.3/ 2/ 11.	11.1/ 2/ 11.	10.4/ 2/ 10.	
CO SAMPLE METER/RANGE/PPM CO BCKGRD METER/RANGE/PPM CO2 SAMPLE METER/RANGE/PCT CO2 BCKGRD METER/RANGE/PCT NOX SAMPLE METER/RANGE/PPM	72.2/ 13/ 174.	67.0/ 12/ 66.	57.0/ 14/ 258.	
CO BCKGRD METER/RANGE/PPM	.0/ 13/ 0.	.7/:12/ 1.	.1/ 14/ 0.	99 - L
CO2 SAMPLE METER/RANGE/PCT	82.5/ 14/ .7055	69.5/ 14/ .4925	78.6/ 14/ .6341	
CO2 BCKGRD METER/RANGE/PCT	13.6/ 14/ .0462	14.0/ 14/ .0478	14.1/ 14/ .0482	
NOX SAMPLE METER/RANGE/PPM	60.9/ 1/ 15.2	9.5/ 1/ 2.4	22.2/ 1/ 5.6	•
NOX BCKGRD METER/RANGE/PPM	.4/ 1/ .1	.1/ .1/ .0	.2/ 1/ .1	
DILUTION FACTOR	18.42	26.77		
NOX SAMPLE METER/RANGE/PPM NOX BCKGRD METER/RANGE/PPM DILUTION FACTOR THC CONCENTRATION PPM CO2 CONCENTRATION PPM CO2 CONCENTRATION PPM TOX CONCENTRATION PPM THC MASS GRAMS CO MASS GRAMS CO2 MASS GRAMS	42.	5.	15.	
CO CONCENTRATION PPM	168.	63.	251.	÷
CO2 CONCENTRATION PCT	.6619	.4465	.5883	
NOX CONCENTRATION PPM	15.1	2.4	5.5	
THE MASS GRAMS	15.1 3.215	.699	1.166	
CO WASS GRAMS	26.094	16.874	38.816	
CO2 WASS CRAMS	1612.7	1865.8	1432.2	4 J
	3.736	1.005	1.369	
NON NON CANNO CAN NON	3.730	1.005	1.309	
THC GRAMS/MI	. 900	.182	.323	,
CO GRAMS/MI	7.304	4.399	10.754	
CO2 GRAMS/MI	451.4	486.4	396.8	
NOX GRAMS/MI	1.046	.262	.379	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 19
FUEL ECONOMY IN MPG	19.040	17.953	21.382	
RUN TIME SECONDS	505.	868.	506.	н 1 с. т.
MEASURED DISTANCE MI	3.57	3.84	3.61	
SCF, DRY	.978		.978	
	• 7/0	.980	•7/0	
COMPOSITE RESULTS				3-BAG (4-BAG)
TEST NUMBER L2-00-RFA1		CARBON D	IOXIDE G/MI	454.4 ( .0)
BAROMETER MM HG 744.7		FUEL ECO	•	19.022 (.00)
HUMIDITY G/KG 9.9			BONS (THC) G/MI	.370 ( .00)
TEMPERATURE DEG C 25.0		CARBON M		6.758 ( .00)
			F NITROGEN G/MI	.457 ( .00)

SOUTEWEST RESEARCH INSTITUTE - DEPARTMENT OF EMISSIONS RESEARCH FTP - VEHICLE EMISSIONS RESULTS - PROJECT 08-4125-001					
TEST NG. L2-00-RFA2 RUN VEHICLE MODEL 92 CHEVY LUNINA ENGINE 3.1 L(192. CID) V-6 TRANSMISSION A3 BAROMETER 746.76 MM HG(29.40 IN HG) RELATIVE HUMIDITY 25. PCT BAG RESULTS	VEHICLE NO.92P DATE 1/6/93 BAG CART NO. 2 DYNO NO. 3 CVS NO. 2 DRY BULB TEMP. ARS. HUNTDITY	22.2 DEG C(72.0 DEG F) 4.2 GW/KG	TEST WEIGHT 175 ACTUAL ROAD LOAD GASOLINE EM-121 ODOMETER 28794. C = .867 H = .1 FUEL DENSITY = 6 NOX HUMIDITY COR	8. KG( 3875. LBS) 3.8 KW( 5.1 HP) 5-F KH( 17892. MILES) 32 0 = .000 .24 RECTION FACTOR .82	
BAG RESULTS					
BAG. NUNBER	1	2	3		
DECODEDRICH	COLD TRANSIENT	STABILIZED	HOT TRANSIENT		
BLOWER DIF P MM. H20(IN. H20) BLOWER INLET P MM. H20(IN. H20) BLOWER INLET TEMP. DEG. C(DEG. F) BLOWER REVOLUTIONS TOT FLOW STD. CU. METRES(SCF) THC SAMPLE METER/RANGE/PPM CO SAMPLE METER/RANGE/PPM CO SCARD METER/RANGE/PPM CO BCKGRD METER/RANGE/PPM CO BCKGRD METER/RANGE/PCT CO2 BCKGRD METER/RANGE/PCT NOX SAMPLE METER/RANGE/PPM DILUTION FACTOR THC CONCENTRATION PPM CO CONCENTRATION PPM CO2 CONCENTRATION PPM THC MASS GRAMS CO MASS GRAMS CO MASS GRAMS THC GRAMS/MI CO2 GRAMS/MI CO2 GRAMS/MI	711.2 (28.0) 762.0 (30.0) 45.0 (113.0) 40608. 76.2 (2689.) 86.9/ 2/ 87. 4.9/ 2/ 5. 66.9/ 14/ 312. .6/ 14/ 2. 62.5/ 1/1.1569 2.9/ 1/ .0508 24.6/ 2/ 24.7 .0/ 2/ .0 11.27 82. 300. 1.1106 24.7 3.612 26.643 1548.7 2.961 .998 7.358 427.7	711.2 (28.0) 762.0 (30.0) 37.8 (100.0) 69688. 132.3 (4670.) 16.4/ 2/ 16. 4.9/ 2/ 5. 52.2/ 13/ 122. .4/ 13/ 1. 86.2/ 14/ .7808 13.7/ 14/ .0466 20.4/ 1/ 5.1 .0/ 1/ .0 16.96 12. 119. .7370 5.1 .897 18.281 1784.5 1.067 .230 4.680 456.8	711.2 (28.0) 762.0 (30.0) 41.7 (107.0) 40622. 76.5 (2702.) 31.7/ 2/ 32. 5.2/ 2/ 5. 59.2/ 14/ 270. .5/ 14/ 2. 55.8/ 1/1.0341 2.7/ 1/ .0473 51.2/ 1/ 12.8 .3/ 1/ .1 12.67 27. 261. .9905 12.7 1.185 23.220 1387.6 1.531 .327 6.401 382.5		
NOX GRAMS/MI	.818	.273	.422		
FUEL ECONOMY IN MPG	20.313	19.332	22.835		
RUN TIME SECONDS	505.	868.	506.		
MEASURED DISTANCE MI	3.62	3.91	3.63		
SCF, DRY	.981	.985	.982		
COMPOSITE RESULTS TEST NUMBER L2-00-RFA2 BAROMETER MM HG 746.8		CARBON DIC FUEL ECONC		3-BAG (4-BAG) 430.4 ( .0) 20.394 ( .00)	
HUMIDITY G/KG 4.2		HYDROCARBO		.415 ( .00)	
TEMPERATURE DEG C 22.2		CARBON MON		5.706 ( .00)	
			NITROGEN G/MI	.427 ( .00)	

### SOUTHWEST RESEARCH INSTITUTE - DEPARTMENT OF EMISSIONS RESEARCH FTP - VEHICLE EMISSIONS RESULTS -

PROJECT 08-4125-001

	1400161 00 41			
TEST NO. L2-00-RFA3 RUN VEHICLE MODEL 92 CHEVY LUMINA ENGINE 3.1 L(192. CID) V-6 TRANSMISSION A3 BAROMETER 740.41 MM HG(29.15 IN HG) RELATIVE HUMIDITY 38. PCT BAG RESULTS	VEHICLE NO.92P DATE 1/ 7/93 BAG CART NO. 2 DYNO NO. 3 CVS NO. 2 DRY BULB TEMP. 2 ABS. HUMIDITY 7	3.9 DEG C(75.0 DEG F) 2.2 GM/KG	TEST WEIGHT 1758 ACTUAL ROAD LOAD GASOLINE EM-1215 ODOMETER 28815. C = .867 H = .13 FUEL DENSITY = 6. NOX HUMIDITY COR	8. KG( 3875. LBS) 3.8 KW( 5.1 HP) 5-F KM( 17905. MILES) 32 0 = .000 .24 RECTION FACTOR .90
BAG RESULTS				
BAG NUMBER	1	2	3	
BAG RESULTS BAG NUMBER DESCRIPTION	COLD TRANSIENT	STABILIZED	HOT TRANSIENT	
DESCRIPTION BLOWER DIF P MM. H20(IN. H20) BLOWER INLET P MM. H20(IN. H20) BLOWER INLET TEMP. DEG. C(DEG. F) BLOWER REVOLUTIONS TOT FLOW STD. CU. METRES(SCF) THC SAMPLE METER/RANGE/PPM CO SAMPLE METER/RANGE/PPM CO SAMPLE METER/RANGE/PPM CO BCKGRD METER/RANGE/PPM CO2 SAMPLE METER/RANGE/PCT CO2 BCKGRD METER/RANGE/PCT NOX SAMPLE METER/RANGE/PPM DILUTION FACTOR THC CONCENTRATION PPM CO2 CONCENTRATION PPM CO2 CONCENTRATION PPM THC MASS GRAMS CO MASS GRAMS NOX MASS GRAMS	711.2 (28.0) 762.0 (30.0) 41.7 (107.0) 40595. 75.7 (2674.) 93.0/ 2/ 93. 6.2/ 2/ $6.67.7/$ 14/ 317. .2/ 14/ 1. 63.5/ 1/1.1752 2.6/ 1/ .0455 27.2/ 2/ 27.3 .0/ 2/ .0 11.09 87. 305. 1.1338 27.3 3.807 26.882 1572.3	711.2 (28.0) 762.0 (30.0) 40.0 (104.0) 69675. 130.4 (4605.) 20.7/ 2/ 21. 7.4/ 2/ 7. 55.8/ 13/ 131. .4/ 13/ 1. 86.7/ 14/ .7916 14.0/ 14/ .0478 18.2/ 1/ 4.6 .0/ 1/ .0 16.71 14. 127. .7467 4.6 1.031 19.271 1782.6	711.2 (28.0) 762.0 (30.0) 43.3 (110.0) 40617. 75.6 (2668.) 34.6/ 2/ 35. 7.5/ 2/ 7. 73.3/ 14/ 348. .6/ 14/ 2. 56.7/ 1/1.0506 2.9/ 1/ .0508 43.5/ 1/ 10.9 .0/ 1/ .0 12.39 28. 335. 1.0039 10.9 1.204 29.443 1388.6	
NOX MASS GRAMS	3.534	1.020	1.405	
THC GRAMS/MI CO GRAMS/MI CO2 GRAMS/MI NOX GRAMS/MI FUEL ECONOMY IN MPG RUN TIME SECONDS MEASURED DISTANCE MI SCF, DRY	1.050 7.412 433.5 .974 20.040 505. 3.63 .977	.264 4.926 455.7 .261 19.359 868. 3.91 .981	.332 8.120 383.0 .387 22.651 506. 3.63 .978	
COMPOSITE RESULTS TEST NUMBER L2-00-RFA3 BAROMETER NM HG 740.4 HUNIDITY G/KG 7.2 TEMPERATURE DEG C 23.9		CARBON DIO FUEL ECONO HYDROCARBO CARBON MOI OXIDES OF	DMY MPG DNS (THC) G/MI NOXIDE G/MI	3-BAG       (4-BAG)         431       ( .0)         20.311       ( .00)         .445       ( .00)         6.316       ( .00)         .443       ( .00)

SOUTHWEST RESEARCH INSTITUTE - DEPARMENT OF EMISSIONS RESEARCH				
COMPUTER PROGRAM LDT 1.0-R 3-BAG EPA FTP VEHICLE EMISSION RESULTS PROJECT NO. 08-5343-001				
				100
VEHICLE NUMBER		TEST L2-01-P85	D	LPG FUEL DENSITY 4.195 LB/GAL H .180 C .820 O .000 X .000
VEHICLE MODEL	91 CHEVY LUMINA	DATE 1/20/93	RUN I	FUEL DENSITY 4.195 LB/GAL
ENGINE	3.1 L (192 CID)-V-6	DYNO 2 B.	AG CART 2.	H .180 C820 0 .000 X .000
TRANSMISSION		ACTUAL KOAD LO.	AD 3.80 KW ( 5.10 HP)	
ODOMETER	28862 NM ( 1/938 MILES)	TEST WEIGHT 1	/5/KG ( 38/5 LBS)	
BAROMETER 745.2	2 MM HG ( 29.34 IN HG)	DRY BULB TEMPERATURE	25.6°C ( 78.0°F)	NOX HUMIDITY C.F891
BAG NUMBER		1	2	3
BAG DESCRIPTI	ON	COLD TRANSIENT	STABILIZED	HOT TRANSIENT
		( 0-505 SEC.)	(506-1372 SEC.)	( 0- 505 SEC.)
RUN TIME SECO	NDS	505.4	867.4	505.5
DRY/WET CORRE	CTION FACTOR, SAMP/BACK	.981/.989	.983/.989	.982/.989
MEASURED DIST	ANCE KH (MILES)	5.76 ( 3.58)	6.18 ( 3.84)	5.77 (3.59)
BLOWER FLOW R	ATE SCHM (SCFM)	15.7 <u>9</u> ( 557.4)	15.77 ( 556.9)	15.76 ( 556.6)
GAS METER FLO	W RATE SCHM (SCFM)	.00 ( .00)	.00 ( .00)	.00 ( .00)
TOTAL FLOW SC	TY 33.6 PCT. ON NDS CCTION FACTOR, SAMP/BACK VANCE KM (MILES) KATE SCHM (SCFM) W RATE SCHM (SCFM) CM (SCF)	133.0 ( 4695.)	228.0 ( 8051.)	132.8 ( 4689.)
HC SAMPLE ME	TER/RANGE/PPM (BAG)	33.0/ 2/ 32.98	13.2/ 2/ 13.19	24.5/ 2/ 24.49
HC BCKGRD ME	TER/RANGE/PPM	7.4/ 2/ 7.40	8.3/ 2/ 8.30	8.0/ 2/ 8.00
CO SAMPLE NE	TER/RANGE/PPH	50.5/ 13/118.20	11.5/ 12/ 11.03	85.9/ 12/ 85.72
CO BCKGRD ME	TER/RANGE/PPH	.8/ 13/ 1.85	1.4/12/ 1.33	1.3/ 12/ 1.23
CO2 SAMPLE ME	TER/RANGE/PCT	77.7/14/.6186	64.8/ 14/ .4305	74.0/ 14/ .5586
CO2 BCKGRD ME	TER/RANGE/PCT	15.3/ 14/ .0531	15.3/ 14/ .0531	15.4/ 14/ .0535
NOX SAMPLE ME	TER/RANGE/PPM (BAG) (D)	26.5/ 2/ 26.56	54.6/ 1/ 13.60	27.0/ 2/ 27.05
NOX BCKGRD ME	TTER/RANGE/PPM (BAG) TTER/RANGE/PPM TTER/RANGE/PPM TTER/RANGE/PPM TTER/RANGE/PCT TTER/RANGE/PPM (BAG) (D) TTER/RANGE/PPM	.0/ 2/ .00	.3/ 1/ .08	.0/ 2/ .00
DILUTION FACT	YOR RATION PPH RATION PCT RATION PCT RATION PPH SRAMS	18,52	27.09	20.60
HC CONCENTR	ATION PPM	25.98	5.20	16.88
CO CONCENTR	ATION PPM	113.50	9.53	82.52
CO2 CONCENTR	ATION PCT	.5683	.3794	.5076
NOX CONCENTR	ATION PPH	26.56	13.53	27.05
	DINC	2 102	800	1.205
	JKAMO Juko	2.103	./22	1.300
CO MASS G CO2 MASS G		1/.3/1	2.330	12.750
NOX MASS G		1383.68	1583.49	1234.21 6.123
FUEL MASS R		6.018 .472	5.256 .529	.419
	L/100KM (MPG)			.419 14.44 ( 16.29)
I OLD SCORONI		16.29 ( 14.44)	17.03 ( 13.82)	14.44 ( 10.67)
3-BAG COMPACT	RESILTS			
3-BAG COMPOSITE RESULTS				

HC	G/KM (G/MI)	.201 ( .324) ( .32)
CO	G/KM (G/MI)	1.453 ( 2.337) ( 2.34)
NOX	G/KM (G/MI)	.949 ( 1.526) ( 1.53)
FUEL	ECONOMY L/100KM (MPG)	16.15 ( 14.56)

SOUTHWEST RESEARCH INSTITUTE - DEPARMENT OF EMISSIONS COMPUTER PROGRAM LDT 1.0-R 3-BAG EPA FTP VEHICLE EMISSION RESULTS				PROJECT NO. 08-5343-001
VEHICLE NUMBER VEHICLE MODEL ENGINE TRANSMISSION ODOMETER	92P 91 CHEVY LUMINA 3.1 L (192 CID)-V-6 λ4 28878 KH ( 17948 MILES)	TBST L2-01-P85 DATE 1/21/93 DYNO 2 BA ACTUAL ROAD LOA TEST WEIGHT 17	RUN 2 G CART 2 D 3.80 KW (5.10 HP) 57 KG (3875 LBS)	LPG FUEL DENSITY 4.195 LB/GAL H .180 C .820 O .000 X .000
				NOX HUMIDITY C.F865
BAG DESCRIPTIO	TY 35.1 PCT. DN NDS CTION FACTOR, SAMP/BACK ANCE KM (MILES) ATE SCMM (SCFM) W RATE SCMM (SCFM) M (SCF)	COLD TRANSIENT ( 0-505 SEC.)	STABILIZED (506-1372 SEC.)	HOT TRANSIENT ( 0- 505 SEC.)
RUN TIME SECO	NDS	504.9	867.9	505.5
DRY/WET CORRE	CTION FACTOR, SAMP/BACK	.982/.990	.985/.990	.983/.990
HEASURED DIST	ANCE KN (MILES)	5.75 ( 3.57)	6.18 ( 3.84)	5.75 ( 3.58)
BLOWER FLOW R	ATE SCHH (SCFH)	15.82 ( 558.5)	15.81 ( 558.1)	15.79 ( 557.5)
GAS METER FLO	W RATE SCHM (SCFM)	.00 ( .00)	.00 ( .00)	.00 ( .00)
TOTAL FLOW SCI	M (SCF)	133.1 ( 4700.)	228.6 ( 8073.)	133.0 ( 4697.)
EC SAMPLE MET	TER/RANGE/PPH (BAG) TER/RANGE/PPH TER/RANGE/PPH TER/RANGE/PPH TER/RANGE/PCT TER/RANGE/PCT TER/RANGE/PPM (BAG) (D) TER/RANGE/PPM (BAG) (D)	31.3/ 2/ 31.28	12.2/ 2/ 12.19	23.5/ 2/ 23.49
HC BCKGRD ME	TER/RANGE/PPM	6.2/ 2/ 6.20	6.8/ 2/ 6.80	6.7/ 2/ 6.70
co sample me	TER/RANGE/PPM	93.7/ 12/ 94.51	17.7/ 12/ 17.05	79.0/ 12/ 78.26
co bckgrd me	TER/RANGE/PPM	2.7/12/2.57	3.0/ 12/ 2.85	3.4/12/ 3.24
co2 sample me	TER/RANGE/PCT	77.6/ 14/ .6169	64.5/ 14/ .4268	73.8/14/.5555
co2 BCKGRD ME	TER/RANGE/PCT	13.7/ 14/ .0466	13.9/ 14/ .0474	14.4/14/.0494
NOX SAMPLE ME	TER/RANGE/PPM (BAG) (D)	32.1/ 2/ 32.14	62.4/ 1/ 15.52	31.4/ 2/ 31.44
NOA DEROID HE		•0/ 2/ •00	.0/ 1/ .00	•0/ 2/ •00
DILUTION FACT	OR	18.64	27.30	20.74
EC CONCENTR	ATION PPM	25.42	5.65	17.11
co concentr	ATION PPM	89.69	13.97	73.32
CO2 CONCENTR	ATION PCT	.5728	.3811	.5084
NOX CONCENTR	OR ATION PPM ATION PCT ATION PPM	32.14	15.52	31.44
HC MASS G			.786	
CO MASS G		13.897	3.718	11.355
CO2 MASS G		1395.85	1595.39	1238.27
NOX MASS G		7.075	5.870	6.918
FUEL MASS R	G	.474	.534	. 420
FUEL ECONOMY	L/100KM (MPG)	16.40 ( 14.35)	17.19 ( 13.68)	14.50 ( 16.22)
3-BAG COMPOSITE	RESULTS			

HC (	G/KM (G/MI)	.206 ( .332) ( .33)
00 (	G/KM (G/MI)	1.355 (2.181) (2.18)
NOX (	G/KH (G/HI)	1.078 (1.734) (1.73)
FUEL ECO	DHONY L/100KH (NPG)	16.28 (14.45)

computer pro	SOUTHWEST GRAM LDT 1.0-R 3-H	RESEARCH INSTITUTE - I BAG EPA FTP VEHICLE EN		
VEHICLE NUMBER VEHICLE MODEL ENGINE TRANSMISSION ODOMETER	92P 91 CHEVY LUMINA 3.1 L (192 CID)-V-6 A4 28908 KM ( 17967 MILES)	TEST L2-01-P92 DATE 1/22/93 DYNO 2 BA ACTUAL ROAD LOA TEST WEIGHT 17	RUN 1 AG CART 2 AD 3.80 KW (5.10 HP) 757 KG (3875 LBS)	LPG FUEL DENSITY 4.178 LB/GAL H .182 C .818 O .000 X .000
BAROMETER 746.8	MM HG ( 29.40 IN HG)	DRY BULB TEMPERATURE	23.3°C ( 74.0°F)	NOX HUMIDITY C.F867
BAG DESCRIPTION	NDS CTION FACTOR, SAMP/BACK ANCE KM (MILES) ATE SCMM (SCFM)	COLD TRANSIENT ( 0-505 SEC.)	STABILIZED (506-1372 SEC.)	HOT TRANSIENT ( 0- 505 SEC.)
RUN TIME SECO	NDS	505.3	867.6	505.4
DRY/WET CORRE	CTION FACTOR. SAMP/BACK	.982/.990	.985/.990	.983/.990
MEASURED DIST	ANCE KH (HILES)	5.77 (3.59)	6.21 ( 3.86)	5.78 ( 3.59)
BLOWER FLOW R	ATE SCHIM (SCFH)	15.85 ( 559.6)	15.84 ( 559.1)	15.82 ( 558.7)
GAS METER FLO	W RATE SCHM (SCFM)	.00 ( .00)	.00 ( .00)	.00 ( .00)
	W RATE SCHM (SCFH) H (SCF)			
HC SAMPLE ME	TER/RANGE/PPM (BAG) TER/RANGE/PPM TER/RANGE/PPM TER/RANGE/PPM TER/RANGE/PCT TER/RANGE/PCT	33.0/ 2/ 32.98	13.5/ 2/ 13.49	24.1/ 2/ 24.09
HC BCKGRD ME	TER/RANGE/PPM	6.6/ 2/ 6.60	6.5/ 2/ 6.50	6.4/ 2/ 6.40
CO SAMPLE ME	TER/RANGE/PPM	50.1/ 13/117.22	23.6/ 12/ 22.81	49.4/ 13/115.49
CO BCKGRD ME	TER/RANGE/PPM	.7/13/1.62	2.2/ 12/ 2.09	.8/ 13/ 1.85
CO2 SAMPLE ME	TER/RANGE/PCT	77.4/14/.6135	64.5/14/.4268	73.4/ 14/ .5493
CO2 BOKGRD WE	TER/RANCE/PCT	14 7/ 14/ 0506	14 5/ 14/ 0498	14.6/14/0502
NOY SANDLE WE	TER/RANGE/PPM (BAG) (D)	27 4 / 2 / 27 45	53 9/ 1/ 13 A3	25 A / 2 / 25 A 6
NOX BCKGRD ME	TER/RANGE/PPM	.0/ 2/ .00	.1/ 1/ .03	.0/ 2/ .00
DILUTION FACT	OR RATION PPM RATION PCT RATION PCH	18.56	27.09	20.71
HC CONCENTR	ATION PPM	26.74	7.24	18.00
CO CONCENTR	RATION PPM	112.77	20.34	111.03
CO2 CONCENTR	RATION PCT	.5656	.3788	.5015
NOX CONCENTR	ATION PPM	27.45	13.40	25.46
HC MASS G	GRAMS	2.178	1.011	1.464
CO MASS G	GRAMS	17.522	5.422	17.227
CO2 MASS G		1382.17	1587.99	1223.74
NOX MASS G		6.079	5.091	5.628
FUEL MASS R		.473	.534	.419
	L/100KM (MPG)		17.17 ( 13.70)	
3-BAG COMPOSITE	RESULTS			

HC G/KM (G/MI)	.232 ( .373) ( .37)
CO G/KH (G/HI)	1.900 (3.058) (3.06)
NOX G/KH (G/HI)	.911 ( 1.465) ( 1.47)
FUEL ECONOMY L/100KM (MPG)	16.25 ( 14.48)

SOUTHWEST RESEARCH INSTITUTE - DEPARMENT OF EMISSIONS RESEARCH COMPUTER PROGRAM LDT 1.0-R 3-BAG EPA FTP VEHICLE EMISSION RESULTS PROJECT NO. 08-5343-001

VEHICLE NUMBER 92P VEHICLE MODEL 91 CHEVY LUMINA ENGINE 3.1 L (192 CID) TRANSHISSION A4 ODOMETER 28937 KH ( 1794	TEST L2-01-P92 DATE 1/26/93 -V-6 DYNO- 2 B ACTUAL ROAD LO B5 MILES) TEST WEIGHT 1	RUN 2 AG CART 2 AD 3.80 KW (5.10 EI 757 KG (3875 LBS)	LPG FUEL DENSITY 4.178 LB/GAL H .182 C .818 O .000 X .000 P)
BAROMETER 750.1 MM HG ( 29.53 II	N HG) DRY BULB TEMPERATURE	22.2°C ( 72.0°F)	NOX HUMIDITY C.F800
RELATIVE HUMIDITY 18.6 PCT.			
BAG NUMBER	1	2	3
BAG DESCRIPTION	COLD TRANSIENT	<b>STABILIZED</b>	HOT TRANSIENT
	( 0-505 SEC.)	(506-1372 SEC.)	(´ 0- 505 SEC.)
RUN TIME SECONDS	505.6	868.0	507.1
DRY/WET CORRECTION FACTOR, SAI	MP/BACK .987/.995	.989/.995	.988/.9 <b>9</b> 5
MEASURED DISTANCE KM (MILES)	5.82 ( 3.62)	6.23 ( 3.87)	5.79 ( 3.60)
BLOWER FLOW RATE SCHIM (SCFM)	15.94 ( 562.8)	15.93 ( 562.5)	15.91 ( 561.8)
GAS METER FLOW RATE SCMM (SCFI	.00 ( .00)	.00 ( .00)	.00 ( .00)
TOTAL FLOW SCH (SCF)	1 COLD TRANSIENT ( 0-505 SEC.) 505.6 MP/BACK .987/.995 5.82 ( 3.62) 15.94 ( 562.8) M) .00 ( .00) 134.3 ( 4742.)	230.5 ( 8138.)	134.5 ( 4748.)
HC SAMPLE METER/RANGE/PPM (B)	AG) 32.0/ 2/ 31.98 5.3/ 2/ 5.30 51.8/ 13/121.42 .8/ 13/ 1.85 77.9/ 14/ .6220 13.8/ 14/ .0470	11.6/ 2/ 11.59	20.5/ 2/ 20.49
HC BCKGRD METER/RANGE/PPM	5.3/ 2/ 5.30	4.8/ 2/ 4.80	5.2/ 2/ 5.20
CO SAMPLE METER/RANGE/PPM	51.8/ 13/121.42	16.0/ 12/ 15.40	61.4/12/60.13
CO BCKGRD METER/RANGE/PPM	.8/13/ 1.85	1.7/ 12/ 1.62	1.5/ 12/ 1.43
CO2 SAMPLE METER/RANGE/PCT	77.9/14/.6220	64.4/14/.4255	73.2/14/.5463
CO2 BCKGRD METER/RANGE/PCT	13.8/14/.0470	13.6/14/.0462	13.8/ 14/ .0470
NUX SAMPLE METER/RANGE/PPM (B)		bb.8/ 1/ 1b.bl	55.// 2/ 55./4
NOX BCKGRD METER/RANGE/PPH	.1/ 2/ .10	1.2/ 1/ .30	.3/ 2/ .30
DTLOTTON FACTOR	18.30 26.97 117.20 .5776 33.44	27 23	21 03
HC CONCENTRATION PPM	26 97	6 97	15 54
CO CONCENTRATION PPM	117 20	13 60	57 65
CO2 CONCENTRATION PCT	5776	3811	5015
NOX CONCENTRATION PPH	33 44	16 32	33 45
	55.11	10.52	55.45
HC MASS GRAMS	2.211 18.324 1420.21	.981	1.275
CO MASS GRAMS	18.324	3.650	9.024
CO2 MASS GRAMS	1420.21	1607.85	1234.62
NOX MASS GRAMS	6.873	5.756	6.882
FUEL MASS KG	.486	.539	.418
FUEL ECONOMY L/100KM (MPG)	16.68 ( 14.11)	17.31 ( 13.59)	
3-BAG COMPOSITE RESULTS			
HC G/KM (G/MI)	.221 ( .355) ( .36)		
$\frac{1}{2} = \frac{1}{2} \left( \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + 1$			

	• 221 ( • 555) ( • 50)
CO G/KH (G/HI)	1.386 ( 2.229) ( 2.23)
NOX G/KM (G/MI)	1.050 ( 1.690) ( 1.69)
FUEL ECONOMY L/100KM (MPG)	16.36 (14.38)

SOUTHWEST RESEARCH INSTITUTE - DEPARMENT OF EMISSIONS RESEARCH COMPUTER PROGRAM LDT 1.0-R 3-BAG EPA FTP VEHICLE EMISSION RESULTS PROJECT NO. 08-5343-001				
VEHICLE NUMBER	92P	TEST L2-01-P98		LPG FUEL DENSITY 4.139 LB/GAL H .183 C .817 O .000 X .000
VEHICLE MODEL	91 CHEVY LUMINA	DATE 1/28/93	RUN 1	FUEL DENSITY 4.139 LB/GAL
ENGINE	3.1 L (192 CID)-V-6	DYNO 2 BA	G CART 2	H.183 C.817 O.000 X.000
TRANSMISSION	λ4	ACTUAL ROAD LOA	D 3.80 KW ( 5.10 HP)	
ODOMETER	28937 KM ( 17985 MILES)	TEST WEIGHT 17	57 KG ( 3875 LBS)	
BAROMETER 744.7	MM HG ( 29.32 IN HG)	DRY BULB TEMPERATURE	22.2°C ( 72.0°F)	NOX HUMIDITY C.F865
RELATIVE HUMIDI	TY 35.1 PCT.		•	•
BAG NUMBER	01			
BAG DESCRIPTION	UN	COLD TRANSIENT.	STABILIZED	HUT TRANSIENT
	ND G	( U-505 SEC.)	(506-13/2 SEC.)	( U- 505 SEC.)
KUN TIME SECU	NUS	505.4	867.2	505.3
DELOTED DICE	CITUN FACTUR, SAMP/BACK	.982/.990	.985/.990	.983/.990
MEASUKED DIST.	ANCE NH (MILES)	5./4 ( 3.5/) 15 77 ( 550 0)	0.10 ( 3.83)	5.76 ( 3.58)
CAC MEMORD FIG	AIE SCHH (SCIH) A DAME COUN (COEN)	10.// ( 00)	10.76 ( 00)	
TOTAL FLOW CON	W RALE SUNN, (SCIN) M (CCP)	122.0 ( 4601 )	229 0 ( 9051 )	
TOTAL FLOW SC	HH HG (29.32 IN HG) TY 35.1 PCT. ON NDS CTION FACTOR, SAMP/BACK ANCE KH (HILES) ATE SCMN (SCFH) W RATE SCHH.(SCFH) M (SCF)	132.9 ( 4091.)	220.0 ( 0051.)	132.0 ( 4007.)
HC SAMPLE ME	TER/RANGE/PPM (BAG)	30.6/ 2/ 30.58	12.2/ 2/ 12.19	20.5/ 2/ 20.49
HC BCKGRD ME	TER/RANGE/PPM	7.5/ 2/ 7.50	7.0/ 2/ 7.00	7.3/ 2/ 7.30
CO SAMPLE ME	TER/RANGE/PPM	65.6/ 12/ 64.37	2.4/ 12/ 2.28	22.0/ 12/ 21.24
CO BCKGRD ME	TER/RANGE/PPM	1.6/ 12/ 1.52	1.1/ 12/ 1.04	1.3/12/ 1.23
CO2 SAMPLE ME	TER/RANGE/PCT	77.9/ 14/ .6220	64.5/ 14/ .4268	73.3/ 14/ .5478
CO2 BCKGRD ME	TER/RANGE/PCT	13.1/ 14/ .0442	12.8/ 14/ .0430	12.6/ 14/ .0422
NOX SAMPLE ME	TER/RANGE/PPM (BAG) (D)	35.2/ 2/ 35.23	56.8/ 1/ 14.14	32.6/ 2/ 32.64
NOX BCKGRD ME	TER/RANGE/PPM (BAG) TER/RANGE/PPM TER/RANGE/PPM TER/RANGE/PCT TER/RANGE/PCT TER/RANGE/PPM (BAG) (D) TER/RANGE/PPM	.1/ 2/ .10	.1/ 1/ .03	.1/ 2/ .10
DILUTION FACT	OR	18.41	27.14	21.06
HC CONCENTR	ATION PPM	23.49	5.45	13.54
CO CONCENTR	ATION PPM	61.28	1.24	19.57
CO2 CONCENTR	ATION PCT	•5802	.3853	.5076
NOX CONCENTR.	OR ATION PPM ATION PPM ATION PCT ATION PPM RAMS	35.14	14.12	32.54
HC MASS G	RAMS	1.907	.760	1.098
CU MASS G	KAMS	9.4/9	• 329	3.025
CO2 MASS G		1411.32	1608.68	1233.92
NOX MASS G		7.723	5.326	7.149
FUEL MASS R		.478	.538	.415
FUEL ECONOMY	L/100 <b>km (MPG)</b>	16.80 ( 14.00)	17.61 ( 13.36)	14.51 ( 16.21)
3-BAG COMPOSITE	RESULTS			

HC	G/KM (G/MI)	.185 ( .298) ( .30)
CO	G/KM (G/MI)	.514 ( .828) ( .83)
NOX	G/KM (G/MI)	1.067 ( 1.717) ( 1.72)
FUEL	ECONOMY L/100KM (MPG)	16.57 ( 14.19)

SOUTHWEST RESEARCH INSTITUTE - DEPARMENT OF EMISSIONS RESEARCH COMPUTER PROGRAM LDT 1.0-R 3-BAG EPA FTP VEHICLE EMISSION RESULTS PROJECT NO. 08-5343-001					
VEHICLE NUMBER	92P	TEST L2-01-P98		LPG FUEL DENSITY 4.139 LB/GAL H .183 C .817 O .000 X .000	
VEHICLE MODEL	91 CHEVY LUMINA	DATE 1/29/93	RUN 2	FUEL DENSITY 4.139 LB/GAL	
ENGINE	3.1 L (192 CID)-V-6	DYNO 2 BA	IG CART 2	H.183 C.817 O.000 X.000	
TRANSMISSION	λ4	ACTUAL ROAD LOA	AD 3.80 KW (5.10 HP)		
ODOMETER	29000 KM ( 18024 MILES)	TEST WEIGHT 17	757 KG ( 3875 LBS)		
BAROMETER 744.7	MM HG (29.32 IN HG) TY 38.6 PCT. ON NDS CTION FACTOR, SAMP/BACK ANCE KM (MILES) ATE SCMM (SCFM) W RATE SCMM (SCFM) M (SCF)	DRY BULB TEMPERATURE	22.2°C ( 72.0°F)	NOX HUMIDITY C.F880	
BAG NUMBER	11 50.0 101.	1	2	3	
BAG DESCRIPTI	ON	COLD TRANSTENT	STARILIZED	HOT TRANSTENT	
DAG DESCATI II	CN .	( 0-505 SFC )	(506-1372 SEC )	( 0 - 505  SEC)	
DIIN TTHE SECO	NDS	505 1	267 5	505 7	
NON TIME DECO		001/000	984/ 990	982/ 990	
	ANCE EN (NILES)	5 79 ( 3 60)	6.24(3.88)	5 76 ( 3 58)	
BIOWED FIOW D	ANCE AN (MILLS) ATE SCHN (SCEN)	15 80 ( 558 0)	15.79 (557.4)	15 78 ( 557 0)	
CIC NEWER FLOW R	MIL SCHM (SCHM) M DATE SCHM (SCHM)	13.80 ( 338.0)			
TOTAL FLOW CC	W KAIE SCHW (SCIM)	133 0 ( 1607 )	228 2 ( 8059 )	133 0 ( 4695 )	
TOTAL FLOW SC		133.0 ( 4037.)	220.2 ( 0055.)	155.0 ( 4055.)	
HC SAMPLE ME	TER/RANGE/PPM (BAG)	25.5/ 2/ 25.49	10.3/ 2/ 10.29	18.6/ 2/ 18.59	
HC BCKGRD ME	TER/RANGE/PPM	5.6/ 2/ 5.60	5.3/ 2/ 5.30	5.3/ 2/ 5.30	
CO SAMPLE ME	TER/RANGE/PPM	49.7/ 12/ 48.46	2.1/12/2.00	26.8/12/25.94	
CO BCKGRD ME	TER/RANGE/PPM	.0/ 12/ .00	.0/ 12/ .00	.0/ 12/ .00	
CO2 SAMPLE ME	TER/RANGE/PCT	76.7/14/.6018	64.6/14/.4280	72.5/14/.5357	
CO2 BCKGRD ME	TER/RANGE/PCT	12.5/ 14/ .0418	12.5/14/.0418	12.9/ 14/ .0434	
NOX SAMPLE ME	TER/RANGE/PPM (BAG) (D)	32.0/ 2/ 32.04	49.8/ 1/ 12.42	30.5/ 2/ 30.55	
NOX BCKGRD ME	TER/RANGE/PPM	.0/2/.00	.0/ 1/ .00	0/2/00	
	TER/RANGE/PPM (BAG) TER/RANGE/PPM TER/RANGE/PPM TER/RANGE/PPM TER/RANGE/PCT TER/RANGE/PCT TER/RANGE/PPM (BAG) (D) TER/RANGE/PPM	, 2,		, _,	
DILUTION FACT	OR	19.08	27.08	21.52	
HC CONCENTR	RATION PPM	20.18	5.19	13.54	
CO CONCENTR	RATION PPM	47.17	1.95	25.29	
CO2 CONCENTR	RATION PCT	.5622	.3877	.4943	
NOX CONCENTR	RATION PPM	32.04	12.42	30.55	
HC MASS G	YOR RATION PPM RATION PPM RATION PCT RATION PPM	1.640	.724	1.100	
CO MASS C	GRAMS	7.306	.519	3.914	
CO2 MASS C		1369.21	1620.22	1203.35	
NOX MASS O		7.174	4.769	6.835	
FUEL MASS F		.463	.542	.405	
	L/100KM (MPG)	16.12 ( 14.59)	17.53 (13.42)		
3-BAG COMPOSITI			. ,	· <i>·</i>	
EC G/KM (	'G/MI) .171	(.276) (.28)			
CO G/KM (		(.789) (.79)			
NOX G/KM (		(1.574) (1.57)			
	• •	(14.42)			
		,			

COMPUTER PRO	SOUTHWEST GRAM LDT 1.0-R 3-E	RESEARCH INSTITUTE - BAG EPA FTP VEHICLE E	DEPARMENT OF EMISSIONS MISSION RESULTS	RESEARCH PROJECT NO. 08-5343-001
VEHICLE NUMBER VEHICLE MODEL ENGINE TRANSHISSION ODOMETER	92P 91 CHEVY LUMINA 3.1 L (192 CID)-V-6 A4 29000 KM ( 18024 MILES)	TEST L2-01-HD5 DATE 2/_2/93 DYNO 2 B ACTUAL ROAD LO TEST WEIGHT 1	RUN AG CART 2 AD 3.80 KW (5.10 HP) 757 KG (3875 LBS)	LPG FUEL DENSITY 4.053 LB/GAL H .184 C .816 O .000 X .C
BAROMETER 744.5	MM HG ( 29.31 IN HG)	DRY BULB TEMPERATURE	24.4°C ( 76.0°F)	NOX HUMIDITY C.F887
RUN TIME SECO DRY/WET CORRE	NDS CTION FACTOR, SAMP/BACK	( 0-505 SEC.) 505.2 .981/.989	(506-1372 SEC.) 867.4 .983/.989	( 0- 505 SEC.) 505.3 .982/.989
MEASURED DIST BLOWER FLOW R GAS METER FLO	TY 35.2 PCT. ON NDS CTION FACTOR, SAMP/BACK ANCE KM (MILES) ATE SCMM (SCFM) W RATE SCMM (SCFM) M (SCF)	5.79 ( 3.60) 15.78 ( 557.2) .00 ( .00)	6.24 (3.88) 15.77 (556.9) .00 (.00)	5.75 (3.57) 15.80 (557.9) .00 (.00)
TOTAL FLOW SC HC SAMPLE ME	M (SCF) TER/RANGE/PPM (BAG)	132.9 ( 4692.) 31.3/ 2/ 31.28	228.0 ( 8051.) 13.4/ 2/ 13.39	133.1 ( 4699.) 26.1/ 2/ 26.08
HC BCKGRD ME CO SAMPLE ME CO BCKGRD ME	TER/RANGE/PPM (BAG) TER/RANGE/PPM TER/RANGE/PPM TER/RANGE/PPM TER/RANGE/PCT TER/RANGE/PCT TER/RANGE/PCT	8.9/ 2/ 8.89 62.4/ 12/ 61.13 2.3/ 12/ 2.19	9.6/ 2/ 9.59 2.5/ 12/ 2.38 1.7/ 12/ 1.62	13.7/ 2/ 13.69 22.7/ 12/ 21.93 1.5/ 12/ 1.43
CO2 SAMPLE ME CO2 BCKGRD ME NOX SAMPLE ME	TER/RANGE/PCT TER/RANGE/PCT TER/RANGE/PPH (BAG) (D)	77.5/ 14/ .6152 14.7/ 14/ .0506 34.6/ 2/ 34.63	65.0/ 14/ .4330 14.9/ 14/ .0515 54.4/ 1/ 13.55	73.7/ 14/ .5539 15.0/ 14/ .0519 32.8/ 2/ 32.84
NOX BCKGRD ME	TER/RANGE/PPM	.1/ 2/ .10	.2/ 1/ .05	.1/ 2/ .10
HC CONCENTR CO CONCENTR CO2 CONCENTR	OR ATION PPM ATION PPM ATION PCT ATION PPM	22.87 57.51 .5673	4.16 .79 .3835	13.05 20.05 .5045
NOX CONCENTR			13.50 .580	32.74
CO MASS G CO2 MASS G NOX MASS G	rams Rams	8.896 1380.02 7.788	.210 1600.76 5.224	3.106 1229.24 7.394
FUEL MASS K		.468	.536 17.70 ( 13.29)	.414
3-BAG COMPOSITE	RESULTS			

.000

HC G/KM (G/	HI)	.165 (	.266) ( .27)
CO G/KH (G/	MI)	.483 (	.778) ( .78)
NOX G/KH (G/	MI)	1.065 (	1.714) ( 1.71)
FUEL ECONOMY L/	100KH (HPG)	16.69 (	14.10)

SOUTHWEST RESEARCH INSTITUTE - DEPARMENT OF EMISSIONS RESEARCH 3-BAG EPA FTD VEHICLE EMISSION RESULTS PROTECT NO 08-5343-001

COMPUTER I	PROGRAM LDT 1.0-R 3-E	RESEARCH INSTITUTE - D AG EPA FTP VEHICLE EN	ISSION RESULTS	PROJECT NO. 08-5343-001
	מרט מז	TTTTT		IDC
VENICLE NORDI	5K 72F - 02 (THRIV I HNIN)	1531 52-02-792 סייגע אייגע	DIN	DEG DENCITV A 179 TD/CAI
FUCTNE	3 1 I (102  CTD) - V - 6	$\frac{DAIE}{DVNO} 2 BA$		$\mathbf{H}$ 192 C 919 C 000 Y 000
TDANCHT CCTON	33 3.1 L (152 CID)-V-0		10 CARI 2 10 3 90 1753 (5 10 1170)	H .102 C .016 O .000 A .000
ODOMETER	29105 KM ( 18089 MILES)	TEST WEIGHT 17	57 KG ( 3875 LBS)	LPG FUEL DENSITY 4.178 LB/GAL H .182 C .818 O .000 X .000
BAROMETER 743	3.0 MM HG ( 29.25 IN HG)	DRY BULB TEMPERATURE	24.4°C ( 76.0°F)	NOX HUMIDITY C.F872
RELATIVE HUM	IDITY 32.1 PCT. PTION ECONDS RRECTION FACTOR, SAMP/BACK ISTANCE KM (MILES) N RATE SCMM (SCFM) FLOW RATE SCMM (SCFM) SCM (SCF)	1	n	2
DAG NUMDER			2 מהוא מדו דקעה	
DAG DESCRIP	PIION	( 0-EOE SEC )	51AD1L14LU	$\frac{1}{1} \frac{1}{1} \frac{1}$
	CONDC	( U-505 SEC.)	(500-13/2 SEC.) 967 6	( U- 505 SEC.)
NON TIME OF		002/000	007.0	
ות תקמוסגקע	CONNER PU (NTIPS)	· 302/ • 330	6.20(3.86)	· 505/ · 550 5 77 ( 3 59)
RIGHED FIGH	I DIANCE NA (MILES) I DIAR COUR (CCEN)	15 76 ( 556 3)	15 77 ( 556 Q)	5.77 (5.50)
	WALL SCHA (SCH)	10. ( 00)	10.1 ( 000.9)	10.74 ( 000)
	SCW (SCE)	132 7 ( A68A )	228 0 ( 8052 )	132 6 ( 4681 )
TOTAL THOW	ben (ber)	152.7 ( 4004.)	220.0 ( 0052.)	152.0 ( 4001.)
HC SAMPLE	METER/RANGE/PPM (BAG) METER/RANGE/PPM METER/RANGE/PPM METER/RANGE/PCT METER/RANGE/PCT METER/RANGE/PCT	67.7/ 2/ 67.66	11.8/ 2/ 11.79	37.3/ 2/ 37.28
HC BCKGRD	METER/RANGE/PPM	7.1/ 2/ 7.10	6.7/ 2/ 6.70	6.9/ 2/ 6.90
CO SAHPLE	METER/RANGE/PPM	81.2/ 1/799.55	19.3/ 12/ 18.61	61.7/ 14/283.52
CO BCKGRD	METER/RANGE/PPM	.2/ 1/ 1.38	.8/12/.76	.3/ 14/ 1.21
CO2 SAMPLE	METER/RANGE/PCT	75.7/14/.5855	64.5/14/.4268	72.9/ 14/ .5417
CO2 BCKGRD	METER/RANGE/PCT	12.9/ 14/ .0434	12.9/ 14/ .0434	13.2/ 14/ .0446
NOX SAMPLE	METER/RANGE/PPM (BAG) (D)	31.4/ 1/ 7.86	27.4/ 1/ 6.87	13.6/ 1/ 3.42
NOX BCKGRD	METER/RANGE/PPM (BAG) (D) METER/RANGE/PPM	.2/ 1/ .05	.1/ 1/ .03	.0/ 1/ .00
DILUTION FA	ACTOR	17.39	27.13	20.34
HC CONCE	NTRATION PPM	60.97	5.34	30.72
CO CONCE	NTRATION PPM	779.10	17.51	275.87
CO2 CONCE	NTRATION PCT	.5445	.3850	. 4993
NOX CONCE	ACTOR NTRATION PPM NTRATION PPM NTRATION PCT NTRATION PPM	7.82	6.84	3.42
HC MASS	S GRAMS	4.936	.744	2.485
		120.328		1010/0
	s grams	1322.63	1607.31	1211.98
	S GRAMS	1.729	2.603	.755
FUEL MASS		.509	.540	. 429
FUEL ECONO	HY L/100KM (MPG)	17.69 ( 13.30)	17.37 ( 13.54)	14.87 ( 15.82)
3-BAG COMPOS	ITE RESULTS			
HC G/KI	M (G/MI) .358	( .576) ( .58)		
•		(10.850) $(10.85)$		

	-//	
CO	G/KN (G/MI)	6.743 (10.850) (10.85)
NOX	G/KM (G/MI)	.316 ( .508) ( .51)
FUEL	ECONOMY L/100KM (MPG)	16.72 ( 14.07)

SOUTHWEST RESEARCH INSTITUTE - DEPARMENT OF EMISSIONS RESEARCH				
COMPUTER PRO	GRAM LDT 1.0-R 3-H	BAG EPA FTP VEHICLE EM	ISSION RESULTS	PROJECT NO. 08-5343-001
VEHICLE NUMBER	92P	TEST L2-02-P98		LPG
VEHICLE MODEL	92 CHEVY LUMINA	DATE 2/14/93	RUN	FUEL DENSITY 4.139 LB/GAL
ENGINE	3.1 L (192 CID)-V-6	DYNO 2 BA	G CART 2	H.183 C.817 O.000 X.000
TRANSMISSION	λ3	ACTUAL ROAD LOA	D 3.80 KW ( 5.10 HP)	
ODOMETER	29000 KM ( 18024 MILES)	TEST WEIGHT 17	'57 KG ( 3875 LBS)	LPG FUEL DENSITY 4.139 LB/GAL H .183 C .817 O .000 X .000
				NOX HUMIDITY C.F956
BAG NUMBER		1	2	3
BAG DESCRIPTI	ON	COLD TRANSTENT	STABILIZED	HOT TRANSIENT
		(0-505 SEC)	(506-1372 SEC.)	$(0-505 \text{ SEC}_{-})$
RUN TIME SECO	NITS	505.3	867.8	505-4
NON TIME DEC		977/985	979/985	978/ 985
	NOR EN (NIL PC)	5 77 ( 3 59)	6 10 (3 85)	5 77 ( 3 59)
BIOMED FION I	ATTE SCHM (SCEN)	15 76 ( 556 6)	15 70 ( 557 7)	15 73 ( 555 6)
	ATE SCHN (SCHN) AU DAWE COUN (SCHN)	13.10 ( 330.0)	10. ( d0)	13:75 ( 333:0)
	W KAIE SCHH (SCH)	132 9 (* 4697 )	228 4 (* 8066.)	122 5 ( 4690 )
TOTAL FLOW SC	TY 50.7 PCT. CON ECTION FACTOR, SAMP/BACK FANCE KM (MILES) RATE SCMM (SCFM) DW RATE SCMM (SCFM) CM (SCF)	132.0 ( 400/.)	220.4 ( 0000.)	152.5 ( 4080.)
HC SAMPLE M	ETER/RANGE/PPN (BAG) ETER/RANGE/PPM ETER/RANGE/PPM ETER/RANGE/PPM ETER/RANGE/PCT ETER/RANGE/PCT ETER/RANGE/PPM (BAG) (D) ETER/RANGE/PPM	58.6/ 2/ 58.57	8.7/2/8.69	25.2/ 2/ 25.19
HC BCKGRD MI	RTER /RANGE / PPM	6.1/ 2/ 6.10	5.9/ 2/ 5.90	5.9/ 2/ 5.90
CO SANDLE MI	RTER /RANGE / PPM	63 6/ 1/575 34	3 2/ 12/ 3 05	59.1/13/139.71
CO BCKGRD WI	RTER / RANGE / PPW	0/1/00	1/12/ 09	.2/13/46
CO2 SANDLE M	TTER / RANGE / DOT	76 3 / 14 / 5952	61/12/109	73 5/ 14/ 5509
		127/14/0426	12 8 / 14 / 0430	13 1/14/0442
NOY CANDIR M	ZTER/RANGE/PCI ZTER/RANGE/PCI (RAC) (D)	34 2/ 1/ 8 56	12.0/ 14/ .0450	32 9/ 1/ 8 24
NOY BOROD N	THE DANCE / DOM	0/1/0.50	2/1/ 05	5/ 1/ 13
NOA DERGRD HI	IIEK/KRIGE/FFH	.0/ 1/* .00	•2/ 1/ •05	.3/ 1/ .13
DILUTION FACT	for	17.70	27.08	20.50
HC CONCENTR	RATION PPM	52.81	3.02	19.58
CO CONCENTI	RATION PPM	557.92	2.88	135.19
CO2 CONCENT	RATION PCT	.5550	.3866	.5088
NOX CONCENTI	TOR RATION PPH RATION PCT RATION PCT RATION PPH SRAMS	8.56	10.91	8.12
	ענסי	4 204	401	1 505
		4.204	•421	20.859
	JKAND	80.224	• (0)	20.039
•		1348.90	1616.85	1234.65
NOX MASS (		2.076	4.555	1.966
FUEL MASS I		.500	.541	.425
FUEL ECONOMY	L/100KM (MPG)	17.48 ( 13.46)	17.62 (13.35)	14.85 ( 15.84)

HC	G/KM (G/MI)	.265 ( .426) ( .43)
00	G/KM (G/MI)	4.157 ( 6.689) ( 6.69)
NOX	G/KM (G/MI)	.549 ( .884) ( .88)
FUEL	ECONOMY L/100KM (MPG)	16.81 ( 14.00)

SOUTHWEST RESEARCH INSTITUTE - DEPARMENT OF EMISSIONS RESEARCH				
	OGRAM LDT 1.0-R 3-E			
VEHICLE NUMBER	92P	TEST L2-02-P85		LPG
VEHICLE MODEL	92 CHEVY LUMINA	DATE 2/15/93	RUN	FUEL DENSITY 4.195 LB/GAL
ENGINE	3.1 L (192 CID)-V-6	DYNO 2 BA	G CART 2	H.180 C.820 0.000 X.000
TRANSMISSION	λ3	ACTUAL ROAD LOA	D 3.80 KW ( 5.10 HP	)
ODOMETER	29164 KM ( 18126 MILES)	TEST WEIGHT 17	757 KG ( 3875 LBS)	LPG FUEL DENSITY 4.195 LB/GAL H .180 C .820 0 .000 X .000
				NOV TRUTDIAN C T 1 000
RELATIVE HUMID	LTY 53.2 PCT.			
BAG NUMBER		1	2	3
BAG DESCRIPTI	ION	COLD TRANSIENT	STABILIZED	HOT TRANSIENT
		( 0-505 SEC.)	(506-1372 SEC.)	(0-505  SEC.)
RUN TIME SECO	ONDS	505.1	867.0	505.4
DRY/WET CORRI	ECTION FACTOR, SAMP/BACK	.974/.982	.976/.982	.975/.982
MEASURED DIST	FANCE KM (MILES)	5.81 ( 3.61)	6.24 ( 3.88)	5.76 ( 3.58)
BLOWER FLOW I	RATE SCHIM (SCFM)	15.55 ( 549.1)	15.55 ( 549.0)	15.53 ( 548.3)
GAS METER FLO	DW RATE SCMM (SCFM)	.00 ( .00)	.00 ( .00)	.00 ( .00)
TOTAL FLOW SC	I MM HG (28.94 IN HG) ITY 53.2 PCT. ION ECTION FACTOR, SAMP/BACK FANCE KM (MILES) RATE SCMM (SCFM) DW RATE SCMM (SCFM) CM (SCF)	130.9 ( 4623.)	224.7 ( 7934.)	130.8 ( 4619.)
HC SAMPLE MI	ETER/RANGE/PPM (BAG)	76.3/ 2/ 76.26	13.7/ 2/ 13.69	46.1/ 2/ 46.07
HC BCKGRD M	ETER/RANGE/PPM	6.4/ 2/ 6.40	6.6/ 2/ 6.60	7.1/ 2/ 7.10
CO SAMPLE MI	ETER/RANGE/PPM	89.0/ 1/910.46	38.3/ 12/ 37.22	77.5/ 14/372.32
CO BCKGRD H	ETER/RANGE/PPM	.0/ 1/ .00	.7/12/.66	.3/ 14/ 1.21
CO2 SAMPLE MI	ETER/RANGE/PCT	76.1/ 14/ .5919	65.5/ 14/ .4393	73.0/ 14/ .5432
CO2 BCKGRD M	ETER/RANGE/PCT	13.7/ 14/ .0466	13.7/ 14/ .0466	13.7/14/.0466
NOX SAMPLE MI	ETER/RANGE/PPM (BAG) (D)	26.8/ 1/ 6.72	12.7/ 1/ 3.19	9.7/ 1/ 2.44
NOX BCKGRD M	ETER/RANGE/PPM	.0/ 1/ .00	.0/ 1/ .00	.0/ 1/ .00
DILUTION FAC	ror	17.05	26.40	20.08
HC CONCENT	RATION PPM	70.23	7.35	39.33
CO CONCENT	RATION PPM	882.36	35.57	360.12
CO2 CONCENT	RATION PCT	.5481	.3945	.4990
NOX CONCENT	RATION PPM	6.72	3.19	2.44
HC MASS (	GRAMS	5.597	1.005	3.132
CO MASS	GRAMS	134.477	9.304	54.839
CO2 MASS	GRAMS	1313.68	1622.83	1194.97
NOX MASS	GRAMS	1.715	1.398	.622
FUEL MASS I	KG	.513	.546	.430
FUEL ECONOMY	ETER/RANGE/PPM (BAG) ETER/RANGE/PPM ETER/RANGE/PPM ETER/RANGE/PPM ETER/RANGE/PCT ETER/RANGE/PCT ETER/RANGE/PPM (BAG) (D) ETER/RANGE/PPM FOR RATION PPM RATION PPM RATION PCT RATION PCT RATION PCT RATION PPM GRAMS GRAMS GRAMS GRAMS GRAMS GRAMS	17.57 ( 13.39)	17.42 ( 13.51)	14.85 ( 15.84)

2-DAG COMPOSITE RESULTS	3 <b>-BAG</b>	COMPOSITE	RESULTS
-------------------------	---------------	-----------	---------

HC	G/KH (G/HI)	.432 ( .695) ( .70)
CO	G/KH (G/HI)	8.180 (13.162) (13.16)
NOX	G/KH (G/HI)	.207 ( .333) ( .33)
FUEL	ECONOMY L/100KH (MPG)	16.72 (14.07)

	GRAM LDT 1.0-R 3-B			
VEHICLE NUMBER	92P	TEST L2-03-P85		LPG
VEHICLE MODEL	92 CHEVY LUMINA	DATE 2/17/93	RUN	FUEL DENSITY 4.195 LB/GAL
ENGINE	3.1 L (192 CID)-V-6	DYNO 2 BA	G CART 2	H.180 C.820 O.000 X.000
TRANSMISSION	λ3	ACTUAL ROAD LOA	D 3.80 KW ( 5.10 HP)	
ODOMETER	29195 KM ( 18145 MILES)	TEST WEIGHT 17	57 KG ( 3875 LBS)	LPG FUEL DENSITY 4.195 LB/GAL H .180 C .820 O .000 X .000
RELATIVE HUMIDI	TY 22.7 PCT.			NOX HUMIDITY C.F818
BAG NUMBER		1	2	3
BAG DESCRIPTI	ON	COLD TRANSIENT	STABILIZED	HOT TRANSIENT
		( 0-505 SEC.)	(506-1372 SEC.)	( 0- 505 SEC.)
RUN TIME SECO	NDS CTION FACTOR, SAMP/BACK	505.5	867.2	505.8
DRY/WET CORRE	CTION FACTOR, SAMP/BACK	.986/.994	.988/.994	.987/.994
MEASURED DIST	ANCE KM (MILES)	5.77 ( 3.59)	6.18 ( 3.84)	5.78 ( 3.59)
BLOWER FLOW R	ATE SCMM (SCFM)	15.94 ( 562.7)	15.95 ( 563.1)	15.94 ( 562.7)
GAS METER FLO	W RATE SCHM (SCFM)	.00 ( .00)	.00 ( .00)	.00 ( .00)
TOTAL FLOW SC	ANCE KM (MILES) ATE SCMM (SCFM) W RATE SCMM (SCFM) M (SCF)	134.3 ( 4741.)	230.5 ( 8139.)	134.3 ( 4744.)
HC SAMPLE ME	TER/RANGE/PPM (BAG)	92.3/ 5/ 46.26	31.2/ 5/ 15.64	51.3/ 5/ 25.71
HC BCKGRD ME	ETER/RANGE/PPM	11.9/ 5/ 5.96	10.8/ 5/ 5.41	9.8/ 5/ 4.91
CO SAMPLE ME	TER/RANGE/PPH TER/RANGE/PPH TER/RANGE/PPH TER/RANGE/PPH TER/RANGE/PCT TER/RANGE/PCT	93.1/ 14/463.41	58.5/ 13/138.19	71.6/ 14/338.51
CO BCKGRD ME	ETER/RANGE/PPM	.3/ 14/ 1.21	.4/13/.92	.3/ 14/ 1.21
CO2 SAMPLE ME	ETER/RANGE/PCT	77.1/ 14/ .6085	64.3/14/.4243	72.9/14/.5417
CO2 BCKGRD ME	ETER/RANGE/PCT	13.5/ 14/ .0458	13.1/ 14/ .0442	12.9/ 14/ .0434
NOV 2446775 WE	SIEK/KANGE/PPM (DAG) (D)	29.0/ 1/ /.2/	3.0/ 1/ .95	4.5/ 1/ 1.15
	TER/RANGE/PPM			
DILUTION FACT	YOR RATION PPM RATION PCT RATION PPM	17.81	26.69	20.31
HC CONCENTR	RATION PPM	40.63	10.43	21.04
CO CONCENTR	RATION PPM	452.37	134.94	330.64
CO2 CONCENTR	LATION PCT	.5653	.3818	.5005
NOX CONCENTR	RATION PPM	7.27	.95	1.01
HC MASS G			1.463	
CO MASS G		70.704	36.209	51.711
CO2 MASS G		1389.42	1611.01	1230.92
NOX MASS O		1.526	.344	.212
FUEL MASS R		.503	.557	. 439
FUEL ECONOMY	L/100KM (MPG)	17.34 (13.57)	17.92 ( 13.13)	15.11 ( 15.57)
3-BAG COMPOSITE	RESULTS			

HC	G/KH (G/MI)	.324 ( .521) ( .52)
CO	G/KM (G/MI)	8.038 (12.933) (12.93)
NOX	G/KM (G/MI)	.094 ( .151) ( .15)
FUEL	ECONOMY L/100KM (MPG)	17.01 (13.83)

SUMPLIST IISENC	I IISTITUTI -	NONDER OF	DISSIONS RESERVE
-----------------	---------------	-----------	------------------

CEPVICE PROGRAM LDT 1.0-R 3-BAG EPA FTP VEHICLE EMISSION RESULTS PROJECT NO. 08-5343-001

VENICLE NUMBER 92P VENICLE NOPEL 92 CHEVY LOWING ENGINE 3.1 L (192 CID)-V-6 TRANSPISSION A3 ODORFTER 29195 KN ( 18145 RILES)		7EST 12-03-PES		LPC	
		DATE 2/18/93		FUEL DENSITY 4.195 LB/GAL	
			NG CART 2	1.180 C.820 U.000 X.U	
DOMETIC	29195 KN ( 18145 MILES)	TEST WEIGET 17	19 3.80 M ( 5.10 H 157 KG ( 3875 LBS)		
	NR/ EC / 20 20 TH EC)		22 2*0 / 72 A*E		
ELATIVE HUMIDI	MA RG ( 23.70 18 RG) TY 18.4 PCT. ON				
BAG NUBER	· -	1	2	3	
BAG DESCRIPTI	ON	COLD TRANSIENT	STABILI 2ED	BOT TRAESIENT	
•	•	( 0-505 SEC.)	(506-1372 SEC.)	( 0- 505 SEC.)	
RUN TIME SECO	IDS	505.0	867.6	505.3	
DRY/WET CORRE	CTION FACTOR, SAMP/BACK	.987/.995	.989/.995	.988/. <del>9</del> 95	
MEASURED DIST	ANCE KN (MILES)	5.75 ( 3.58)	6.18 ( 3.84)	5.74 ( 3.57)	
BLOWER FLOW R	ate schm (scpn)	16.12 ( 569.1)	16.16 ( 570.7)	16.13 ( 569.5)	
GAS NETER FLO	W RATE SCHM (SCFM)	.00 ( .00)	.00 ( .00)	.00 ( .00)	
TOTAL FLOW SC	ON NDS ICTION FACTOR, SAMP/BACK ANCE KH (NILLES) ATE SCHM (SCFN) W RATE SCHM (SCFN) M (SCF)	135.7 ( 4790.)	233.7 ( 8252.)	135.8 ( 4796.)	
EC SAMPLE ME	TER/RANGE/PPN (BAG)	47.1/ 2/ 47.07	20.1/ 5/ 10.07	37.1/ 5/ 18.59	
BC BCKGRD ME	TER/RANGE/PPH	5.2/ 2/ 5.20	10.7/ 5/ 5.36	10.8/ 5/ 5.41	
CO SAMPLE NE	TER/RANGE/PPM	65.3/ 1/595.51	82.4/ 12/ 81.90	94.9/ 13/234.42	
CO BCK GRD HE	TER /RANGE/PPM	.0/ 1/ .00	.4/12/.38	.3/13/ .69	
CO2 SAMPLE NE	TER/RANGE/PCT	76.8/ 14/ .6035	64.9/ 14/ .4318	73.8/14/.5555	
CO2 BCK GRD NE	TER/RANGE/PCT	13.5/ 14/ .0458	13.5/14/.0458	13.9/ 14/ .0474	
NOX SAMPLE ME	TER/RANGE/PPM (BAG) (D)	21.9/ 1/ 5.49	1.9/ 1/ .48	1.8/ 1/ .45	
NOI BCKGRD ME	TER/RANGE/PPH (BAG) TER/RANGE/PPH TER/RANGE/PPH TER/RANGE/PPH TER/RANGE/PCT TER/RANGE/PCT TER/RANGE/PPH (BAG) (D) TER/RANGE/PPH COR CATION PPN CATION PPN	.0/ 1/ .00	.0/ 1/ .00	.1/ 1/ .03	
DILUTION FACT	OR	17.60	26.60	20.21	
HC CONCEPTR	ATION PPM	42.17	4.91	13.45	
CO CONCENTR	ATION PPN	583.68	80.24	229.37	
CO2 COECETT	ATION PCT	.5603	.3877	.5104	
NOX CONCEPTS	ATION PPH	5.49	.48	.43	
RC MASS G	PIES	3 487	600	1 112	
	PARS	92.178	21,829	36.273	
CO2 NASS G	PANS	1391.55	1658.75	1269 41	
NOT NASS G	PANS	1.139	170	010	
FUEL MASS I	<u> </u>	.515	.564	.443	
		17.81 (13.21)	18.17 ( 12.95)		
-NG COPOSITI	1 MARS				
		/ 903) / 90)			
		(	· · · ·		
CO 6/101 (		(11.000) (11.00)			
- 575 · 7756 (	C/III) .860 L/100EX (INFG) 17.29	( .096) ( .30)			

VEHICLE NUMBER	92P	TEST L2-03-P92	2	LPG
VEHICLE MODEL	92 CHEVY LUMINA	DATE 2/19/93	RUN 1	FUEL DENSITY 4.178 LB/GAL
ENGINE	3.1 L (192 CID)-V-6	DYNO 2 H	BAG CART 2	H.182 C.818 O.000 X.0
TRANSMISSION	A3	ACTUAL ROAD LO	DAD 3.80 KW ( 5.10 H	P)
ODOMETER	29262 KM ( 18187 MILES)	TEST WEIGHT	L757 KG ( 3875 LBS)	LPG FUEL DENSITY 4.178 LB/GAL H .182 C .818 O .000 X .( P)
BAROMETER 746.8 RELATIVE HUMIDI	8 MM HG ( 29.40 IN HG) TTV 22.9 PCT	DRY BULB TEMPERATURI	E 22.8°C ( 73.0°F)	NOX HUMIDITY C.F819
BAG NUMBER		1	2	3
BAG DESCRIPTI	ON	COLD TRANSIENT	STABILIZED	HOT TRANSIENT
		(0-505  SEC.)	(506-1372 SEC.)	(0-505  SEC.)
RUN TIME SECO	ONDS	505.4	867.5	505.5
DRY/WET CORRE	ECTION FACTOR, SAMP/BACK	.986/.994	.988/.994	.986/.994
MEASURED DIST	ANCE KM (MILES)	5.78 ( 3.59)	6.19 ( 3.85)	5.78 ( 3.59)
BLOWER FLOW F	RATE SCHM (SCFM)	15.85 ( 559.8 [.] )	15.84 ( 559.4)	15.85 ( 559.7)
GAS METER FLO	W RATE SCHH (SCFH)	.00 ( .00)	.00 ( .00)	.00 ( .00)
TOTAL FLOW SC	3 MM HG (29.40 IN HG) TY 22.9 PCT. ON ECTION FACTOR, SAMP/BACK PANCE KM (MILES) RATE SCMH (SCFM) WW RATE SCMM (SCFM) CM (SCF)	133.6 ( 4716.)	229.1 ( 8088.)	133.6 ( 4716.)
HC SAMPLE ME	ETER/RANGE/PPM (BAG) ETER/RANGE/PPM ETER/RANGE/PPM ETER/RANGE/PPM ETER/RANGE/PCT ETER/RANGE/PCM (BAG) (D) ETER/RANGE/PPM	49.5/ 2/ 49.47	27.6/ 5/ 13.83	48.2/ 1/ 4.84
HC BCKGRD MI	ETER/RANGE/PPM	5.5/ 2/ 5.50	11.6/ 5/ 5.81	12.0/ 1/ 1.20
CO SAMPLE MI	STER/RANGE/PPM	55.8/ 1/486.61	52.1/ 13/122.16	63.3/ 14/292.24
CO BCKGRD MI	ETER/RANGE/PPH	.0/ 1/ .00	.0/ 13/ .00	.1/14/.40
CO2 SAMPLE MI	ETER/RANGE/PCT	77.1/ 14/ .6085	65.1/14/.4343	73.8/14/.5555
CO2 BCKGRD MI	ETER/RANGE/PCT	13.9/ 14/ .0474	14.0/ 14/ .0478	14.1/ 14/ .0482
NOX SAMPLE MI	TER/RANGE/PPM (BAG) (D)	26.7/ 1/ 6.69	1.1/ 1/ .28	1.0/ 1/ .25
NOX BCKGRD MI	STER/RANGE/PPH	.0/ 1/ .00	.5/ 1/ .13	.4/ 1/ .10
DILUTION FACT	TOR RATION PPH RATION PPM RATION PCT RATION PPM	17.64	26.04	19.94
HC CONCENTR	ATION PPM	44.29	8.24	3.69
CO CONCENT	RATION PPM	476.13	120.03	285.92
CO2 CONCENTR	RATION PCT	.5638	.3883	.5097
NOX CONCENTR	CATION PPM	6.69	.16	.16
HC MASS (	GRAMS	3.609	1.152	.301
CO MASS (	JRAMS	74.027	32.006	44.454
CO2 MASS (		1378.48	1628.45	1246.24
NOX MASS (		1.400	.056	.033
FUEL MASS F		.502	.561	.440
FUEL ECONOMY	L/100KM (MPG)	17.37 ( 13.54)	18.12 ( 12.98)	15.20 ( 15.48)

HC	G/KM (G/MI)	.240 ( .387) ( .39)
CO	G/KM (G/MI)	7.454 (11.993) (11.99)
NOX	G/KM (G/MI)	.057 ( .091) ( .09)
FUEL	ECONOMY L/100KM (MPG)	17.15 (13.72)

### SUTTREST RESEARCE DISTINCT - DEVLETT OF DISSIDES RESEARCE

COMPUTER PROGRAM LDT 1.0-R 3-BAG EPA FTP VEHICLE EMISSION RESULTS PROJECT NO. 08-5343-001

VEHICLE NUMBER         92P           VEHICLE NODEL         92 CHEVY LUMINA           ENGINE         3.1 L (192 CID)-V-6           TRANSMISSION         33           ODGHEFTER         18211 MILES (29301 KM)		TEST L2-03-F92 DATE 2/22/93 RUN 2 DTHO 2 BAG CART 2 ACTUAL ROAD LOAD 5.10 HP ( 3.80 KN) TEST WEIGET 3875 LBS ( 1757 KG)		LPG FUEL DEESITY 4.178 LB/CAL H .182 C .818 O .000 I .000	
BLC HIBBID	III 27.0 PCI.	1	2	3	
DAG DUNDER		ב האפרסאנסא תזרה	2 S#1811.17PB		
		( 0-505 CPC )	(505-1372 SPC )	( -505 SPC )	
DATE THE STO		( 0=J0J JLC.) 505 2	867 8	505.0	
NON TIME SOON	RATION FACTOR SAND/RACK	983/ 991	.985/.991	.984/.991	
MEASURED DIS	PARCE MILES (KN)	3.59 ( 5.77)	3.86 ( 6.20)	3.59 ( 5.78)	
BLOWER PLOW	RATE SCEN (SCHN)	553.9 (15.69)	553.6 (15.68)	554.2 (15.69)	
GAS METER PL	OW RATE SCEN (SCIM)	.00 ( .00)	.00 ( .00)	.00 ( .00)	
TOTAL FLOW S	15 IN BG (740.4 NN BG) ITY 27.0 PCT. ION ONDS ECTION FACTOR, SAMP/BACK FANCE MILES (KM) RATE SCFM (SCNM) OW RATE SCFM (SCNM) CF (SCH)	4664. ( 132.1)	8007. (226.8)	4664. (132.1)	
EC SAMPLE H	ETER/RANGE/PPN (BAG)	32.5/ 2/ 32.48	8.9/ 2/ 8.89	14.7/ 2/ 14.69	
HC BCKGRD N	ETER/RANGE/PPN	6.1/ 2/ 6.10	6.6/ 2/ 6.60	7.0/ 2/ 7.00	
co sample n	eter/range/ppm	66.0/ 13/157.36	5.5/ 12/ 5.25	73.7/ 12/ 72.69	
co bckgrd n	eter/Range/PPN	.7/ 13/ 1.62	1.5/ 12/ 1.43	2.1/12/2.00	
co2 sample h	ETER/RANGE/PCT	78.7/14/.6358	65.5/ 14/ .4393	75.1/14/.5758	
co2 bckgrd M	ETER/RANGE/PCT	14.4/ 14/ .0494	14.6/ 14/ .0502	15.0/ 14/ .0519	
nox sample n	ETER/RANGE/PPM (BAG) (D)	54.6/ 1/ 13.60	26.5/ 1/ 6.64	33.9/ 1/ 8.48	
hox betsgrd h	ETER/RANGE/PPN (BAG) ETER/RANGE/PPN ETER/RANGE/PPN ETER/RANGE/PPN ETER/RANGE/PCT ETER/RANGE/PPN (BAG) (D) ETER/RANGE/PPN	.2/ 1/ .05	.2/ 1/ .05	.2/ 1/ .05	
DILUTION PAC	TOR RATION PPH RATION PPH RATION PCT RATION PPH	17.81	26.45	19 <b>.95</b>	
HC CONCENT	RATION PPH	26.73	2.55	8.05	
	BATION PPH	152.15	3.79	69.20	
CO2 COBCILIT	RATION PCT	.5892	.3910	.5266	
NUX CONCENT	KAY ION PPH	13.55	6.59	8.44	
IC NASS	GRANS GRANS GRANS GRANS IG I MPG (L/100KM)	2.154	.353	.649	
CO NASS	GRANS	23.395	1.000	10.642	
CO2 NASS	GRANS	1424.69	1623.30	1273.42	
NOX NASS	GRANS CONTRACTOR	2.917	2.438	1.816	
PUEL MASS		.490	.543	.431	
FUEL ECCEPT	( 1275 (L/100KN)	13.88 ( <b>16.95</b> )	13.45 ( 17.47)	15.80 ( 14.89)	

### 3-BK COPCETTE METELES

Ľ	6/11	.22		
<b>(1)</b>	<b>C/E</b>	2.30		
<b>HOR</b>	6/E	.63		
ne.	Scanne H	K (1/)400)	14.14	(36.64)

•

COMPUTER PROGRAM LDT 1.0-R 3-E	BAG EPA FTP VEHICLE E		PROJECT NO. 08-5343-001
VEHICLE NUMBER92PVEHICLE MODEL92 CHEVY LUMINAENGINE3.1 L (192 CID)-V-6TRANSMISSIONA3ODOMETER18211 MILES (29301 KM)	TEST L2-03-P98 DATE 2/23/93 DYNO 2 BA ACTUAL ROAD LOA TEST WEIGHT 38	RUN AG CART 2 AD 5.10 HP ( 3.80 KW) 875 LBS ( 1757 KG)	LPG FUEL DENSITY 4.139 LB/GAL H .183 C .817 O .000 X .000
BAROMETER 29.28 IN HG (743.7 MM HG) RELATIVE HUMIDITY 22.0 PCT. BAG NUMBER BAG DESCRIPTION RUN TIME SECONDS DRY/WET CORRECTION FACTOR, SAMP/BACK MEASURED DISTANCE MILES (KM) BLOWER FLOW RATE SCFM (SCMM) GAS METER FLOW RATE SCFM (SCMM) TOTAL FLOW SCF (SCM)	DRY BULB TEMPERATURE	75.0°F ( 23.9°C) 2	NOX HUMIDITY C.F822
BAG DESCRIPTION	COLD TRANSIENT ( 0-505 SEC.)	STABILIZED (505-1372 SEC.)	HOT TRANSIENT ( 0- 505 SEC.)
RUN TIME SECONDS DRY/WET CORRECTION FACTOR, SAMP/BACK	505.3 .985/.993	867.3 .988/.993	505.3 .986/.993
MEASURED DISTANCE MILES (KM) BLOWER FLOW RATE SCFM (SCMM)	3.59 ( 5.77) 557.2 (15.78)	3.87 ( 6.23) 556.5 (15.76)	3.59 ( 5.78) 556.1 (15.75)
GAS METER FLOW RATE SCFM (S <b>CHM)</b> TOTAL FLOW SCF (SCM)	.00 ( .00) 4693. ( 132.9)	.00 ( .00) 8044. ( 227.8)	.00 ( .00) 4684. ( 132.6)
HC SAMPLE METER/RANGE/PPM (BAG) HC BCKGRD METER/RANGE/PPM CO SAMPLE METER/RANGE/PPM CO BCKGRD METER/RANGE/PPM CO2 SAMPLE METER/RANGE/PCT CO2 BCKGRD METER/RANGE/PCT NOX SAMPLE METER/RANGE/PPM (BAG) (D)	60.6/ 5/ 30.37 15.5/ 5/ 7.77	22.5/ 5/ 11.28 18.6/ 5/ 9.32	34.2/ 5/ 17.14 19.8/ 5/ 9.92
CO SAMPLE METER/RANGE/PPM CO BCKGRD METER/RANGE/PPM	60.7/ 13/143.77 .7/ 13/ 1.62	3.1/ 12/ 2.95 .7/ 12/ .66	59.0/12/57.72 1.2/12/1.14
CO2 SAMPLE METER/RANGE/PCT CO2 BCKGRD METER/RANGE/PCT	78.7/14/.6358 14.7/14/.0506	64.9/ 14/ .4318 14.6/ 14/ .0502	74.7/14/.5695 14.9/14/.0515
NOX BUNGRD METER/RANGE/PPM	.0/ 1/ .20	.0/ 1/ .15	.5/ 1/ .15
DILUTION FACTOR HC CONCENTRATION PPM CO CONCENTRATION PPM CO2 CONCENTRATION PCT NOX CONCENTRATION PPM	17.80	26.83	20.15
CO CONCENTRATION PPH CO CONCENTRATION PPH CO2 CONCENTRATION PCT	139.10	2.26	55.46 5206
NOX CONCENTRATION PPH	15.16	7.89	12.49
HC MASS GRAMS	1.871	.320	.625 8 564
HC MASS GRAMS CO MASS GRAMS CO2 MASS GRAMS NOX MASS GRAMS FUEL MASS KG FUEL ECONOMY MPG (L/100KM)	1430.81	1599.18	1264.19
NUA MASS GRAMS FUEL MASS KG	.491	.535	.428
FUEL ECONOMY MPG (L/100KM)	13.71 ( 17.16)	13.58 ( 17.33)	15./8 ( 14.91)

HC	G/MI		.20			
CO	G/MI		1.98			
NOX	G/MI		.76			
FUEL	ECONOMY	MPG	(L/100KH	) 14	.16	(16.61)

SOUTHWEST RESEARCH INSTITUTE - DEPARMENT OF EMISSIONS RESEARCH						
				PROJECT NO. 08-5343-001		
VEHICLE NUMBER	92P	TEST 1.2-03-P98		LPG		
VEHICLE MODEL	92 CHEVY LUMINA	DATE 2/24/93	RUN 2	FUEL DENSITY 4.139 LB/GAL		
ENGINE	3.1 L (192 CID)-V-6	DYNO 2 BA	IG CART 2	H.183 C.817 O.000 X.000		
TRANSMISSION	13	ACTUAL ROAD LOA	D 5.10 HP ( 3.80 KW)			
ODOMETER	18240 MILES ( 29348 KM)	TEST WEIGHT 38	75 LBS ( 1757 KG)	LPG FUEL DENSITY 4.139 LB/GAL H .183 C .817 O .000 X .000		
BAROMETER 29.1 RELATIVE HUMIDI	9 IN HG (741.4 MM HG) TY 45.1 PCT. ON NDS ECTION FACTOR, SAMP/BACK FANCE MILES (KM) FATE SCFM (SCMM) W RATE SCFM (SCMM) F (SCM)	DRY BULB TEMPERATURE	76.0°F ( 24.4°C)	NOX HUMIDITY C.F942		
BAG NUMBER		1	2	3		
BAG DESCRIPTI	ON	COLD TRANSIENT	STABILIZED	HOT TRANSIENT		
		( 0-505 SEC.)	(505-1372 SEC.)	(0-505  SEC.)		
RUN TIME SECO	NDS	505.3	867.4	505.3		
DRY/WET CORRE	CTION FACTOR, SAMP/BACK	.977/.986	.980/.986	.978/.986		
MEASURED DIST	ANCE MILES (KM)	3.60 ( 5.80)	3.87 ( 6.23)	3.87 ( 6.23)		
CIC NEMED FLOW K	ATE SCIM (SCMM)	554.8 (15./1)	554.2 (15.70)	554.0 (15.69)		
GAS MEIER ILU	W KALE SCIM (SCHM)	.00 ( .00)		.00 ( .00) ·		
TOTAL FLOW SC	r (3CH)	40/2. ( 132.3)	8012. ( 228.9)	4003. ( 132.1)		
HC SAMPLE ME	TER/RANGE/PPM (BAG) TER/RANGE/PPM TER/RANGE/PPM TER/RANGE/PPT TER/RANGE/PCT TER/RANGE/PCT TER/RANGE/PPM (BAG) (D)	58.0/ 5/ 29.07	19.2/ 5/ 9.62	30.2/ 5/ 15.14		
HC BCKGRD ME	TER/RANGE/PPM	13.5/ 5/ 6.77	14.0/ 5/ 7.02	14.1/ 5/ 7.07		
CO SAMPLE ME	TER/RANGE/PPM	91.7/ 13/225.74	3.1/ 12/ 2.95	54.7/ 12/ 53.42		
CO BCKGRD ME	TER/RANGE/PPM	.2/13/ .46	.2/12/.19	.4/ 12/ .38		
CO2 SAMPLE ME	TER/RANGE/PCT	78.8/14/.6376	65.4/ 14/ .4381	74.8/14/.5711		
CO2 BCKGRD ME	TER/RANGE/PCT	13.9/ 14/ .0474	14.1/14/.0482	14.3/14/.0490		
NOX SAMPLE ME	TER/RANGE/PPM (BAG) (D)	45.0/ 1/ 11.23	26.4/ 1/ 6.62	40.8/ 1/ 10.19		
		•1/ 1/ •05	•2/ 1/ •05	.0/ 1/ .00		
DILUTION FACT	OR	17.55	26.46	20.12		
HC CONCENTR	RATION PPM	22.69	2.87	8.42		
CO CONCENTR	RATION PPM	218.66	2.70	51.58		
CO2 CONCENTR	RATION PCT	.5929	.3917	.5245		
NOX CONCENTR	OR RATION PPM RATION PCT RATION PPM	11.21	6.57	10.19		
HC MASS G		1.834	.398	680		
CO MASS G		33.682	.713	7.934		
CO2 MASS G		1436.20	1627.23	1268.80		
NOX MASS O		2.672	2.686	2.427		
FUEL MASS K		.499	.545	.429		
FUEL ECONOMY	MPG (L/100KM)	13.55 ( 17.36)	13.36 ( 17.61)	16.96 ( 13.87)		

HC	G/MI		.21		
CO	G/MI		2.61		
NOX	G/MI		.68		
FUEL	ECONOMY	MPG	(L/100KH)	)	14.30 (16.45)

COMPUTER PROGRAM			EPARMENT OF EMISSIONS ISSION RESULTS	RESEARCH PROJECT NO. 08-5343-001
VEHICLE NUMBER 92P VEHICLE MODEL 92 ENGINE 3.1 TRANSMISSION A3 ODOMETER 18	CHEVY LUMINA L (192 CID)-V-6 259 MILES ( 29378 KM)	TEST L2-03-P85 DATE 2/25/93 DYNO 2 BA ACTUAL ROAD LOA TEST WEIGHT 38	RUN 3 G CART 2 D 5.10 HP ( 3.80 KW) 75 LBS ( 1757 KG)	LPG FUEL DENSITY 4.195 LB/GAL H .180 C .820 O .000 X .000
				NOV HENTDIMU O D 1 000
BAG NUMBER BAG DESCRIPTION		1 COLD TRANSIENT ( 0-505 SEC.)	2 STABILIZED (505-1372 SEC.)	3 HOT TRANSIENT ( 0- 505 SEC.)
RUN TIME SECONDS DRY/WET CORRECTION MEASURED DISTANCE	N FACTOR, SAMP/BACK MILES (KM)	505.2 .972/.980 3.59 (5.78)	867.4 .974/.980 3.85 ( 6.20)	505.6 .973/.980 3.57 (5.74)
BLOWER FLOW RATE : GAS METER FLOW RA TOTAL FLOW SCF (SI	HG (737.6 MM HG) 2.9 PCT. N FACTOR, SAMP/BACK MILES (KM) SCFM (SCHM) FE SCFM (SCHM) CM)	551.3 (15.61) .00 ( .00) 4642. ( 131.5)	550.9 (15.60) .00 ( .00) 7964. ( 225.6)	550.3 (15.59) .00 ( .00) 4638. ( 131.3)
HC SAMPLE METER/I HC BCKGRD METER/I	RANGE/PPM (BAG) RANGE/PPM RANGE/PPM RANGE/PCT RANGE/PCT RANGE/PCT RANGE/PPM (BAG) (D) RANGE/PPM	68.0/ 5/ 34.08 15.1/ 5/ 7.57	19.6/ 5/ 9.82 15.5/ 5/ 7.77	29.6/ 5/ 14.83 14.8/ 5/ 7.42
CO SAMPLE METER/I CO BCKGRD METER/I CO2 SAMPLE METER/I	RANGE/PPM Range/PPM Range/PCT	59.6/14/272.20 .1/14/.40 78.7/14/.6358	4.2/12/4.00 .5/12/.47 65.8/14/.4431	78.6/ 12/ 77.84 .8/ 12/ .76 74.8/ 14/ .5711
CO2 BCKGRD METER/ NOX SAMPLE METER/ NOX BCKGRD METER/	RANGE/PCT RANGE/PPM (BAG) (D) RANGE/PPM	13.6/14/.0462 34.5/1/8.63 .0/1/.00	13.5/14/.0458 19.9/1/4.99 .0/1/.00	13.8/14/.0470 30.3/1/7.59 .1/1/.03
DILUTION FACTOR HC CONCENTRATION	1 PPM	17.62 26.94	26.38 2.35	20.22
CO CONCENTRATIO CO2 CONCENTRATIO NOX CONCENTRATIO	n PPM N PPM N PCT N PPM	262.30 .5923 8.63	3.43 .3991 4.99	74.52 .5264 7.57
HC MASS GRAMS CO MASS GRAMS		2.156 40.144	.323	.622 11.394
CO2 MASS GRAMS NOX MASS GRAMS FILEL MASS KG	(L/100 <b>KM</b> )	1425.50 2.305 498	1648.08 2.288	1265.79 2.018
FUEL ECONOMY MPG	(L/100KM)	13.72 ( 17.14)	13.34 ( 17.63)	15.87 ( 14.82)

HC	G/MI	.22	
C0	G/MI	3.32	
NOX	G/MI	.60	
FUEL	ECONOMY	MPG (L/100KM	) 14.05 (16.74)

COMPUTER PROGRAM LDT 1.0-R 3-		ISSION RESULTS	PROJECT NO. 08-5343-001
VEHICLE NUMBER92PVEHICLE MODEL92 CHEVY LUMINAENGINE3.1 L (192 CID)-V-6TRANSMISSIONA3ODOMETER18277 MILES (29407 KM)	TEST L2-03-HD5 DATE 2/26/93 DYNO 2 BA ACTUAL ROAD LOA TEST WEIGHT 38	RUN 1 G CART 2 D 5.10 HP (3.80 KW) 375 LBS (1757 KG)	LPG FUEL DENSITY 4.053 LB/GAL H .184 C .816 O .000 X .000
BAROMETER 29.42 IN HG (747.3 MM HG) RELATIVE HUMIDITY 22.9 PCT. BAG NUMBER BAG DESCRIPTION RUN TIME SECONDS DRY/WET CORRECTION FACTOR, SAMP/BACK MEASURED DISTANCE MILES (KM) BLOWER FLOW RATE SCFM (SCMM) GAS METER FLOW RATE SCFM (SCMM) TOTAL FLOW SCF (SCM)		$\mathbf{z}_{\mathbf{x}} \wedge \mathbf{z}_{\mathbf{x}} + \mathbf{z}_{\mathbf{x}} + \mathbf{z}_{\mathbf{x}}$	
BAG DESCRIPTION	COLD TRANSIENT	STABILIZED	HOT TRANSIENT
	( 0-505 SEC.)	(505-1372 SEC.)	( 0- 505 SEC.)
RUN TIME SECONDS	505.1	867.4	505.3
DRY/WET CORRECTION FACTOR, SAMP/BACK		.989/.994	.987/.994
MEASURED DISTANCE MILES (KM)	3.58 ( 5.76)	3.85 ( 6.20)	3.58 ( 5.77)
BLOWER FLOW RATE SCFM (SCMM)	560.3 (15.87)	559.8 (15.85)	559.2 (15.84)
GAS METER FLOW RATE SCFM (SCMM)	.00 ( .00)	.00 ( .00)	.00 (`.00)´
TOTAL FLOW SCF (SCM)	4717. ( 133.6)	8093. ( 229.2)	4710. (133.4)
HC SAMPLE METER/RANGE/PPM (BAG) HC BCKGRD METER/RANGE/PPM CO SAMPLE METER/RANGE/PPM CO BCKGRD METER/RANGE/PPM CO BCKGRD METER/RANGE/PPM CO2 SAMPLE METER/RANGE/PCT NOX SAMPLE METER/RANGE/PPM (BAG) (D) NOX BCKGRD METER/RANGE/PPM DILUTION FACTOR HC CONCENTRATION PPM CO CONCENTRATION PPM CO2 CONCENTRATION PCT NOX CONCENTRATION PPM	58.5/ 5/ 29.32	18.4/ 5/ 9.22	28.2/ 5/ 14.13
HC BCKGRD METER/RANGE/PPM	12.6/ 5/ 6.31	13.3/ 5/ 6.67	12.7/ 5/ 6.36
CO SAMPLE METER/RANGE/PPM	91.7/ 13/225.74	.9/ 12/ .85	34.4/ 12/ 33.39
CO BCKGRD METER/RANGE/PPM	.1/ 13/ .23	.0/ 12/ .00	.0/ 12/ .00
CO2 SAMPLE METER/RANGE/PCT	77.3/ 14/ .6118	63.9/ 14/ .4194	73.9/ 14/ .5570
CO2 BCKGRD METER/RANGE/PCT	13.1/14/.0442	13.2/14/.0446	13.3/ 14/ .0450
NOX SAMPLE METER/RANGE/PPM (BAG) (D)	55.4/1/13.80	39.0/1/9.75	67.9/ 1/ 16.88
NUX BCKGKD METEK/KANGE/PPM	.0/ 1/ .00	.0/ 1/ .00	.0/ 1/ .00
DILUTION FACTOR	18.20	27.57	20.63
EC CONCENTRATION PPM	23.35	2.80	8.08
CO CONCENTRATION PPM	220.61	.84	32.70
CO2 CONCENTRATIÓN PCT	.5701	.3764	.5142
NOX CONCENTRATION PPM	13.80	9.75	16.88
HC MASS GRAMS	1.908	.392	.659
CO MASS GRAMS	34.308	.224	5.078
CO2 MASS GRAMS	1394.19	1579.44	1255.65
NOX MASS GRAMS	2.857	3.464	3.491
HC MASS GRAMS CO MASS GRAMS CO2 MASS GRAMS NOX MASS GRAMS FUEL MASS KG FUEL ECONOMY MPG (L/100KM)	.400 13.54 ( 17.37)	.529 13.39 ( 17.57)	.425 15.56 (15.12)

 
 HC
 G/MI
 .21

 CO
 G/MI
 2.40

 NOX
 G/MI
 .90
 FUEL ECONOMY MPG (L/100KM) 13.97 (16.84)

	SOUTHWEST	RESEARCH INSTITUTE - D	EPARMENT OF EMISSIONS	RESEARCH
COMPUTER PRO	GRAM LDT 1.0-R 3-E	AG EPA FTP VEHICLE EM	ISSION RESULTS	PROJECT NO. 08-5343-001
VEHICLE NUMBER	92P	TEST L2-00-EEE4	1	GASOLINE EM-1540-F
VEHICLE MODEL	92 CHEVY LUMINA	DATE 3/ 3/93	RUN	FUEL DENSITY 6.160 LB/GAL
ENGINE	3.1 L (192 CID)-V-6	DYNO 2 BA	G CART 2	H.134 C.866 O.000 X.000
TRANSMISSION	λ3	ACTUAL ROAD LOA	D 5.10 HP ( 3.80 KW)	
ODOMETER	18277 MILES ( 29407 KM)	TEST WEIGHT 38	75 LBS ( 1757 KG)	GASOLINE EM-1540-F FUEL DENSITY 6.160 LB/GAL H .134 C .866 0 .000 X .000
BAROMETER 29.0	5 IN HG (737.9 MM HG)	DRY BULB TEMPERATURE	74.0 F (23.3 C)	NOX HUMIDITY C.F842
RELATIVE HUMIDI	TY 27.3 PCT.	_	_	-
BAG NUMBER		1	2	3
BAG DESCRIPTI	ON	COLD TRANSIENT	STABILIZED	HOT TRANSIENT
		( 0-505 SEC.)	(505-1372 SEC.)	( 0- 505 SEC.)
RUN TIME SECO	NDS	505.2	867.6	505.4
DRY/WET CORRE	CTION FACTOR, SAMP/BACK	.986/.992	.987/.992	.986/.992
MEASURED DIST	ANCE MILES (KM)	3.63 ( 5.84)	3.90 ( 6.28)	3.61 ( 5.81)
BLOWER FLOW R	ATE SCFM (SCMM)	551.4 (15.62)	551.5 (15.62)	550.9 (15.60)
GAS METER FLO	W RATE SCFM (SCMM)	.00 ( .00)	.00 ( .00)	.00 ( .00)
TOTAL FLOW SC	TY 27.3 PCT. ON NDS CCTION FACTOR, SAMP/BACK ANCE MILES (KM) CATE SCFM (SCMM) WW RATE SCFM (SCMM) F (SCM)	4643. (131.5)	7975. (225.9)	4640. (131.4)
HC SAMPLE ME	TER/RANGE/PPM (BAG)	64.3/ 2/ 64.26	18.2/ 5/ 9.12	36.2/ 5/ 18.14
HC BCKGRD ME	TER/RANGE/PPM	5.7/ 2/ 5.70	11.4/ 5/ 5.71	12.4/ 5/ 6.21
CO SAMPLE ME	TTER/RANGE/PPM	93.8/ 14/467.49	36.9/ 12/ 35.84	54.2/ 13/127.39
CO BCKGRD ME	ETER/RANGE/PPM	.0/ 14/ .00	.0/ 12/ .00	.0/ 13/ .00
CO2 SAMPLE ME	ETER/RANGE/PCT	82.3/ 14/ .7017	69.9/ 14/ .4981	79.0/ 14/ .6411
CO2 BCKGRD ME	TTER/RANGE/PCT	13.6/ 14/ .0462	13.6/ 14/ .0462	13.8/ 14/ .0470
NOX SAMPLE ME	TER/RANGE/PPM (BAG) (D)	52.2/ 1/ 13.01	19.6/ 1/ 4.92	33.1/ 1/ 8.29
NOX BCKGRD ME	TTER/RANGE/PPM (BAG) TTER/RANGE/PPM TTER/RANGE/PPM TTER/RANGE/PPM TTER/RANGE/PCT TTER/RANGE/PPM (BAG) (D) TTER/RANGE/PPM	.0/ 1/ .00	.0/ 1/ .00	.0/ 1/ .00
DIL DUTON EL OU		17.00	26.04	20 50
DILUTION FACT		1/.89	20.84	20.58
HC CUNCENTR	ATION PPM	58.88	3.62	12.23
CU CUNCENTR	ATION PPM	45/.06	35.18	124.69
CU2 CONCENTR	ATION PCT	.6581	.4536	.5964
NOX CONCENTR	OR RATION PPM RATION PPM RATION PCT RATION PPM	13.01	4.92	8.29
HC MASS G	GRAMS GRAMS GRAMS GG MPG (L/100KM)	4.463	.471	.926
CO MASS G	GRAMS	69.960	9.251	19.076
CO2 MASS G	SRAMS	1584.13	1875.75	1434.78
NOX MASS C	FRAMS	2.754	1.789	1.753
FILET. MASS R	G	.539	.596	.463
FIEL ECONOMY	MPG (1./100KM)	18,84 ( 12,49)	18.29 ( 12.86)	21.80 (10.79)
		10.01 ( 12.17)		

HC	G/MI		.39			
C0	G/MI		6.67			
NOX	G/MI		.53			
FUEL	ECONOMY	MPG	(L/100KM)	)	19.27	(12.20)

	GRAM LDT 1.0-R 3-B		ISSION RESULTS	PROJECT NO. 08-5343-001
VEHICLE NUMBER	92P	TEST L2-00-EEE5	i i i i i i i i i i i i i i i i i i i	GASOLINE EM-1540-F
VEHICLE MODEL	92 CHEVY LUMINA	DATE 3/ 5/93	RUN	FUEL DENSITY 6.160 LB/GAL
ENGINE	3.1 L (192 CID)-V-6	DYNO 2 BA	G CART 2	H.134 C.866 O.000 X.000
TRANSMISSION	λ3	ACTUAL ROAD LOA	D 5.10 HP ( 3.80 KW)	
ODOMETER	18319 MILES ( 29475 KM)	TEST WEIGHT 38	75 LBS ( 1757 KG)	GASOLINE EM-1540-F FUEL DENSITY 6.160 LB/GAL H .134 C .866 O .000 X .000
BAROMETER 29.4 RELATIVE HUMIDI	IS IN HG (748.0 MM HG) TY 28.3 PCT. ON ON SCTION FACTOR, SAMP/BACK FANCE MILES (KM) RATE SCFM (SCMM) WW RATE SCFM (SCMM) FF (SCM)	DRY BULB TEMPERATURE	72.0°F ( 22.2°C)	NOX HUMIDITY C.F837
BAG NUMBER		1	2	3
BAG DESCRIPTI	ON	COLD TRANSIENT	STABILIZED	HOT TRANSIENT
		( 0-505 SEC.)	(505-1372 SEC.)	( 0- 505 SEC.)
RUN TIME SECO	INDS	505.2	867.4	505.8
DRY/WET CORRE	CTION FACTOR, SAMP/BACK	.985/.992	.988/.992	.986/.992
MEASURED DIST	ANCE MILES (KM)	3.63 (5.84)	3.92 ( 6.30)	3.63 ( 5.83)
BLOWER FLOW R	ATE SCFM (SCMM)	560.8 (15.88)	560.0 (15.86)	559.8 (15.85)
GAS METER FLO	W RATE SCFM (SCMM)	.00 ( .00)	.00 ( .00)	.00 ( .00)
TOTAL FLOW SC	EF (SCM)	4722. (133.7)	8096. (229.3)	4719. (133.6)
HC SAMPLE ME	TER/RANGE/PPM (BAG)	88.5/ 5/ 44.35	91.4/ 1/ 9.17	31.6/ 5/ 15.84
HC BCKGRD ME	TER/RANGE/PPM	12.0/ 5/ 6.01	62.6/ 1/ 6.28	11.8/ 5/ 5.91
CO SAMPLE ME	ETER/RANGE/PPM	59.1/ 13/139.71	33.5/ 12/ 32.50	72.9/ 12/ 71.86
CO BCKGRD ME	TTER/RANGE/PPM	.4/ 13/ .92	.1/ 12/ .09	.5/ 12/ .47
CO2 SAMPLE ME	ETER/RANGE/PCT	84.7/ 14/ .7493	70.1/ 14/ .5009	80.7/14/.6716
CO2 BCKGRD ME	ETER/RANGE/PCT	13.8/ 14/ .0470	13.7/ 14/ .0466	13.7/ 14/ .0466
NOX SAMPLE ME	TER/RANGE/PPM (BAG) (D)	73.9/ 1/ 18.38	11.1/ 1/ 2.79	17.3/ 1/ 4.34
NOX BCKGRD ME	TTER/RANGE/PPM (BAG) TTER/RANGE/PPM TTER/RANGE/PPM TTER/RANGE/PPM TTER/RANGE/PCT TTER/RANGE/PPM (BAG) (D) TTER/RANGE/PPM	.1/ 1/ .03	.2/ 1/ .05	.2/ 1/ .05
DILUTION FACT	OR	17.57	26,71	19.83
HC CONCENTR	ATION PPM	38.68	3.12	10.22
CO CONCENTR	ATION PPM	135.56	31.80	69.83
CO2 CONCENTR	RATION PCT	.7050	.4560	.6274
NOX CONCENTR	OR RATION PPM RATION PPM RATION PCT RATION PPM	18.35	2.74	.4.30
HC MASS G	GRAMS	2.982	.413	.787
CO MASS G	GRAMS	21.103	8.488	10.864
CO2 MASS G	GRAMS	1726.08	1914.30	1535.10
NOX MASS G	GRAMS	3.927	1.005	.919
FUEL MASS K	(G	.558	.608	.490
FUEL ECONOMY	GRAMS GRAMS GRAMS GRAMS GG MPG (L/100KM)	18.17 ( 12.94)	18.00 ( 13.07)	20.67 ( 11.38)

HC	G/MI	.28		
CO	G/MI	3.15		
NOX	G/MI	.43		
FUEL	ECONOMY	MPG (L/100KM)	18.71 (12.57)	

APPENDIX C

EXHAUST HYDROCARBON SPECIATION DATA

		BAG 1			BAG 2			BAG 3			FTP TOTAL	
			WGT.			WGT.			WGT.		WGT.	OZONE
COMPOUND	MG	MG/MI	%	MG	MG/MI	%	MG	MG/MI	%	MG/MI	%	MG/MI
METHANE	217	59.8	6.17	166	42.5	28.27	134	37.3	17.63	44.7	13.27	0.661
ETHYLENE	208	57.2	5.91	0	. 0.0	0.00	28	7.9	3.73	14.0	4.16	102.068
ETHANE	60	16.4	1.70	20	5.2	3.47	29	7.9	3.75	8.3	2.46	2.069
ACETYLENE	62	17.0	1,76	0	0.0	0.00	0	0.0	0.00	3.5	1.05	1.761
PROPANE	161	44.5	4.59	0	0.0	0.00	0	0.0	0.00	9.2	2.74	4.420
PROPYLENE	0	0.0	0.00	0	0.0	0.00	2	0.5	0.24	0.1	0.04	1.280
1,3-BUTADIENE	22	6.0	0.62	0	0.0	0.00	6	1.7	0.79	1.7	0.51	18.531
ISOBUTANE	35	9.5	0.98	15	3.9	2.57	20	5.5	2.59	5.5	1.63	6.620
BUTANE	28	7.6	0.78	12	3.1	<b>2.07</b>	13	3.6	1.70	4.2	1.24	4.257
1-BUTENE	16	4.5	0.47	0	0.0	0.00	2	0.4	0.20	1.1	0.31	9.385
ISOBUTYLENE	84	23.2	2.40	5	1.4	0.91	13	3.7	1.74	6.5	1.94	34.655
CIS-2-BUTENE	10	2.8	0.29	. 0	0.0	0.00	2	0.4	0.20	0.7	0.21	6.930
TRANS-2-BUTENE	10	2.8	0.29	0	0.0	0.00	4	1.1	0.51	0.9	. 0.26	8.695
BENZENE	158	43.4	4.48	31	7.9	5.29	45	12.4	5.86	16.5	4.90	6.931
TOLUENE	719	198.1	20.45	161	41.1	27.36	135	37.4	17.68	72.6	21.58	198.205
ISOPENTANE	163	44.9	4.64	0	0.0	0.00	103	28.6	13.51	17.1	5.08	23.601
1-PENTENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	.0.000
PENTANE	48	13.3	1.38	0	0.0	0.00	17	4.8	2.26	4.1	1.21	4.231
2-METHYL-1-BUTENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	. 0.0	0.00	0.000
ISOPRENE(2-METHYL-1,3-BUTADIENE)	: O	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
TRANS-2-PENTENE	0	0.0	0.00	0	0.0	0.00	- 0	0.0	· 0.00	0.0	0.00	0.000
CIS-2-PENTENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
2-METHYL-2-BUTENE	0	0.0	0.00	0	0.0	0.00	o	0.0	0.00	. 0.0	0.00	0.000
2,2-DIMETHYLBUTANE	10	2.6	0.27	0	0.0	0.00	o	0.0	0.00	0.5	0.16	0.448
CYCLOPENTENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
CYCLOPENTANE	4	1.1	0.12	0	0.0	0.00	0	0.0	0.00	0.2	0.07	0.562
3-METHYL-1-PENTENE	4	1.1	0.12	0	0.0	0.00	0	0.0	0.00	0.2	0.07	1.043
4-METHYL-1-PENTENE	4	1.1	0.12	· o	0.0	0.00	0	0.0	0.00	0.2	0.07	1.043
2,3-DIMETHYLBUTANE	16	4.5	0.47	0	0.0	0.00	0	0.0	0.00	0.9	0.28	1.001
2.3-DIMETHYL-1-BUTEN	· o	0.0	0.00	· 0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
2-METHYLPENTANE	26	7.3	0.75	0	0.0	0.00	0	0.0	0.00	1.5	0.45	2.309
4-METHYL-2-PENTENE	26	7.1	0.73	0	0.0	0.00	0	0.0	0.00	1.5	0.44	9.859
MTBE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
3-METHYLPENTANE	30	8.2	0.84	Ō	0.0	0.00	0	0.0	0.00	1.7	0.00	2.572
2-METHYL-1-PENTENE/1-HEXENE	0	0.0	0.04	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
HEXANE	24	6.7	0.69	0	0.0	0.00	8	2.2	1.05	2.0	0.00	1.952
C6 OLEFINS	24	0.0	0.00	0	0.0	0.00	0					0.000
	<u> </u>	J U.U	0.00	0	U.0	0.00	<u>  </u>	0.0	0.00	0.0	0.00	0.0

# TABLE C-1. 1992 CHEVROLET LUMINA, EM1540 BASELINE, TEST NO. L2-00-EEE2, 12/29/92

# TABLE C-1 (CONT'D). 1992 CHEVROLET LUMINA, EM1540 BASELINE, TEST NO. L2-00-EEE2, 12/29/92

		BAG 1			BAG 2			BAG 3		ļ.	TP TOTAL	and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se
			WGT.			WGT.			WGT.		WGT.	OZONE
COMPOUND	MG	MG/MI	%	MG	MG/MI	%	MG	MG/MI	%	MG/MI	%	MG/MI
2,4-DIMETHYLPENTANE	14	3.8	0.39	0	0.0	0.00	0	0.0	0.00	0.8	0.23	1.385
METHYLCYCLOPENTANE	22	6.2	0.64	0	0.0	0.00	5	1.5	0.71	1.7	0.50	0.000
CYCLOHEXANE	.0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
METHYLCYCLOPENTENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
3-METHYL-1,3-PENTADIENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
2,3-DIMETHYLPENTANE/2-METHYLHEXANE	54	15.0	1.55	0	0.0	0.00	18	5.0	2.37	4.5	1.33	5.812
CYCLOHEXENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
5-METHYL-2-HEXENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
3-METHYLHEXANE	43	11.8	1.21	0	0.0	0.00	8	2.2	1.02	3.0	0.90	4.235
2,2,4-TRIMETHYLPENTANE	312	85.9	8.87	89	22.8	15.20	77	21.4	10.14	35.5	10.56	33.035
N-HEPTANE	6	1.7	0.18	0	0.0	0.00	0	0.0	0.00	0.4	0.11	0.291
2,4,4-TRIMETHYL-1-PENTENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
2,2,4-TRIMETHYL-1-PENTENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
METHYLCYCLOHEXANE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
2.4.4-TRIMETHYL-2-PENTENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
2,4/2-5-DIMETHYLHEXANE	64	17.6	1.81	0	0.0	0.00	11	3.0	1.40	4.4	1.32	6.956
2.3.4-TRIMETHYLPENTANE	36	9.8	1.02	10	2.5	1.67	10	2.7	1.27	4.1	1.21	6.516
2.3.3-TRIMETHYLPENTANE	61	16.9	1.74	10	2.5	1.67	10	2.7	1.27	5.5	1.64	6.631
2-METHYL-3-HEPTENE	0	0.0	0.00	0	5 <b>0.0</b>	0.00	0	0.0	0.00	0.0	0.00	0.000
3,5,5-TRIMETHYL-1-HEXENE	0	0.0	0.00	0	0.0	0.00	-0	0.0	0.00	0.0	0.00	0.000
2-/4-METHYLHEPTANE	35	9.7	1.00	· 0	0.0	0.00	o	0.0	0.00	2.0	0.60	2.167
3-METHYLHEPTANE	. 0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
2,5-DIMETHYL-1,5-HEXADIENE	0	0.0	0.00	0	0.0	0.00	o	0.0	0.00	0.0	0.00	0.000
2,2,5-TRIMETHYLHEXANE	10	2.7	0.28	0	0.0	0.00	. 0	0.0	0.00	0.6	0.17	0.543
2-ETHYL-1-HEXENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
1-CIS-4-DIMETHYLCYCLOHEXANE	0	. 0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
OCTANE	15	4.3	0.44	0	0.0	0.00	. 0	0.0	0.00	0.9	0.26	0.539
2.3.5-TRIMETHYLHEXANE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
2.4-DIMETHYLHEPTANE	Ő	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
2,5/3,5-DIMETHYLHEPTANE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
ETHYLBENZENE	43	0.0 11.9	1.22	o o	0.0	0.00	0	0.0	0.00	2.5	0.73	6.632
2,3-DIMETHYLHEPTANE	. 0	0.0	0.00	0	0.0	0.00	, o	0.0	0.00	0.0	0.00	0.000
P-XYLENE/M-XYLENE	72	0.0 19.9	2.05	12	0.0 3.1	2.05	14	3.9	1.83	6.8	2.01	49.9,19
2-METHYLOCTANE	0	0.0	0.00	0	0.0	0.00	.0	0.0	0.00	0.8	0.00	0.000
	. U		0.00	0		0.00	0	0.0	0.00	0.0	0.00	0.000
4-METHYLOCTANE	-	0.0		-	0.0							1
3-METHYLOCTANE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
O-XYLENE	32	8.8	0.91	. 0	0.0	0.00	0	0.0	0.00	1.8	0.54	11.76

### TABLE C-1 (CONT'D). 1992 CHEVROLET LUMINA, EM1540 BASELINE, TEST NO. L2-00-EEE2, 12/29/92

COMPOUND NONANE TRANS-2-NONENE PROPYLBENZENE 2,3-DIMETHYLOCTANE 2,4-TRIMETHYLBENZENE SOBUTYLBENZENE DECANE 2-CYMENE NDAN(E) 3-PHENYL-1-BUTENE 4-DIETHYLBENZENE 1-METHYLBENZENE 1-METHYLBENZENE 2-DIETHYLBENZENE 2-DIETHYLBENZENE 2-DIETHYLBENZENE 2-DIETHYLBENZENE 2-DIETHYLBENZENE 2-DIETHYLBENZENE 2-DIETHYLBENZENE 2-METHYLDECANE 3ICYCLOPENTYL	MG 0 6 17 101 18 86 0 0 39 6 0 8 10 8 0 0	MG/MI 0.0 1.7 4.6 27.9 4.9 23.6 0.0 0.0 10.6 1.5 0.0 2.3 2.8 2.1	WGT. % 0.00 0.18 0.48 2.88 0.51 2.44 0.00 0.00 1.10 0.16 0.00 0.24 0.29 0.22	MG 0 0 0 13 13 0 15 0 0 0 0	MG/MI 0.0 0.0 0.0 0.0 3.4 0.0 0.0 3.9 0.0 0.0 0.0 0.0	WGT. % 0.00 0.00 0.00 0.00 2.24 0.00 0.00 2.57 0.00 0.00 0.00 0.00 0.00	MG 0 10 17 0 9 0 0 8 0 0 0 0	MG/MI 0.0 2.9 4.6 0.0 2.6 0.0 0.0 2.1 0.0 0.0 2.1	WGT. % 0.00 0.00 1.36 2.17 0.00 1.21 0.00 0.00 0.99 0.00 0.00	MG/MI 0.0 0.4 1.7 7.0 1.0 7.3 0.0 0.0 4.8 0.3 0.0	WGT. % 0.00 0.11 0.52 2.09 0.30 2.18 0.00 0.00 1.42 0.10 0.00	OZONE MG/MI 0.000 1.619 3.811 7.100 7.300 64.844 0.000 0.000 30.799 0.344
NONANE FRANS-2-NONENE PROPYLBENZENE 2,3-DIMETHYLOCTANE D-ETHYLTOLUENE 1,2,4-TRIMETHYLBENZENE SOBUTYLBENZENE DECANE P-CYMENE NDAN(E) 1-PHENYL-1-BUTENE M-DIETHYLBENZENE 1-METHYL-3-PROPYLBENZENE N-BUTYLBENZENE/P-DIETHYLBENZENE D-DIETHYLBENZENE P-METHYLBENZENE P-METHYLDECANE	0 6 17 101 18 86 0 0 39 6 0 8 10 8 10 8 0	0.0 1.7 4.6 27.9 23.6 0.0 0.0 10.6 1.5 0.0 2.3 2.8 2.1	0.00 0.18 0.48 2.88 0.51 2.44 0.00 0.00 1.10 0.16 0.00 0.24 0.29	0 0 0 13 0 15 0 0 0 0 0 0	0.0 0.0 0.0 0.0 3.4 0.0 0.0 3.9 0.0 0.0 0.0	0.00 0.00 0.00 0.00 2.24 0.00 0.00 2.57 0.00 0.00 0.00 0.00	0 0 10 17 0 9 0 0 8 0 0	0.0 0.0 2.9 4.6 0.0 2.6 0.0 0.0 2.1 0.0 0.0	0.00 0.00 1.36 2.17 0.00 1.21 0.00 0.00 0.99 0.00	0.0 0.4 1.7 7.0 1.0 7.3 0.0 0.0 4.8 0.3	0.00 0.11 0.52 2.09 0.30 2.18 0.00 0.00 1.42 0.10	0.00 1.61 3.81 7.10 7.30 64.84 0.00 0.00 30.79 0.34
TRANS-2-NONENE PROPYLBENZENE 2,3-DIMETHYLOCTANE D-ETHYLTOLUENE 1,2,4-TRIMETHYLBENZENE SOBUTYLBENZENE DECANE P-CYMENE NDAN(E) I-PHENYL-1-BUTENE M-DIETHYLBENZENE I-METHYL-3-PROPYLBENZENE N-BUTYLBENZENE/P-DIETHYLBENZENE D-DIETHYLBENZENE P-METHYLBENZENE P-METHYLDECANE	6 17 101 18 86 0 39 6 0 8 10 8 10 8 0	1.7 4.6 27.9 4.9 23.6 0.0 0.0 10.6 1.5 0.0 2.3 2.8 2.1	0.18 0.48 2.88 0.51 2.44 0.00 0.00 1.10 0.16 0.00 0.24 0.29	0 0 13 0 15 0 0 0 0 0	0.0 0.0 0.0 3.4 0.0 0.0 3.9 0.0 0.0 0.0	0.00 0.00 0.00 2.24 0.00 0.00 2.57 0.00 0.00 0.00 0.00	0 10 17 0 9 0 0 8 0 0	0.0 2.9 4.6 0.0 2.6 0.0 0.0 2.1 0.0 0.0	0.00 1.36 2.17 0.00 1.21 0.00 0.00 0.99 0.00	0.4 1.7 7.0 1.0 7.3 0.0 0.0 4.8 0.3	0.11 0.52 2.09 0.30 2.18 0.00 0.00 1.42 0.10	1.61 3.81 7.10 7.30 64.84 0.00 0.00 30.79 0.34
PROPYLBENZENE 2,3-DIMETHYLOCTANE D-ETHYLTOLUENE 1,2,4-TRIMETHYLBENZENE SOBUTYLBENZENE DECANE P-CYMENE NDAN(E) I-PHENYL-1-BUTENE M-DIETHYLBENZENE I-METHYLBENZENE N-BUTYLBENZENE/P-DIETHYLBENZENE D-DIETHYLBENZENE P-METHYLBENZENE	17 101 18 86 0 39 6 0 8 10 8 10 8 0	4.6 27.9 4.9 23.6 0.0 10.6 1.5 0.0 2.3 2.8 2.1	0.48 2.88 0.51 2.44 0.00 0.00 1.10 0.16 0.00 0.24 0.29	0 0 13 0 15 0 0 0 0 0	0.0 0.0 3.4 0.0 0.0 3.9 0.0 0.0 0.0	0.00 0.00 2.24 0.00 0.00 2.57 0.00 0.00 0.00	10 17 9 0 0 8 0 0	2.9 4.6 0.0 2.6 0.0 0.0 2.1 0.0 0.0	1.36 2.17 0.00 1.21 0.00 0.00 0.99 0.00	1.7 7.0 1.0 7.3 0.0 0.0 4.8 0.3	0.52 2.09 0.30 2.18 0.00 0.00 1.42 0.10	3.81 7.10 7.30 64.84 0.00 0.00 30.79 0.34
2,3-DIMETHYLOCTANE D-ETHYLTOLUENE I,2,4-TRIMETHYLBENZENE SOBUTYLBENZENE DECANE P-CYMENE NDAN(E) I-PHENYL-1-BUTENE M-DIETHYLBENZENE I-METHYL-3-PROPYLBENZENE N-BUTYLBENZENE/P-DIETHYLBENZENE D-DIETHYLBENZENE P-METHYLBENZENE	101 18 86 0 39 6 0 8 10 8 10 8 0	27.9 4.9 23.6 0.0 10.6 1.5 0.0 2.3 2.8 2.1	2.88 0.51 2.44 0.00 1.10 0.16 0.00 0.24 0.29	0 0 13 0 15 0 0 0 0	0.0 0.0 3.4 0.0 0.0 3.9 0.0 0.0 0.0	0.00 0.00 2.24 0.00 2.57 0.00 0.00 0.00 0.00	17 0 9 0 8 0 0	4.6 0.0 2.6 0.0 2.1 0.0 0.0	2.17 0.00 1.21 0.00 0.00 0.99 0.00	7.0 1.0 7.3 0.0 0.0 4.8 0.3	2.09 0.30 2.18 0.00 0.00 1.42 0.10	7.10 7.30 64.84 0.00 0.00 30.79 0.34
D-ETHYLTOLUENE 1,2,4-TRIMETHYLBENZENE SOBUTYLBENZENE DECANE P-CYMENE NDAN(E) 1-PHENYL-1-BUTENE 4-DIETHYLBENZENE 1-METHYL-3-PROPYLBENZENE N-BUTYLBENZENE/P-DIETHYLBENZENE D-DIETHYLBENZENE 2-METHYLBENZENE	18 86 0 39 6 0 8 10 8 0	4.9 23.6 0.0 10.6 1.5 0.0 2.3 2.8 2.1	0.51 2.44 0.00 1.10 0.16 0.00 0.24 0.29	0 13 0 15 0 0 0 0	0.0 3.4 0.0 3.9 0.0 0.0 0.0	0.00 2.24 0.00 2.57 0.00 0.00 0.00	0 9 0 8 0 0	0.0 2.6 0.0 2.1 0.0 0.0	0.00 1.21 0.00 0.00 0.99 0.00	1.0 7.3 0.0 4.8 0.3	0.30 2.18 0.00 0.00 1.42 0.10	7.30 64.84 0.00 0.00 30.79
2,4-TRIMETHYLBENZENE SOBUTYLBENZENE DECANE P-CYMENE NDAN(E) I-PHENYL-1-BUTENE M-DIETHYLBENZENE I-METHYL-3-PROPYLBENZENE N-BUTYLBENZENE/P-DIETHYLBENZENE D-DIETHYLBENZENE P-METHYLBENZENE	86 0 39 6 0 8 10 8 0	23.6 0.0 10.6 1.5 0.0 2.3 2.8 2.1	2.44 0.00 1.10 0.16 0.00 0.24 0.29	13 0 15 0 0 0 0	3.4 0.0 3.9 0.0 0.0 0.0	2.24 0.00 2.57 0.00 0.00 0.00	9 0 8 0 0	2.6 0.0 2.1 0.0 0.0	1.21 0.00 0.00 0.99 0.00	7.3 0.0 0.0 4.8 0.3	2.18 0.00 0.00 1.42 0.10	64.84 0.00 0.00 30.79 0.34
SOBUTYLBENZENE DECANE P-CYMENE NDAN(E) I-PHENYL-1-BUTENE I-DIETHYLBENZENE I-METHYL-3-PROPYLBENZENE N-BUTYLBENZENE/P-DIETHYLBENZENE D-DIETHYLBENZENE P-METHYLDECANE	0 39 6 0 8 10 8 0	0.0 0.0 10.6 1.5 0.0 2.3 2.8 2.1	0.00 0.00 1.10 0.16 0.00 0.24 0.29	0 15 0 0 0	0.0 0.0 3.9 0.0 0.0 0.0	0.00 0.00 2.57 0.00 0.00 0.00	0 0 8 0 0.	0.0 0.0 2.1 0.0 0.0	0.00 0.00 0.99 0.00	0.0 0.0 4.8 0.3	0.00 0.00 1.42 0.10	0.00 0.00 30.79 0.34
DECANE P-CYMENE NDAN(E) I-PHENYL-1-BUTENE I-DIETHYLBENZENE I-METHYL-3-PROPYLBENZENE N-BUTYLBENZENE/P-DIETHYLBENZENE D-DIETHYLBENZENE P-METHYLDECANE	0 39 6 0 8 10 8 0	0.0 10.6 1.5 0.0 2.3 2.8 2.1	0.00 1.10 0.16 0.00 0.24 0.29	0 15 0 0 0	0.0 3.9 0.0 0.0 0.0	0.00 2.57 0.00 0.00 0.00	0 8 0 0	0.0 2.1 0.0 0.0	0.00 0.99 0.00	0.0 4.8 0.3	0.00 1.42 0.10	0.00 30.79 0.34
P-CYMENE NDAN(E) I-PHENYL-1-BUTENE M-DIETHYLBENZENE I-METHYL-3-PROPYLBENZENE N-BUTYLBENZENE/P-DIETHYLBENZENE D-DIETHYLBENZENE P-METHYLDECANE	39 6 0 8 10 8 0	10.6 1.5 0.0 2.3 2.8 2.1	1.10 0.16 0.00 0.24 0.29	15 0 0 0	3.9 0.0 0.0 0.0	2.57 0.00 0.00 0.00	8 0 0	2.1 0.0 0.0	0.99 0.00	4.8 0.3	1.42 0.10	30.79 0.34
NDAN(E) I-PHENYL-1-BUTENE M-DIETHYLBENZENE I-METHYL-3-PROPYLBENZENE N-BUTYLBENZENE/P-DIETHYLBENZENE D-DIETHYLBENZENE P-METHYLDECANE	6 0 8 10 8 0	1.5 0.0 2.3 2.8 2.1	0.16 0.00 0.24 0.29	0 0 0	0.0 0.0 0.0	0.00 0.00 0.00	0	0.0 0.0	0.00	0.3	0.10	0.34
A-PHENYL-1-BUTENE A-DIETHYLBENZENE I-METHYL-3-PROPYLBENZENE N-BUTYLBENZENE/P-DIETHYLBENZENE D-DIETHYLBENZENE 2-METHYLDECANE	0 8 10 8 0	0.0 2.3 2.8 2.1	0.00 0.24 0.29	0 0 0	0.0 0.0	0.00 0.00	0.	0.0				
A-DIETHYLBENZENE I-METHYL-3-PROPYLBENZENE N-BUTYLBENZENE/P-DIETHYLBENZENE D-DIETHYLBENZENE 2-METHYLDECANE	8 10 8 0	2.3 2.8 2.1	0.24 0.29	0	0.0	0.00			· 0.00	0.0	0.00	
I-METHYL-3-PROPYLBENZENE N-BUTYLBENZENE/P-DIETHYLBENZENE D-DIETHYLBENZENE METHYLDECANE	10 8 0	2.8 2.1	0.29	0							0.00 1	0.0
N-BUTYLBENZENE/P-DIETHYLBENZENE D-DIETHYLBENZENE 2-METHYLDECANE	8	2.1		-	0.0	0.00		0.0	0.00	0.5	0.14	3.0
D-DIETHYLBENZENE P-METHYLDECANE	. 0		0.22			0.00	0	0.0	0.00	0.6	0.17	3.7
-METHYLDECANE				0	0.0	0.00	0	0.0	0.00	0.4	0.13	1.8
		0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.0
BICYCLOPENTYL	12	3.2	0.33	0	0.0	0.00	0	0.0	0.00	0.7	0.20	0.7
	0	. 0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.00
JNDECANE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.00
,3,5-TRIMETHYLBENZENE	25	6.8	0.71	· · ·	0.0	0.00	0	0.0	0.00	1.4	0.42	14.3
7 OLEFINS	: 0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.00
28-C9 OLEFINS	79	21.9	2.26	26	6.6	4.39		0.0	0.00	8.0	2.36	27.0
C9-C11 PARAFFINS, OLEFINS, AROMATICS	45	12.5	1.29	0	0.0	0.00	0	0.0	0.00	2.6	0.77	9.8
ORMALDEHYDE	43	11.8	1.21	0	0.0	0.01	0	0.0	0.02	2.5	0.73	17.5
CETALDEHYDE	• 14	3.8	0.39	1	0.2	0.12	1	0.2	0.07	0.9	0.27	5.0
ACROLEIN	4	1.0	0.10	0	0.0	0.00	0	0.0	0.00	0.2	0.06	1.4
ACETONE	9	2.5	0.25	1	0.1	0.09	2	0.6	0.28	0.2	0.22	0.4
PROPIONALDEHYDE	1	0.4	0.04	0	0.0	0.00	0	0.0	0.20	0.7	0.02	0.5
CROTONALDEHYDE	o	0.1	0.04	0	0.0	0.00	2	0.0	0.00	0.1	0.02	0.8
SOBUTYRALDEHYDE	1	0.2	0.01	0	0.0	0.00	0	0.5	0.24	0.2	0.03	0.8
AETHYL ETHYL KETONE	` ¦∣	0.2	0.02	0	0.0	0.00	. 0	0.1	0.04	0.1	0.02	0.0
BENZALDEHYDE	17	4.7	0.48	0	0.0	0.00	· 0	0.1	0.04	1.0	0.30	-0.5
IEXANALDEHYDE	3	0.8	0.48	0	0.0	0.08	-	0.1	0.05	0.3		
	3	0.8	0.08	0	0.1	0.08	1	0.1	0.07	0.3	0.08	0.9
		ана (1997) Стала стала (1997)	· ·									
						1 						ľ *

# TABLE C-2. 1992 CHEVROLET LUMINA, EM1540 BASELINE, TEST NO. L2-00-EEE3, 12/30/92

		BAG 1			BAG 2			BAG 3			FTP TOTAL	•
			WGT.			WGT.			WGT.		WGT.	OZONE
COMPOUND	MĠ	MG/MI	%	MG	MG/MI	%	MG	MG/MI	. %	MG/MI	%	MG/MI
METHANE	176	49.3	6.50	153	40.1	28.94	125	35.0	14.10	40.6	13.65	0.60
ETHYLENE	160	44.7	5.90	[.] 15	3.9	2.82	50	14.0	5.67	15.2	5.11	110.68
ETHANE	27	7.5	0.99	21	5.5	3.99	33	9.1	3.66	6.9	2.32	1.72
ACETYLENE	53	14.8	1.95	0	0.0	0.00	0	0.0	0.00	3.1	1.03	1.53
PROPANE	0	0.0	0.00	0	. 0.0	0.00	-0	0.0	0.00	0.0	0.00	0.00
PROPYLENE	0	0.0	0.00	0	0.0	0.00	29	8.2	3.30	2.3	0.76	21.21
1,3-BUTADIENE	28	7.8	1.03	0	Q.O	0.00	5	1.3	0.51	2.0	0.66	21.47
ISOBUTANE	28	7.7	1.02	9	2.4	1.77	20	5.6	2.27	. 4.4	1.48	5.33
BUTANE	21	5.8	0.76	6	1.6	1.16	13	3.7	1.50	3.1	1.03	3.12
1-BUTENE	14	3.9	0.52	0	0.0	0.00	3	0,9	0.35	1.1	0.35	9.39
ISOBUTYLENE	75	20.9	2.76	3	0.7	0.50	19	5.2	2.10	6.1	2.07	32.62
CIS-2-BUTENE	3	0.9	0.12	0	0.0	. 0.00	. 2	0.7	0.26	0.4	0.12	3.58
TRANS-2-BUTENE	9	2.6	0.35	. 0	0.0	0.02	2	0.5	0.18	0.7	0.23	6.83
BENZENE	89	25.0	3.29	33	8.7	6.28	46	12.9	5.22	13.2	4.45	5.56
TOLUENE	645	180.0	23.75	63	16.4	11.86	148	41.1	16.60	57.2	19.25	156.22
ISOPENTANE	53	14.9	1.97	50	13.0	9.38	19	5.3	2.13	11.3	. 3.79	15.54
1-PENTENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	. 0.0	0.00	0.00
PENTANE	30	8.5	1.12	10	2.7	1.97	6	1.6	0.66	3.6	1.22	3.76
2-METHYL-1-BUTENE	· 0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.00
ISOPRENE(2-METHYL-1,3-BUTADIENE)	0	0.0	0.00	0	· 0.0	0.00	0	0.0	· 0.00	0.0	0.00	0.00
TRANS-2-PENTENE	0	0.0	0.00	Ó	0.0	0.00	0	0.0	0.00	0.0	0.00	0.00
CIS-2-PENTENE	0	0.0	0.00	0	0.0	0.00	.0	0.0	0.00	0.0	0.00	0.00
2-METHYL-2-BUTENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.00
2,2-DIMETHYLBUTANE	. 0	0.0	0.00	0	0.0	0.00	. 0	0.0	0.00	0.0	0.00	0.00
CYCLOPENTENE	0	0.0	0.00	0	0.0	0.00	Ó	0.0	0.00	0.0	0.00	0.00
CYCLOPENTANE	9	2.6	0.35	· · · 0	0.0	0.00	0	0.0	0.00	0.5	0.18	1.29
3-METHYL-1-PENTENE	9	2.6	0.35	0	0.0	0.00	0	0.0	0.00	0.5	0.18	2.40
4-METHYL-1-PENTENE	9	2.6	0.35	0	0.0	0.00	0	0.0	0.00	0.5	0.18	2.40
2,3-DIMETHYLBUTANE	19	5.2	0.68	· 0	0.0	0.00	10	2.7	1.09	1.8	0.61	1.9
2,3-DIMETHYL-1-BUTENE	. 0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.0
2-METHYLPENTANE	25	6,9	0.91	. 5	1.2	0.88	19	5.2	2.11	3.5	1.18	5.3
4-METHYL-2-PENTENE	24	6.7	0.89	5	1.2	0.86	18	5.1	2.06	3.4	1.15	22.89
MTBE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.0
3-METHYLPENTANE	19	5,3	0.70	0	0.0	0.00	12	3.5	1.40	2.1	0.69	3.1
2-METHYL-1-PENTENE/1-HEXENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.0
HEXANE	17	4.7	0.62	Ō	0.0	0.00	6	1.7	0.70	1.4	0.00	1.4
C6 OLEFINS	0	0.0	0.00	0	0.0	0.00	Ō	0.0	0.00	0.0	0.49	0.00
	<u> </u>	0.0	0.00	<b>.</b>	0.0	0.00		0.0	0.00	0.0	0.00	l <u> </u>

# TABLE C-2 (CONT'D). 1992 CHEVROLET LUMINA, EM1540 BASELINE, TEST NO. L2-00-EEE3, 12/30/92

		BAG 1			BAG 2			BAG 3			FTP TOTAL	
			WGT.			WGT.			WGT.		WGT.	OZONE
COMPOUND	MG	MG/MI	%	MG	MG/MI	%	MG	MG/MI	%	MG/MI	%	MG/MI
2,4-DIMETHYLPENTANE	14	4.0	0.53	: O	0.0	0.00	0	0.0	0.00	0.8	0.28	1.473
METHYLCYCLOPENTANE	15	4.2	0.55	0	0.0	0.00	6	1.6	0.64	1.3	0.44	0.000
CYCLOHEXANE	0	0.0	0.00	. 0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
METHYLCYCLOPENTENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
3-METHYL-1,3-PENTADIENE	0	0.0	·0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.00
2,3-DIMETHYLPENTANE/2-METHYLHEXANE	37	10.4	1.37	0	0.0	0.00	16	4.3	1.75	3.4	1.13	4.36
CYCLOHEXENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
5-METHYL-2-HEXENE	0	0.0	0.00	0	0.0	0.00	0	. 0.0	0.00	0.0	0.00	0.000
3-METHYLHEXANE	25	6.9	0.91	0	0.0	0.00	10	2.9	1.15	2.2	0.74	3.090
2,2,4-TRIMETHYLPENTANE	249	69.5	9.17	34	8.8	6.38	101	28.2	11.38	26.8	9.01	24.90
N-HEPTANE	0.	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
2,4,4-TRIMETHYL-1-PENTENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.00
2,2,4-TRIMETHYL-1-PENTENE	0	0.0	0.00	0	0.0	0.00	0.	0.0	0.00	0.0	0.00	0.000
METHYLCYCLOHEXANE	5	1.5	0.20	0	0.0	0.00	0	0.0	0.00	0.3	0.10	0.57
2,4,4-TRIMETHYL-2-PENTENE	. 0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.00
2,4/2-5-DIMETHYLHEXANE	52	14.6	1.92	0	. 0.0	0.00	14	3,9	1.56	4.1	1.38	6.40
2,3,4-TRIMETHYLPENTANE	33	9.2	1.21	0	0.0	0.00	11	3.1	1.24	2.8	0.93	4.41
2,3,3-TRIMETHYLPENTANE	48	13.4	1.77	0	0.0	0.00	11	3.1	1.24	3.6	1.22	4.35
2-METHYL-3-HEPTENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
3,5,5-TRIMETHYL-1-HÉXENE	0	0.0	0.00	0	0.0	0.00	· 0	0.0	0.00	0.0	0.00	0.00
2-/4-METHYLHEPTANE	17	4.8	0.63	0	0.0	0.00	0	0.0	0.00	1.0	0.34	1.07
3-METHYLHEPTANE	6	1.6	0.21	0	0.0	0.00	0	0.0	0.00	0.3	0.11	0.32
2,5-DIMETHYL-1,5-HEXADIENE	· · 0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.00
2,2,5-TRIMETHYLHEXANE	14	3.9	0.51	0	0.0	0.00	0	0.0	0.00	0.8	0.27	0.78
2-ETHYL-1-HEXENE	0	0.0	0.00	0	0.0	0.00	o	0.0	0.00	0.0	0.00	0.000
1-CIS-4-DIMETHYLCYCLOHEXANE	· 0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	.0.00	0.000
OCTANE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.00
2.3.5-TRIMETHYLHEXANE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.00
2.4-DIMETHYLHEPTANE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
2.5/3.5-DIMETHYLHEPTANE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.00
ETHYLBENZENE	36	10.0	1.32	0	0.0	0.00	10	2.7	1.08	2.8	0.95	7.60
2.3-DIMETHYLHEPTANE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	1	0.00	5
P-XYLENE/M-XYLENE	60	16.8	2.22	0	0.0	0.00	0	0.0	0.00	0.0 3.5		0.00
2-METHYLOCTANE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00		1.18	25.80
4-METHYLOCTANE	0	0.0	0.00	0	0.0	0.00	0	0.0		0.0	0.00	0.00
3-METHYLOCTANE	0	0.0	0.00	0	0.0	0.00	0		0.00	0.0	0.00	0.00
0-XYLENE	22	6.1		8			:	0.0	. 0.00	0.0	0.00	0.000
J-AILEINE	22	0.1	0.81	0	0.0	. 0.00	0	0.0	0.00	1.3	0.43	8.189

# TABLE C-2 (CONT'D). 1992 CHEVROLET LUMINA, EM1540 BASELINE, TEST NO. L2-00-EEE3, 12/30/92

COMPOUND ONANE RANS-2-NONENE ROPYLBENZENE 3-DIMETHYLOCTANE	MG 0 7	BAG 1 MG/MI	WGT.		BAG 2			BAG 3			FTP TOTAL	
ONANE RANS-2-NONENE ROPYLBENZENE	· 0				· ·	WGT.			WGT.	`ر	WGT.	
ONANE RANS-2-NONENE ROPYLBENZENE	· 0		%	MG	MG/MI	%	MG	MG/MI	%	MG/MI	%	MG/N
RANS-2-NONENE ROPYLBENZENE	-	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.0
ROPYLBENZENE	-	1.9	0.25	0	0.0	0.00	6	1.7	0.69	0.9	0.29	3.9
	<u> </u>	3.7	0.48	11	2.7	1.98	0	0.0	0.00	2.2	0.73	4
	111	31.0	4.09	66	17.2	12.41	20	5.4	2.20	16.8	5.65	16
-ETHYLTOLUENE	21	5.8	0.76	0	0.0	0.00	0	0.0	0.00	1.2	0.40	8
2.4-TRIMETHYLBENZENE	100	28.0	3.69	26	6.8	4.91	50	14.0	5.64	13.2	4.43	116
SOBUTYLBENZENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0
ECANE	o	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0
-CYMENE	47	13.0	1.72	13	3.5	2.50	5	1.3	0.51	4.8	1.63	31
IDAN(E)	8	2.3	0.30	0	0.0	0.00	0	0.0	0.00	0.5	0.16	0
-PHENYL-1-BUTENE	. 0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0
	9	2.6	0.34	0	0.0	0.00	5	1.3	0.53	0.9	0.30	5
-METHYL-3-PROPYLBENZENE	10	2.8	0.37	0	0.0	0.00	0	0.0	0.00	0.6	0.20	3
-BUTYLBENZENE/P-DIETHYLBENZENE	. 8	2.2	0.29	0	0.0	0.00	0	0.0	0.00	0.5	0.15	1
	Ō	0.0	0.00	. 0	0.0	0.00	0	0.0	0.00	0.0	0.00	. 
-METHYLDECANE	12	3.3	0.43	0	0.0	0.00	11	3.2	1.28	1.6	0.52	1
ICYCLOPENTYL	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0
NDECANE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0
3,5-TRIMETHYLBENZENE	28	7.7	1.01	0	0.0	0.00	17	4.6	1.87	2.9	0.97	29
7 OLEFINS	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0
8-C9 OLEFINS	13	3.7	0.49	0	0.0	0.00	0	0.0	0.00	0.8	0.26	2
9-C11 PARAFFINS, OLEFINS, AROMATICS	54	15.2	2.00	0	0.0	0.00	0	0.0	0.00	3.1	1.06	11
ORMALDEHYDE	. 39	10.8	1.43	0	0.0	0.01	0	0.0	0.00	2.3	0.76	16
CETALDEHYDE	12	3.4	0.45	0	0.1	0.05	0	0.1	0.05	0.8	0.26	4
CROLEIN	4	1.1	0.15	0	0.0	0.00	o -	0.0	0.00	0.2	0.08	1
CETONE	5 11	3.2	0.42	1	0.3	0.23	3	0.8	0.32	1.0	0.35	0
ROPIONALDEHYDE	2	0.4	0.06	0	0.0	0.00	0	0.0	0.00	0.1	0.03	0
ROTONALDEHYDE	0	0.0	0.00	0	0.0	0.00	· 0	0.0	0.00	0.0	0.00	0
OBUTYRALDEHYDE	1	0.2	0.03	0	0.0	0.00	0	0.0	0.02	0.1	0.02	0
ETHYL ETHYL KETONE	. 1	0.2	0.03	0	0.0	0.00	0	0.0	0.02	0.1	0.02	0
ENZALDEHYDE	18	5.0	0.66	1 1	0.2	0.13	1	0.3	0.13	1.2	0.41	-0
EXANALDEHYDE	9	2.6	0.34	5	1.4	0.98	8	2.1	0.86	1.8	0.62	6
	· ·		•									ľ
				1			:  .					1
								•				1
				1							· ·	·

# TABLE C-3. 1992 CHEVROLET LUMINA, EM1215 TRC BASE, TEST NO. L2-00-RFA1, 12/31/92

•		BAG 1			BAG 2			BAG 3			FTP TOTAL	
			WGT.			WGT.			WGT.		WGT.	OZON
COMPOUND	MG	MG/MI	%	MG	MG/MI	%	MG	MG/MI	%	MG/MI	%	MG/M
METHANE	181	50.8	6.37	154	40.0	29.25	159	44.1	15.21	43.4	13.72	0.64
ETHYLENE	263	73.6	9.23	37	9.6	6.99	85	23.7	8.16	26.7	8.46	194.9
ETHANE	52	14.6	1.83	28	7.2	5.29	27	7.6	2.61	8.9	2.80	2.2
ACETYLENE	- 38	10.6	1.32	0	0.0	0.00	0	0.0	0.00	2.2	0.69	1.09
PROPANE	12	3.3	0.42	0	0.0	0.00	0	0.0	0.00	0.7	0.22	0.3
PROPYLENE	151	42.2	5.28	0	0.0	0.00	32	8.8	3.02	11.2	3.53	104.8
1,3-BUTADIENE	37	10.3	1.29	0	0.0	0.00	4	1.2	0.43	2.5	0.78	26.9
ISOBUTANE	6	1.6	0.20	2	0.6	0.45	2	0.4	0.15	0.8	0.24	0.9
BUTANE	71	20.0	2.50	39	10.2	7.47	46	12.8	4.42	13.0	4.10	13.2
1-BUTENE	24	6.7	0.84	0	0.0	0.00	4	1.1	0.37	1.7	0.54	15.0
ISOBUTYLENE	41	11.5	1.44	4	1.0	0.76	10	2.8	0.96	3.7	1.17	19.6
CIS-2-BUTENE	7	· 2.0	0.25	. 0	0.0	0.00	3	0.9	0.30	0.6	0.20	6.3
TRANS-2-BUTENE	8	2.2	0.28	1	0.4	0.27	1	0.2	0.08	0.7	0.23	7.0
BENZENE	104	29.0	3.63	42	. 11.0	8.04	66	18.3	6.31	16.7	5.30	7.0
TOLUENE	267	74.7	9.36	25	6.5	4.76	98	27.2	9.37	26.3	8.33	71.9
SOPENTANE	32	9.0	1.13	0	0.0	0.00	16	4.4	1.53	3.1	0.98	4.2
1-PENTENE	· · O	0.0	0.00	. 0	0.0	0.00	, O	0.0	0.00	0.0	0.00	0.0
PENTANE	17	4.8	0.60	0	0.0	0.00	17	4.7	1.60	2.3	0.72	2.3
2-METHYL-1-BUTENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.0
SOPRENE(2-METHYL-1,3-BUTADIENE)	· 0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.0
TRANS-2-PENTENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.0
CIS-2-PENTENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.0
2-METHYL-2-BUTENE	.0	0.0	0.00	0	0.0	0.00	. 0	0.0	0.00	0.0	0.00	0.0
2,2-DIMETHYLBUTANE	· 0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.0
CYCLOPENTENE	0.	0.0	0.00	0	0.0	0.00	· 0	0.0	0.00	0.0	0.00	0.0
CYCLOPENTANE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.0
3-METHYL-1-PENTENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.0
4-METHYL-1-PENTENE	. 0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.0
2,3-DIMETHYLBUTANE	29	8.0	1.01	11	2.8	2.05	22	6.2	2.13	4.8	1.52	5.1
2,3-DIMETHYL-1-BUTENE	0	0.0	0.00	0	0.0	0.00	· 0	0.0	0.00	0.0	0.00	0.0
2-METHYLPENTANE	49	13.8	1.73	12	3.2	2.32	57	15.8	5.43	8.8	2.80	13.
4-METHYL-2-PENTENE	48	13.5	1.69	12	3.1	2.26	56	15.4	5.30	8.6	2.73	57.8
MTBE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.0
3-METHYLPENTANE	50	13.9	1.74	9	2.4	1.76	35	9.6	3.30	6.8	2.14	10.2
2-METHYL-1-PENTENE/1-HEXENE	6	1.6	0.20	0	0.0	0.00	0	0.0	0.00	0.3	0.11	1.4
HEXANE	31	8.8	1.10	10	2.5	/1.83	21	5.7	1.97	4.7	1.48	4.5
C6 OLEFINS	0	0.0	0.00	. 0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.0

# TABLE C-3 (CONT'D). 1992 CHEVROLET LUMINA, EM1215 TRC BASE, TEST NO. L2-00-RFA1, 12/31/92

		BAG 1			BAG 2			BAG 3			FTP TOTAL	
			WGT.			WGT.			WGT.		WGT.	OZONE
COMPOUND	MG	MG/MI	%	MG	MG/MI	%	MG	MG/MI	%	MG/MI	%	MG/MI
2,4-DIMETHYLPENTANE	5	1.5	0.18	0	0.0	0.00	0	0.0	0.00	0.3	0.10	0.541
METHYLCYCLOPENTANE	16	4.5	0.56	0	0.0	0.00	13	3.5	1.22	1.9	0.60	0.000
CYCLOHEXANE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
METHYLCYCLOPENTENE	0	0.0	0.00	0	0,0	0.00	0	0.0	0.00	0.0	0.00	0.000
3-METHYL-1,3-PENTADIENE	· 0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
2,3-DIMETHYLPENTANE/2-METHYLHEXANE	53	14.9	1.87	15	4.0	2.91	23	6.3	2.16	6.9	2.18	8.947
CYCLOHEXENE	. 0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
5-METHYL-2-HEXENE	· 0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
3-METHYLHEXANE	24	6.7	0.84	0	0.0	0.00	14	4.0	1.37	2.5	0.78	3.469
2,2,4-TRIMETHYLPENTANE	52	14.6	1.82	24	6.4	4.65	20	5.6	1.94	7.9	2.48	7.304
N-HEPTANE	16	4.6	0.57	0	0.0	0.00	8	2.1	0.73	1.5	0.48	1.240
2,4,4-TRIMETHYL-1-PENTENE	• 0	0.0	0.00	0	0.0	0.00	0	.0.0	0.00	0.0	0.00	0.000
2,2,4-TRIMETHYL-1-PENTENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
METHYLCYCLOHEXANE	10	2.7	0.34	0	0.0	0.00	0	0.0	0.00	0.6	0.18	1.041
2,4,4-TRIMETHYL-2-PENTENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
2,4/2-5-DIMETHYLHEXANE	16	4.6	0.57	0	0.0	0.00	0	0.0	0.00	0.9	0.30	1.485
2,3,4-TRIMETHYLPENTANE	0	0.0	0.00	0	0.0	0.00	6	1.7	0.57	0.5	0.15	0.735
2,3,3-TRIMETHYLPENTANE	0	0.0	0.00	0	0.0	0.00	6	1.7	0.57	0.5	0.15	0.551
2-METHYL-3-HEPTENE	· · · 0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
3,5,5-TRIMETHYL-1-HEXENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
2-/4-METHYLHEPTANE	33	9.1	1.15	0	0.0	0.00	15	4.2	1.44	3.0	0.96	3.287
3-METHYLHEPTANE	20	5.5	0.69	0	0.0	0.00	9	2.4	0.84	1.8	0.57	1.795
2,5-DIMETHYL-1,5-HEXADIENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
2,2,5-TRIMETHYLHEXANE	9	2.4	0.30	0	0.0	0.00	. 0	0.0	0.00	0.5	0.16	0.488
2-ETHYL-1-HEXENE	· · · 0	0.0	0.00	0	0.0	0.00	. 0	0.0	0.00	0.0	0.00	0.000
1-CIS-4-DIMETHYLCYCLOHEXANE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
OCTANE	10	2.9	0.36	0	0.0	0.00	0	0.0	0.00	0.6	0.19	0.362
2.3.5-TRIMETHYLHEXANE	0	0.0	0.00	0	0.0	0.00	Ó	0.0	0.00	0.0	0.00	0.000
2.4-DIMETHYLHEPTANE	0	0.0	0.00	0	0.0	0.00	o	0.0	0.00	0.0	0.00	0,000
2,5/3,5-DIMETHYLHEPTANE	. 0	0.0	0.00	0	0.0	0.00	Ō	0.0	0.00	0.0	0.00	0.000
ETHYLBENZENE	108	30.4	3.81	8	2.1	1.55	21	5.7	1.98	9.0	2.84	24.234
2.3-DIMETHYLHEPTANE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
P-XYLENE/M-XYLENE	257	71.9	9.00	21	5.5	4.05	53	14.6	5.05	21.8	6.89	160.840
2-METHYLOCTANE	.0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
4-METHYLOCTANE	0	0.0	0.00	0	0.0	0.00	ů č	0.0	0.00	0.0	0.00	0.000
3-METHYLOCTANE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
0-XYLENE	97	27.0	3.39	8	2.2	1.59	15	4.3	1.48	0.0 7.9	2.50	1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St. 1 St.
	91		5.38	•	2.2	1.08	15	4.3	1.48	1.9	2.30	51.095

### TABLE C-3 (CONT'D). 1992 CHEVROLET LUMINA, EM1215 TRC BASE, TEST NO. L2-00-RFA1, 12/31/92

		. N				
				1.1		

				1	1		1		1			
		BAG 1			BAG 2			BAG 3		<u> (de la contratta</u>	FTP TOTAL	
			WGT.			WGT.			WGT.	·	WGT.	OZONE
COMPOUND	MG	MG/MI	%	MG	MG/MI	%	MG	MG/MI	%	MG/MI	%	MG/MI
NONANE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
TRANS-2-NONENE	6	1.8	0.22	0	0.0	0.00	0	0.0	0.00	0.4	0.12	1.689
PROPYLBENZENE	16	4.6	0.58	0	0.0	0.00	12	3.3	1.14	1.9	0.59	4.060
2,3-DIMETHYLOCTANE	125	35.1	4.39	48	12.4	9.05	20	5.6	1.95	15.2	4.82	15.376
O-ETHYLTOLUENE	26	7.2	0.91	0	0.0	0.00	0	0.0	0.00	1.5	0.47	10.798
1,2,4-TRIMETHYLBENZENE	118	32.9	4.13	10	2.6	1.89	23	6.4	2.21	9.9	3.14	87.671
SOBUTYLBENZENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
DECANE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
P-CYMENE	42	11.9	1.49	0	0.0	0.00	11	3.0	1.05	3.3	1.04	21.258
INDAN(E)	- 10	2.7	0.34	0	0.0	0.00	0	0.0	0.00	0.6	0.18	0.603
4-PHENYL-1-BUTENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
M-DIETHYLBENZENE	- 13	3.5	0.44	0	0.0	0.00	0	0.0	0.00	0.7	0.23	4.688
1-METHYL-3-PROPYLBENZENE	14	3.8	0.47	0	0.0	0.00	0	0.0	0.00	0.8	0.25	5.056
N-BUTYLBENZENE/P-DIETHYLBENZENE	11	3.0	0.37	0	0.0	0.00	0	0.0	0.00	0.6	0,20	2.575
O-DIETHYLBENZENE	0	0.0	0.00	0	. 0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
2-METHYLDECANE	17	4.6	0.58	0	0.0	0.00	0	0.0	0.00	1.0	0.30	1.121
BICYCLOPENTYL	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
UNDECANE	. 0	<b>0.0</b>	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
1,3,5-TRIMETHYLBENZENE	25	7.0	0.87	0	0.0	0.00	6	1.7	0.59	1.9	0.61	19.364
C7 OLEFINS	. 13	3.5	0.44	0	0.0	0.00	. 0	0.0	0.00	0.7	0.23	3.275
C8-C9 OLEFINS	- 47	13.2	1.66	0	0.0	0.00	0	0.0	0.00	2.7	0.87	9.310
C9-C11 PARAFFINS, OLEFINS, AROMATICS	14	3.9	0.49	0	0.0	0.00	0	0.0	0.00	0.8	0.26	3.086
FORMALDEHYDE	53	14.7	1.84	0	0.0	0.01	1	0.3	0.09	3.1	0.99	22.336
ACETALDEHYDE	18	5.0	0.63	2	.0.5	0.34	3	0.7	0.25	1.5	0.47	8.210
ACROLEIN	5	1.5	0.19	0	0.0	0.00	0	0.0	0.00	0.3	0.10	2.098
ACETONE	10	2.8	0.35	1	0.4	0.28	4	1.1	0.38	1.1	0.34	0.606
PROPIONALDEHYDE	· 3	0.7	0.09	0	0.0	0.00	0	0.0	0.00	0.2	0.05	0.985
CROTONALDEHYDE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
SOBUTYRALDEHYDE	1	0.3	0.04	0	0.0	0.00	1	0.2	0.06	0.1	0.04	0.629
METHYL ETHYL KETONE	·' 1	0.3	0.04	0	0.0	0.00	1	0.2	0.06	0.1	0.04	0.14
BENZALDEHYDE	- 15	4.2	0.52	1	0.2	0.13	2	0.6	0.21	1.1	0.35	-0.616
HEXANALDEHYDE	. 0	0.0	0.00	0	0.1	0.05	0	0.0	0.01	0.0	0.01	0.16
		$1 \leq n^{1/2} \leq n^{1/2}$						· .				
• * · · · · · · · · · · · · · · · · · ·	÷		<i>,</i>							•		
			· ·	·				· ·				

TABL	.E C-4. 19	92 CHE	VROLET		. 98% PR	OPANE.	TEST NO	). L2-01-	P98. 1/28	/93		
						· · · · · · · <b>·</b> ·			,			. <b>X</b>
	Ť	BAG 1		1	BAG 2		1	BAG 3			FTP TOTAL	
		DAG I	WGT.			WGT.		1	WGT.		WGT.	OZONE
COMPOUND	MG	MG/MI	%	MG	MG/MI	%	MG	MG/MI	%	MG/MI	%	MG/MI
METHANE	173	48.5	9.23	194	50.7	27.56	117	32.8	11.83	45.3	16.16	0.670
ETHYLENE	129	36.1	6.88	48	12.6	6.86	40	11.3	4.07	17.1	6.11	124.739
ETHANE	47	13.2	2.51	0	0.0	0.00	44	12.3	4.44	6.1	2.18	1.529
ACETYLENE	21	5.8	1.10	0	0.0	0.00	0	0.0	0.00	1.2	0.43	0.597
PROPANE	1269	355.5	67.69	453	118.2	64.32	740	206.6	74.63	191.8	68.44	92.050
PROPYLENE	63	17.7	3.36	. 0	0.0	0.00	0	0.0	0.00	3.7	1.31	34.456
1,3-BUTADIENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
ISOBUTANE	5	1.4	0.27	0	0.1	0.04	5	1.4	0.51	0.7	0.26	0.876
BUTANE	49	13.8	2.63	3	0.7	0.40	21	5.9	2.13	4.9	1.74	4.970
1-BUTENE	. 3	0.9	0.17	0	0.0	0.00	0	0.0	0.00	0.2	0.06	1.605
ISOBUTYLENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
CIS-2-BUTENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
TRANS-2-BUTENE	0	0.0	0.00	0	0.0	0.00	1	0.2	0.08	0.1	0.02	0.592
BENZENE	18	5.1	0.97	0	0.0	0.00	14	4.0	1.45	2.2	0.77	0.907
TOLUENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
ISOPENTANE	. 0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
1-PENTENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
PENTANE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
2-METHYL-1-BUTENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
ISOPRENE(2-METHYL-1,3-BUTADIENE)	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
TRANS-2-PENTENE	0	0.0	0.0,0	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
CIS-2-PENTENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
2-METHYL-2-BUTENE	0	0.0	0.00	. 0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
2,2-DIMETHYLBUTANE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
CYCLOPENTENE	0	0.0	0.00	. 0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
CYCLOPENTANE	0	. 0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
3-METHYL-1-PENTENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
4-METHYL-1-PENTENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
2,3-DIMETHYLBUTANE	0	0.0	0.00	0	0.0	<b></b> .00	0	0.0	0.00	0.0	0.00	0.000
2,3-DIMETHYL-1-BUTENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
2-METHYLPENTANE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
4-METHYL-2-PENTENE	. 0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
MTBE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
3-METHYLPENTANE	· 0	0.0	0.00	0	0.0	0.00	0.	0.0	0.00	0.0	0.00	0.000
2-METHYL-1-PENTENE/1-HEXENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
HEXANE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
C6 OLEFINS	· 0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000

## TABLE C-4 (CONT'D). 1992 CHEVROLET LUMINA, 98% PROPANE, TEST NO. L2-01-P98, 1/28/93

		BAG 1			BAG 2			BAG 3			FTP TOTAL	
		I	WGT.			WGT.			WGT.		WGT.	OZONE
COMPOUND	MG	MG/MI	%	MG	MG/MI	%	MG	MG/MI	%	MG/MI	%	MG/MI
2,4-DIMETHYLPENTANE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
METHYLCYCLOPENTANE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
CYCLOHEXANE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
METHYLCYCLOPENTENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
3-METHYL-1,3-PENTADIENE	0	0.0	0.00	0	0.0	0.00	. 0	0.0	0.00	0.0	0.00	0.000
2,3-DIMETHYLPENTANE/2-METHYLHEXANE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
CYCLOHEXENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
5-METHYL-2-HEXENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
3-METHYLHEXANE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
2,2,4-TRIMETHYLPENTANE	0	0.0	0.00	0	. 0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
N-HEPTANE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
2,4,4-TRIMETHYL-1-PENTENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
2,2,4-TRIMETHYL-1-PENTENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
METHYLCYCLOHEXANE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
2,4,4-TRIMETHYL-2-PENTENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
2,4/2-5-DIMETHYLHEXANE	0	0.0	0.00	0	0.0	0.00	. <b>O</b> .	0.0	0.00	0.0	0.00	0.000
2,3,4-TRIMETHYLPENTANE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
2,3,3-TRIMETHYLPENTANE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
2-METHYL-3-HEPTENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
3,5,5-TRIMETHYL-1-HEXENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
2-/4-METHYLHEPTANE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
3-METHYLHEPTANE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
2,5-DIMETHYL-1,5-HEXADIENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
2,2,5-TRIMETHYLHEXANE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
2-ETHYL-1-HEXENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
1-CIS-4-DIMETHYLCYCLOHEXANE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
OCTANE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
2,3,5-TRIMETHYLHEXANE	0	0.0	0.00	0	0.0	0.00	· 0	0.0	0.00	0.0	0.00	0.000
2,4-DIMETHYLHEPTANE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
2,5/3,5-DIMETHYLHEPTANE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
ETHYLBENZENE	. 0	0.0	0.00	0	0.0	0.00	. 0	0.0	0.00	0.0	0.00	0.000
2,3-DIMETHYLHEPTANE	0	0.0	0.00	0	· 0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
P-XYLENE/M-XYLENE	14	3.8	0.72	0	0.0	0.00	0	0.0	0.00	0.8	0.28	5,827
2-METHYLOCTANE	0	0.0	0.00	0	0.0	[·] 0.00	0	0.0	0.00	0.0	0.00	0.000
4-METHYLOCTANE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
3-METHYLOCTANE	Ó	0.0	0.00	0	0.0	0.00	. 0	0.0	0.00	0.0	0.00	0.000
O-XYLENE	6	1.7	0.32	0	0.0	0.00	0	0.0	0.00	0.3	0.12	2.230

# TABLE C-4 (CONT'D). 1992 CHEVROLET LUMINA, 98% PROPANE, TEST NO. L2-01-P98, 1/28/93

		BAG 1		~~ 다리 관리 가가 가지 않는 것이 가지 않는 것이 가지 않는 것이 가지 않는 것이 가지 않는 것이 같이	BAG 2			BAG 3			FTPTOTAL	Contraction and
			WGT.	ter e	1	WGT.		· · · ·	WGT.		WGT.	OZONE
COMPOUND	MG	MG/MI	%	MG	MG/MI	%	MG	MG/MI	%	MG/MI	%	MG/MI
NONANE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
TRANS-2-NONENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
PROPYLBENZENE	0	0.0	0.00	0	, 0.0	0.00	O	0.0	0.00	0.0	0.00	0.000
2,3-DIMETHYLOCTANE	11	3.0	0.57	0	0.0	0.00	0	0.0	0.00	0.6	0.22	0.623
O-ETHYLTOLUENE	0	0.0	0.00	0	0.0	0.00	о ^т О	0.0	0.00	0.0	0.00	0.00
1,2,4-TRIMETHYLBENZENE	23	·6.5	1.24	0	0.0	0.00	5	1.3	0.48	1.7	0.61	15.15
SOBUTYLBENZENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
DECANE	. 0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
P-CYMENE	. 5	1.3	0.25	0	0.0	0.00	0	0.0	0.00	0.3	0.10	1.76
NDAN(E)	· 0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
4-PHENYL-1-BUTENE	0	0.0	0.00	· 0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
M-DIETHYLBENZENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
1-METHYL-3-PROPYLBENZENE	0	.0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
N-BUTYLBENZENE/P-DIETHYLBENZENE	· 0	0.0	0.00	· 0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
O-DIETHYLBENZENE	.0	0.0	0.00	0	0.0	0.00	. 0	0.0	0.00	0.0	0.00	0.000
2-METHYLDECANE	. 0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
BICYCLOPENTYL	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
UNDECANE	.0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.00
1.3.5-TRIMETHYLBENZENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
C7 OLEFINS	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
C8-C9 OLEFINS	. 0	0.0	0.00	Ó	0.0	0.00	0	0.0	0.00	· 0.0	0.00	0.00
C9-C11 PARAFFINS, OLEFINS, AROMATICS	. 0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
FORMALDEHYDE	26	7.3	1.39	0	0.1	0.04	0	0.0	0.00	1.5	0.55	11.067
	8	2.3	0.43	1	0.2	0.10	1	0.3	0.09	0.6	0.23	3.52
ACROLEIN	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
ACETONE	5	1.4	0.26	4	1.1	0.58	2	0.6	0.00	1.0	0.36	0.56
PROPIONALDEHYDE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.23	0.0	0.00	0.00
CROTONALDEHYDE	· 0	0.0	0.00		0.0	0.00	0	0.0	0.00	0.0	0.00	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
SOBUTYRALDEHYDE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	1	0.00	0.00
METHYL ETHYL KETONE	0	0.0	0.01	0	0.1	0.05	0	0.1		0.1 0.1	1 C	
BENZALDEHYDE	. 0	0.0		0	0.1	0.05	0	0.1	0.03		0.03	0.09
	0	0.0	0.00	0					0.00	0.0	0.00	0.00
HEXANALDEHYDE	<b>U</b> ,	. 0.0	0.00	U	0.0	0.00	0	0.0	0.00	0.0	0.00	0.00
	tan tan	and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s	and the second								$a_{i}=\frac{1}{2}\left( \frac{1}{2}\right) \left( $	
				8	· .							
•										· ·		
						, <b>4</b>						1

## TABLE C-5. 1992 CHEVROLET LUMINA, MARKET HD5, TEST NO. L2-01-HD5, 2/2/93

		BAG 1			BAG 2			BAG 3			FTP TOTAL	
			WGT.			WGT.			WGT.		WGT.	OZONE
COMPOUND	MG	MG/MI	%	MG	MG/MI	· %	MG	MG/MI	%	MG/MI	%	MG/MI
METHANE	130	36.2	7.51	161	41.6	24.30	128	35.8	9.48	38.9	13.32	0.576
ETHYLENE	144	39.9	8.27	96	24.8	14.48	21	5.9	1.56	22.8	7.79	165.902
ETHANE	86	23.8	4.93	0	0.0	0.00	79	22.2	5.88	11.0	3.77	2.750
ACETYLENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
PROPANE	1251	347.6	72.06	399	102.9	60.11	1073	300.5	79.49	207.5	71.05	99.602
PROPYLENE	59	16.4	3.39	0	0.0	0.00	9	2.6	0.70	4.1	1.41	38.585
1,3-BUTADIENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
ISOBUTANE	10	2.8	0.57	0	0.1	0.06	8	2.1	0.56	1.2	0.41	1.460
BUTANE	13	3.7	0.76	0	0.0	0.01	6	1.7	0.44	1.2	0.42	1.248
1-BUTENE	3	0.9	0.18	0	0.0	0.00	0	0.0	0.00	0.2	0.06	1.588
ISOBUTYLENE	2	0.4	0.09	0	0.0	0.00	0	0.0	0.00	0.1	0.03	0.473
CIS-2-BUTENE	. 0	0.0	0.00	.0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
TRANS-2-BUTENE	0.	0.0	0.00	0	· 0.0 ·	0.00	0	0.0	0.00	0.0	0.00	0.000
BENZENE	2	0.7	0.14	4	0.9	0.55	0	0.0	0.00	0.6	0.22	0.267
TOLUENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	.0.0	0.00	0.000
ISOPENTANE	19	5.2	1.09	0	0.0	0.00	0	0.0	0.00	1.1	0.37	1.498
1-PENTENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
PENTANE	15	4.1	0.86	0	0.0	0.00	. 0	0.0	0.00	0.9	0.29	0.890
2-METHYL-1-BUTENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
ISOPRENE(2-METHYL-1,3-BUTADIENE)	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
TRANS-2-PENTENE	· 0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
CIS-2-PENTENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
2-METHYL-2-BUTENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
2.2-DIMETHYLBUTANE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
CYCLOPENTENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
CYCLOPENTANE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
3-METHYL-1-PENTENE	· 0	. 0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
4-METHYL-1-PENTENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
2.3-DIMETHYLBUTANE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
2.3-DIMETHYL-1-BUTENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
2METHYLPENTANE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
4-METHYL-2-PENTENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
MTBE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
3-METHYLPENTANE		0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
2-METHYL-1-PENTENE/1-HEXENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
HEXANE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
C6 OLEFINS	0	0.0	0.00	o o	0.0	0.00	0 °	0.0	0.00	0.0	0.00	0.000
			0.00	UU	0.0	0.00	. <u> </u>	0.0	0.00	0.0	0,00	0.000

## TABLE C-5 (CONT'D). 1992 CHEVROLET LUMINA, MARKET HD5, TEST NO. L2-01-HD5, 2/2/93

		BAG 1			BAG 2			BAG 3			FTP TOTAL	
			WGT.			WGT.			WGT.		WGT.	OZONE
COMPOUND	MG	MG/MI	%	MG	MG/MI	%	MG	MG/MI	%	MG/MI	%	MG/MI
2,4-DIMETHYLPENTANE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
METHYLCYCLOPENTANE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
CYCLOHEXANE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
METHYLCYCLOPENTENE	0	0.0	0.00	0	0.0	0.00	· · O	0.0	0.00	0.0	0.00	0.000
3-METHYL-1,3-PENTADIENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
2,3-DIMETHYLPENTANE/2-METHYLHEXANE	. 0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
CYCLOHEXENE	. 0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
5-METHYL-2-HEXENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
3-METHYLHEXANE	0	0.0	0.00	. 0	0.0	0.00	Ö	0.0	0.00	0.0	0.00	0.000
2,2,4-TRIMETHYLPENTANE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
N-HEPTANE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
2,4,4-TRIMETHYL-1-PENTENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
2,2,4-TRIMETHYL-1-PENTENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
METHYLCYCLOHEXANE	· · 0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
2,4,4-TRIMETHYL-2-PENTENE	· 0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
2,4/2-5-DIMETHYLHEXANE	· 0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
2,3,4-TRIMETHYLPENTANE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
2,3,3-TRIMETHYLPENTANE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
2-METHYL-3-HEPTENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
3,5,5-TRIMETHYL-1-HEXENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
2-/4-METHYLHEPTANE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
3-METHYLHEPTANE	· · 0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
2,5-DIMETHYL-1,5-HEXADIENE	. 0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
2,2,5-TRIMETHYLHEXANE	· · · O	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
2-ETHYL-1-HEXENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
1-CIS-4-DIMETHYLCYCLOHEXANE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
OCTANE	Ó	0.0	0.00	0	0.0	0.00	· 0	0.0	0.00	0.0	0.00	0.000
2,3,5-TRIMETHYLHEXANE	· 0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
2,4-DIMETHYLHEPTANE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
2,5/3,5-DIMETHYLHEPTANE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
ETHYLBENZENE	. 0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
2,3-DIMETHYLHEPTANE	Ö	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
P-XYLENE/M-XYLENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.8	0.28	0.000
2-METHYLOCTANE	0	0.0	0.00	0	0.0	0.00	Ó	0.0	0.00	0.0	0.00	0.000
4-METHYLOCTANE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
3-METHYLOCTANE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
O-XYLENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.3	0.12	0.000

ł

## TABLE C-5 (CONT'D). 1992 CHEVROLET LUMINA, MARKET HD5, TEST NO. L2-01-HD5, 2/2/93

		BAG 1			BAG 2			BAG 3			FTP TOTAL	
1. A			WGT.			WGT.			WGT.	<u></u>	WGT.	OZONE
COMPOUND	MG	MG/MI	%	MG	MG/MI	%	MG	MG/MI	%	MG/MI	%	MG/MI
NONANE	Ō	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.00
TRANS-2-NONENE	0	0.0	0.00	0	0.0	0.00	0	<b>0.0</b>	0.00	0.0	0.00	0.00
PROPYLBENZENE	.0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.00
2,3-DIMETHYLOCTANE	Ó	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.00
O-ETHYLTOLUENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.00
1,2,4-TRIMETHYLBENZENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.00
ISOBUTYLBENZENE	. 0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	. 0.0	0.00	0.00
DECANE	0	0.0	0.00	0	0.0	0.00	o	0.0	0.00	0.0	0.00	0.00
P-CYMENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.00
INDAN(E)	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.00
4-PHENYL-1-BUTENE	. 0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.00
M-DIETHYLBENZENE	0	0.0	0.00	0	0.0	0.00	o	0.0	0.00	0.0	0.00	0.00
1-METHYL-3-PROPYLBENZENE	0	0.0	0.00	0	0.0	0.00	Ó	0.0	0.00	0.0	0.00	0.00
N-BUTYLBENZENE/P-DIETHYLBENZENE	0	0.0	0.00	0	0.0	0.00	o	0.0	0.00	0.0	0.00	0.00
O-DIETHYLBENZENE	· 0	0.0	0.00	0	0.0.	0.00	0	0.0	0.00	0.0	0.00	0.00
2-METHYLDECANE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.00
BICYCLOPENTYL	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.00
UNDECANE	0	0.0	0.00	Ó	0.0	0.00	0	0.0	0.00	0.0	0.00	0.00
1,3,5-TRIMETHYLBENZENE	0	0.0	0.00	. o	0.0	0.00	0	0.0	0.00	0.0	0.00	0.00
C7 OLEFINS	0	0.0	0.00	2	0.5	0.26	23	6.3	1.67	2.0	0.67	8.84
C8-C9 OLEFINS	. 0	0,0	0.00	Ö	0.0	0.00	0	0.0	0.00	0.0	0.00	0.00
C9-C11 PARAFFINS, OLEFINS, AROMATICS	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.00
FORMALDEHYDE	0	0.0	0.00	0	0.1	0.04	1	0.2	0.04	0.1	0.03	0.58
ACETALDEHYDE	0	0.0	0.01	1	0.3	0.18	1	0.2	0.06	0.2	0.08	1.26
ACROLEIN	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.00
ACETONE	2	0.5	0.10	0	0.0	0.00	1	0.4	0.11	0.2	0.07	0.11
PROPIONALDEHYDE	0	0.0	0.00	. 0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.00
CROTONALDEHYDE	0	0.0	0.00	. 0	0.0	0.00	o	0.0	0.00	0.0	0.00	0.00
SOBUTYRALDEHYDE	0	0.1	0.02	0	.0.0	0.00	0	0.0	0.00	0.0	0.01	0.09
METHYL ETHYL KETONE	0	0.1	0.02	0	0.0	0.00	o	0.0	0.00	0.0	0.01	0.02
BENZALDEHYDE	. 0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.00
HEXANALDEHYDE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.00
					1							
C	• •										· .	
1		на стали стали стали стали стали стали стали стали стали стали стали стали стали стали стали стали стали стали На стали стали стали стали стали стали стали стали стали стали стали стали стали стали стали стали стали стали с						1. 1.			1	
				:								
· · · · · · · · · · · · · · · · · · ·			Í	<u> </u> .		-						

		BAG 1			BAG 2	I		BAG 3			FTP TOTAL	
		•	WGT.			WGT.			WGT.		WGT.	OZONE
COMPOUND	MG	MG/MI	%	MG	MG/MI	%	MG	MG/MI	%	MG/MI	%	MG/MI
/ETHANE	181	50.5	10.32	130	33.7	40.26	130	36.2	21.40	37.9	19.82	0.560
THYLENE	131	36.4	7.45	0	0.0	0.00	2	0.5	0.31	7.7	4.02	55.980
ETHANE	27	7.6	1.55	24	6.2	7.42	24	6.6	3.93	6.6	3.46	1.654
CETYLENE	4	1.2	0.25	0	0.0	0.00	0	0.0	0.00	0.2	0.13	0.125
PROPANE	1145	319.0	65.22	159	41.2	49.16	428	119.2	70.46	120.1	62.84	57.625
ROPYLENE	73	20.3	4.15	0	0.0	0.00	0	0.0	0.00	4.2	2.20	39.444
,3-BUTADIENE	2	0.6	0.13	0	0.0	0.00	0	0.0	0.00	0.1	0.07	1.408
SOBUTANE	3	1.0	0.20	0	0.1	0.08	1	0.3	0.17	0.3	0.16	0.374
BUTANE	42	11.6	2.37	1.	0.2	0.26	7	2.0	1.16	3.1	1.60	3.113
-BUTENE	4	1.1	0.22	0	0.0	0.00	0	0.0	0.00	0.2	0.12	1.991
SOBUTYLENE	. 2	0.4	0.09	0	0.0	0.00	0	0.0	0.00	0.1	0.05	0.475
CIS-2-BUTENE	. 0	0.0	0.01	0	0.1	0.06	1	0.3	0.15	0.1	0.06	1.072
RANS-2-BUTENE	0	0.0	0.00	Ó	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
BENZENE	13	3.5	0.72	0	0.0	0.00	0	0.0	0.00	0.7	0.38	0.305
OLUENE	10	2.9	0.60	0	0.0	0.00	0	0.0	0.00	0.6	0.32	1.652
SOPENTANE	-5	1.5	0.30	0	0.0	0.00	0	0.0	0.00	0.3	0.16	0.421
-PENTENE	Ö	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
PENTANE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
-METHYL-1-BUTENE	. 0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
SOPRENE(2-METHYL-1,3-BUTADIENE)	· 0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
RANS-2-PENTENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
XIS-2-PENTENE	. 0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
-METHYL-2-BUTENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
2.2-DIMETHYLBUTANE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
YCLOPENTENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
YCLOPENTANE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
-METHYL-1-PENTENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
-METHYL-1-PENTENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
3-DIMETHYLBUTANE	· 0	0.0	0.00	o	0.0	0.00	o	0.0	0.00	0.0	0.00	0.000
3-DIMETHYL-1-BUTENE	· 0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
-METHYLPENTANE	4	1.2	0.25	0	0.0	0.00	0	0.0	0.00	0.2	0.13	0.382
-METHYL-2-PENTENE	4	1.2	0.24	0	0.0	0.00	o	0.0	0.00	0.2	0.13	1.630
ITBE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
-METHYLPENTANE	5	1.5	0.31	0	0.0	0.00	0	0.0	0.00	0.3	0.16	0.471
-METHYL-1-PENTENE/1-HEXENE	0	. 0.0	0.00	0	0.0	0.00	Ō	0.0	0.00	0.0	0.00	0.000
IEXANE	° O	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
6 OLEFINS	0	0.0	0.00	Ő	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000

## TABLE C-6 (CONT'D). 1992 CHEVROLET LUMINA, 98% PROPANE, TEST NO. L2-03-P98, 2/23/93

	÷.,	.*		11			· :	4. A			<b>1</b>	
		BAG 1			BAG 2			BAG 3			FTP TOTAL	
			WGT.			WGT.		•	WGT.		WGT.	OZONE
COMPOUND	MG	MG/MI	%	MG	MG/MI	%	MG	MG/MI	%	MG/MI	%	MG/MI
2,4-DIMETHYLPENTANE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.00
METHYLCYCLOPENTANE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.00
CYCLOHEXANE	. 0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.00
METHYLCYCLOPENTENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.00
B-METHYL-1,3-PENTADIENE	. 0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.00
2,3-DIMETHYLPENTANE/2-METHYLHEXANE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.00
YCLOHEXENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.00
-METHYL-2-HEXENE	0	0.0	0.00	0	0.0	0.00	<b>o</b>	0.0	0.00	0.0	0.00	0.00
-METHYLHEXANE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.00
2,2,4-TRIMETHYLPENTANE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.00
N-HEPTANE	· . O	0.0	0.00	0	0.0	0.00	o	0.0	0.00	0.0	0.00	0.00
2,4,4-TRIMETHYL-1-PENTENE	0	0.0	0.00	0	0.0	0.00	o	0.0	0.00	0.0	0.00	0.00
2,2,4TRIMETHYL-1-PENTENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.00
METHYLCYCLOHEXANE	. 0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.00
.4.4-TRIMETHYL-2-PENTENE	. 0	0.0	0.00	0	0.0	0.00	· 0	0.0	0.00	0.0	0.00	0.00
2,4/2-5-DIMETHYLHEXANE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.00
.3.4-TRIMETHYLPENTANE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.00
3,3-TRIMETHYLPENTANE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.00
	. 0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.00
3.5.5-TRIMETHYL-1-HEXENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.00
	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.00
-METHYLHEPTANE	Ö	0.0	0.00	0	0.0	0.00	· o	0.0	0.00	0.0	0.00	0.00
2.5-DIMETHYL-1.5-HEXADIENE	. 0	0.0	0.00	0	0.0	0.00	· 0	0.0	0.00	0.0	0.00	0.00
2,5-TRIMETHYLHEXANE	ő	0.0	0.00	Ő	0.0	0.00	0	0.0	0.00	0.0		0.00
-ETHYL-1-HEXENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	
	0	0.0	0.00	o o	0.0	0.00	0	0.0	0.00		0.00	0.00
OCTANE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0 0.0	0.00	0.00
.3.5-TRIMETHYLHEXANE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00		0.00	0.00
	0	0.0	0.00	o			0			0.0	0.00	0.00
.5/3.5-DIMETHYLHEPTANE	- Ö	0.0	0.00	0	0.0	0.00	1 1	0.0	0.00	0.0	0.00	. 0.00
THYLBENZENE	5	1.4	0.00	3	0.0	0.00	0	0.0	0.00	0.0	0.00	0.00
.3-DIMETHYLHEPTANE	. 5	0.0	0.28	0	0.0	0.00	0	0.0	0.00	0.3	0.15	0.7
-XYLENE/M-XYLENE	12	3.4	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.00
-METHYLOCTANE	0	0.0		3	0.0	0.00	5	1.5	0.90	. 1.1	0,59	8.3
-METHYLOCTANE -METHYLOCTANE	0		0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.00
	•	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.00
	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.00
D-XYLENE	5	1.3	· 0.27	0	0.0	0.00	0	0.0	0.00	0.3	0.14	1.74

		BAG 1			BAG 2			BAG 3			FTP TOTAL	-
			WGT.		<u> </u>	WGT.			WGT.		WGT.	OZONE
COMPOUND	MG	MG/MI	%	MG	MG/MI	%	MG	MG/MI	%	MG/MI	%	MG/MI
NONANE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
TRANS-2-NONENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
PROPYLBENZENE	0	0.0	0.00	0	0.0	0.00	, 0	0.0	0.00	0.0	0.00	0.000
2,3-DIMETHYLOCTANE	7	2.0	0.41	0	0.0	0.00	0	0.0	0.00	0.4	0.22	0.416
O-ETHYLTOLUENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
1,2,4-TRIMETHYLBENZENE	17	4.8	0.99	7	1.7	2.07	6	1.6	0.97	2.3	1.23	20.715
ISOBUTYLBENZENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
DECANE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
P. CYMENE	7	1 10	0.40		م ا	0.00	0	0.0	0.00	0.4	0.21	0 502

## TABLE C-6 (CONT'D). 1992 CHEVROLET LUMINA, 98% PROPANE, TEST NO. L2-03-P98, 2/23/93

2,3-DIMETHTLOCTAINE	'	2.0	0.41	1 <b>v</b>	0.0	0.00	, v	0.0	0.00	. 0.4	0.22	0.410
O-ETHYLTOLUENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
1,2,4-TRIMETHYLBENZENE	. 17	4.8	0.99	7	1.7	2.07	6	1.6	0.97	2.3	1.23	20.715
ISOBUTYLBENZENE	. 0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
DECANE	• 0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
P-CYMENE	7	1.9	0.40	0	0.0	0.00	0	0.0	0.00	0.4	0.21	2.583
INDAN(E)	· 0	0.0	0.00	0	0.0	0.00	÷0	0.0	0.00	0.0	0.00	0.000
4-PHENYL-1-BUTENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
M-DIETHYLBENZENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
1-METHYL-3-PROPYLBENZENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
N-BUTYLBENZENE/P-DIETHYLBENZENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
O-DIETHYLBENZENE	. 0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	··· 0.0	0.00	0.000
2-METHYLDECANE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
BICYCLOPENTYL	0	0.0	0.00	0	0.0	0.00	.0	. 0.0	0.00	0.0	0.00	0.000
UNDECANE	0	. 0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
1,3,5-TRIMETHYLBENZENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
C7 OLEFINS	0	0.0	. 0.00	. 0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
C8-C9 OLEFINS	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
C9-C11 PARAFFINS, OLEFINS, AROMATICS	5	1.4	0.28	0	0.0	0.00	0	0.0	0.00	0.3	0.15	1.067
FORMALDEHYDE	26	7.4	1.50	0	0.0	0.00	0	0.0	0.00	1.5	0.80	10.889
ACETALDEHYDE	8	2.2	0.46	0	0.0	0.00	0	0.0	0.00	0.5	0.24	2.549
ACROLEIN	2	0.7	0.13	0	0.0	0.00	. 0	0.0	0.00	0.1	0.07	0.917
ACETONE	4	1.0	0.21	2	0.5	0.61	3	0.8	0.50	0.7	0.37	0.396
PROPIONALDEHYDE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
CROTONALDEHYDE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	. 0.000
ISOBUTYRALDEHYDE	0	0.1	0.02	0	0.0	0.04	0	0.1	0.03	0.0	0.03	0.261
METHYL ETHYL KETONE	· 0·	0.1	0.02	0	0.0	0.04	. 0	0.1	0.03	0.0	0.03	0.059
BENZALDEHYDE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
HEXANALDEHYDE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
		· .		. · · · ·						-	×	
								1				
×	-											
	· · · · · · · · · · · · · · · · · · ·											·

		BAG 1			BAG 2			BAG 3			FTP TOTAL	
			WGT.	1		WGT.			WGT.		WGT.	OZONE
COMPOUND	MG	MG/MI	%	MG	MG/MI	%	MG	MG/MI	%	MG/MI	%	MG/MI
METHANE	210	58.7	12.36	132	34.4	41.57	107	30.0	19.07	38.2	20.71	0.566
ETHYLENE	128	35.8	7.53	0	0.0	0.00	0	0.0	0.00	7.4	4.02	54.049
ETHANE	43	11.9	2.51	51	13.3	16.10	33	9.1	5.77	11.9	6.43	2.965
ACETYLENE	27	7.5	1.58	0	0.0	0.00	0	0.0	0.00	1.6	0.84	0.778
PROPANE	1133	316.5	66.61	132	34.2	41.33	412	115.0	73.15	114.9	62.27	55.143
PROPYLENE	67	18.7	3.93	0	0.0	0.00	0	0.0	0.00	3.9	2.10	36.415
1,3-BUTADIENE	[^] 0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
ISOBUTANE	11	3.0	0.62	0	0.0	0.05	2	0.5	0.31	0.8	0.42	0.929
BUTANE	5	1.4	0.30	0	0.1	0.11	2	0.5	0.33	0.5	0.27	0.500
1-BUTENE	2	0.7	0.14	0	0.0	0.00	0	0.0	0.00	0.1	0.07	1.205
ISOBUTYLENE	i .1	0.2	0.05	0	0.0	0.00	0	0.0	0.00	0.0	0.02	0.239
CIS-2-BUTENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
TRANS-2-BUTENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
BENZENE	0	0.0	0.00	0	0.0	0.00	0	Q.0	0.00	0.0	0.00	0.000
TOLUENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	<b>0.00</b>	0.000
ISOPENTANE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
1-PENTENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
PENTANE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
2-METHYL-1-BUTENE	0	0.0	0.00	0.	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
ISOPRENE(2-METHYL-1,3-BUTADIENE)	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
TRANS-2-PENTENE	0	0.0	[′] 0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
CIS-2-PENTENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
2-METHYL-2-BUTENE	0	0.0	0.00	0.	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
2,2-DIMETHYLBUTANE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
CYCLOPENTENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
CYCLOPENTANE	0	0.0	0.00	. 0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
3-METHYL-1-PENTENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	.0.0	0.00	0.000
4-METHYL-1-PENTENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
2,3-DIMETHYLBUTANE	. 0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
2,3-DIMETHYL-1-BUTENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
2-METHYLPENTANE	0	0.0	0.00	0	0.0	0.00	0	0.0	0,00	0.0	0.00	0.000
4-METHYL-2-PENTENE	0	0.0	0.00	O	0.0	0.00	. 0	0.0	0.00	0.0	0.00	0.000
МТВЕ	0	0.0	0.00	. 0	0.0	0.00	<b>o</b> '	0.0	0.00	0.0	0.00	0.000
3-METHYLPENTANE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
2-METHYL-1-PENTENE/1-HEXENE	<b>O</b>	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
HEXANE	· 0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
C6 OLEFINS	0	0.0	Ó.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000

## TABLE C-7. 1992 CHEVROLET LUMINA, MARKET HD5, TEST NO. L2-03-HD5, 2/26/93

## TABLE C-7 (CONT'D). 1992 CHEVROLET LUMINA, MARKET HD5, TEST NO. L2-01-HD5, 2/26/93

		<u>a de la company de la company de la company de la company de la company de la company de la company de la comp</u>	A. M.	BAG 2			BAG 3			FTPTOTAL	
	· · ·	WGT.			WGT.			WGT.		WGT.	OZONE
MG	MG/MI	%	MG	MG/MI	%	MG	MG/MI	%	MG/MI	%	MG/MI
0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
0.	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
. 0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
. 0	0:0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
0	0.0	0.00	0	· 0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
0	0.0	0.00	0	0.0	0.00	o	0.0	0.00	0.0		0.000
0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
0	0.0	0.00	. 0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0		0.000
0	0.0	0.00	0	0.0	0.00	0	0.0	0.00		1. A.	0.000
0	0.0	0.00	0	0.0	0.00	0	0.0	0.00			0.000
0	0.0	0.00	0.	0.0	0.00	0	· 0.0	0.00	0.0	0.00	0.000
. 0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.000
0	0.0	0.00	0	0,0	0.00	0	0.0	0.00	0.0	0.00	0.000
0	0.0	0.00	0	0.0	0.00	0	0.0	0.00		The second second	0.000
0	0.0	0.00	0	0.0	0.00	0	0.0	0.00			0.000
0	0.0	0.00	0	0.0	0.00	0	0.0	0.00		1 A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0.000
0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	1.1.1	0.000
Ó	0.0	0.00	0	0.0	0.00	0	0.0	0.00		10 C 10 C	0.000
0	0.0	0.00	0	0.0	0.00	0	0.0	0.00		the second second	0.000
0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	1.1		0.000
0	0.0	ó.00	0	0.0		0				1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec	0.000
· 0	0.0	0.00									0.000
. 0	0.0	0.00	0	0.0	0.00	0	and the second second second second second second second second second second second second second second second			1 A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0.000
8	2.4	0.50	0	0.0		0					3.611
0	0.0	0.00	0		0.00	0			~		0.000
0	0.0		0			-					0.000
-			8								0.000
0			8			3					0.000
		0         0.0           0         0.0           0         0.0           0         0.0           0         0.0           0         0.0           0         0.0           0         0.0           0         0.0           0         0.0           0         0.0           0         0.0           0         0.0           0         0.0           0         0.0           0         0.0           0         0.0           0         0.0           0         0.0           0         0.0           0         0.0           0         0.0           0         0.0           0         0.0           0         0.0           0         0.0           0         0.0           0         0.0           0         0.0           0         0.0           0         0.0           0         0.0           0         0.0           0         0.0           0 <t< td=""><td>MG         MG/MI         %           0         0.0         0.00           0         0.0         0.00           0         0.0         0.00           0         0.0         0.00           0         0.0         0.00           0         0.0         0.00           0         0.0         0.00           0         0.0         0.00           0         0.0         0.00           0         0.0         0.00           0         0.0         0.00           0         0.0         0.00           0         0.0         0.00           0         0.0         0.00           0         0.0         0.00           0         0.0         0.00           0         0.0         0.00           0         0.0         0.00           0         0.0         0.00           0         0.0         0.00           0         0.0         0.00           0         0.0         0.00           0         0.0         0.00           0         0.0         0.00           <t< td=""><td>MG         MG/MI         %         MG           0         0.0         0.00         0           0         0.0         0.00         0           0         0.0         0.00         0           0         0.0         0.00         0           0         0.0         0.00         0           0         0.0         0.00         0           0         0.0         0.00         0           0         0.0         0.00         0           0         0.0         0.00         0           0         0.0         0.00         0           0         0.0         0.00         0           0         0.0         0.00         0           0         0.0         0.00         0           0         0.0         0.00         0           0         0.0         0.00         0           0         0.0         0.00         0           0         0.0         0.00         0           0         0.0         0.00         0           0         0.0         0.00         0           0         0.0</td><td>MG         MG/MI         %         MG         MG/MI           0         0.0         0.00         0.00         0.00         0.00           0         0.0         0.00         0.00         0.00         0.00           0         0.0         0.00         0.00         0.00         0.00           0         0.0         0.00         0.0         0.00         0.00           0         0.0         0.00         0.0         0.00         0.00           0         0.0         0.00         0.0         0.0         0.0           0         0.0         0.00         0.0         0.0         0.0           0         0.0         0.00         0         0.0         0.0         0.0           0         0.0         0.00         0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0&lt;</td><td>MG         MG/MI         %         MG         MG/MI         %           0         0.0         0.00         0         0.00         0.00           0         0.0         0.00         0         0.00         0.00           0         0.0         0.00         0         0.00         0.00           0         0.0         0.00         0         0.00         0.00           0         0.0         0.00         0         0.00         0.00           0         0.0         0.00         0         0.00         0.00           0         0.0         0.00         0         0.00         0.00           0         0.0         0.00         0         0.00         0.00           0         0.0         0.00         0         0.00         0.00           0         0.0         0.00         0         0.00         0.00           0         0.0         0.00         0         0.00         0.00           0         0.0         0.00         0         0.00         0.00           0         0.0         0.00         0         0.00         0.00           0</td><td>MG         MG/MI         96         MG         MG/MI         96         MG           0         0.0         0.00         0         0.00         0.00         0.00         0.00           0         0.0         0.00         0.0         0.00         0.00         0.00         0.00           0         0.0         0.00         0.0         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00</td><td>MG         MG/MI         96         MG         MG/MI         96         MG         MG/MI           0         0.0         0.00         0         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00</td><td>MG         MG/MI         %         MG         MG/MI         %         MG         MG/MI         %           0         0.0         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00</td><td>MG         MG/MI         %         MG         MG/MI         %         MG/MI<td>MG         MG/MI         96         MG         MG/MI         96         MG/MI         96         MG/MI         96           0         0.0         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00</td></td></t<></td></t<>	MG         MG/MI         %           0         0.0         0.00           0         0.0         0.00           0         0.0         0.00           0         0.0         0.00           0         0.0         0.00           0         0.0         0.00           0         0.0         0.00           0         0.0         0.00           0         0.0         0.00           0         0.0         0.00           0         0.0         0.00           0         0.0         0.00           0         0.0         0.00           0         0.0         0.00           0         0.0         0.00           0         0.0         0.00           0         0.0         0.00           0         0.0         0.00           0         0.0         0.00           0         0.0         0.00           0         0.0         0.00           0         0.0         0.00           0         0.0         0.00           0         0.0         0.00 <t< td=""><td>MG         MG/MI         %         MG           0         0.0         0.00         0           0         0.0         0.00         0           0         0.0         0.00         0           0         0.0         0.00         0           0         0.0         0.00         0           0         0.0         0.00         0           0         0.0         0.00         0           0         0.0         0.00         0           0         0.0         0.00         0           0         0.0         0.00         0           0         0.0         0.00         0           0         0.0         0.00         0           0         0.0         0.00         0           0         0.0         0.00         0           0         0.0         0.00         0           0         0.0         0.00         0           0         0.0         0.00         0           0         0.0         0.00         0           0         0.0         0.00         0           0         0.0</td><td>MG         MG/MI         %         MG         MG/MI           0         0.0         0.00         0.00         0.00         0.00           0         0.0         0.00         0.00         0.00         0.00           0         0.0         0.00         0.00         0.00         0.00           0         0.0         0.00         0.0         0.00         0.00           0         0.0         0.00         0.0         0.00         0.00           0         0.0         0.00         0.0         0.0         0.0           0         0.0         0.00         0.0         0.0         0.0           0         0.0         0.00         0         0.0         0.0         0.0           0         0.0         0.00         0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0&lt;</td><td>MG         MG/MI         %         MG         MG/MI         %           0         0.0         0.00         0         0.00         0.00           0         0.0         0.00         0         0.00         0.00           0         0.0         0.00         0         0.00         0.00           0         0.0         0.00         0         0.00         0.00           0         0.0         0.00         0         0.00         0.00           0         0.0         0.00         0         0.00         0.00           0         0.0         0.00         0         0.00         0.00           0         0.0         0.00         0         0.00         0.00           0         0.0         0.00         0         0.00         0.00           0         0.0         0.00         0         0.00         0.00           0         0.0         0.00         0         0.00         0.00           0         0.0         0.00         0         0.00         0.00           0         0.0         0.00         0         0.00         0.00           0</td><td>MG         MG/MI         96         MG         MG/MI         96         MG           0         0.0         0.00         0         0.00         0.00         0.00         0.00           0         0.0         0.00         0.0         0.00         0.00         0.00         0.00           0         0.0         0.00         0.0         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00</td><td>MG         MG/MI         96         MG         MG/MI         96         MG         MG/MI           0         0.0         0.00         0         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00</td><td>MG         MG/MI         %         MG         MG/MI         %         MG         MG/MI         %           0         0.0         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00</td><td>MG         MG/MI         %         MG         MG/MI         %         MG/MI<td>MG         MG/MI         96         MG         MG/MI         96         MG/MI         96         MG/MI         96           0         0.0         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00</td></td></t<>	MG         MG/MI         %         MG           0         0.0         0.00         0           0         0.0         0.00         0           0         0.0         0.00         0           0         0.0         0.00         0           0         0.0         0.00         0           0         0.0         0.00         0           0         0.0         0.00         0           0         0.0         0.00         0           0         0.0         0.00         0           0         0.0         0.00         0           0         0.0         0.00         0           0         0.0         0.00         0           0         0.0         0.00         0           0         0.0         0.00         0           0         0.0         0.00         0           0         0.0         0.00         0           0         0.0         0.00         0           0         0.0         0.00         0           0         0.0         0.00         0           0         0.0	MG         MG/MI         %         MG         MG/MI           0         0.0         0.00         0.00         0.00         0.00           0         0.0         0.00         0.00         0.00         0.00           0         0.0         0.00         0.00         0.00         0.00           0         0.0         0.00         0.0         0.00         0.00           0         0.0         0.00         0.0         0.00         0.00           0         0.0         0.00         0.0         0.0         0.0           0         0.0         0.00         0.0         0.0         0.0           0         0.0         0.00         0         0.0         0.0         0.0           0         0.0         0.00         0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0<	MG         MG/MI         %         MG         MG/MI         %           0         0.0         0.00         0         0.00         0.00           0         0.0         0.00         0         0.00         0.00           0         0.0         0.00         0         0.00         0.00           0         0.0         0.00         0         0.00         0.00           0         0.0         0.00         0         0.00         0.00           0         0.0         0.00         0         0.00         0.00           0         0.0         0.00         0         0.00         0.00           0         0.0         0.00         0         0.00         0.00           0         0.0         0.00         0         0.00         0.00           0         0.0         0.00         0         0.00         0.00           0         0.0         0.00         0         0.00         0.00           0         0.0         0.00         0         0.00         0.00           0         0.0         0.00         0         0.00         0.00           0	MG         MG/MI         96         MG         MG/MI         96         MG           0         0.0         0.00         0         0.00         0.00         0.00         0.00           0         0.0         0.00         0.0         0.00         0.00         0.00         0.00           0         0.0         0.00         0.0         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00	MG         MG/MI         96         MG         MG/MI         96         MG         MG/MI           0         0.0         0.00         0         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00	MG         MG/MI         %         MG         MG/MI         %         MG         MG/MI         %           0         0.0         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00	MG         MG/MI         %         MG         MG/MI         %         MG/MI <td>MG         MG/MI         96         MG         MG/MI         96         MG/MI         96         MG/MI         96           0         0.0         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00</td>	MG         MG/MI         96         MG         MG/MI         96         MG/MI         96         MG/MI         96           0         0.0         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00

#### TABLE C-7 (CONT'D). 1992 CHEVROLET LUMINA, MARKET HD5, TEST NO. L2-03-HD5, 2/26/93

		BAG 1			BAG 2			BAG 3			FTP TOTAL	
			WGT.			WGT.			WGT.		WGT.	OZONE
COMPOUND	MG	MG/MI	%	MG	MG/MI	%	MG	MG/MI	. %	MG/MI	%	MG/MI
NONANE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.00
TRANS-2-NONENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.00
PROPYLBENZENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.00
2,3-DIMETHYLOCTANE	10	2.7	0.57	0	0.0	0.00	0	0.0	0.00	0.6	0.31	0.57
O-ETHYLTOLUENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.00
1,2,4-TRIMETHYLBENZENE	18	5.0	1.06	. 0	0.0	0.00	5	1.4	0.87	1.4	0.77	12.5
SOBUTYLBENZENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.00
DECANE	. 0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.00
P-CYMENE	. 6	1.7	0.36	0	0.0	0.00	0	0.0	0.00	0.4	0.19	2.26
INDAN(E)	0	0.0	0.00	0	0.0	0.00	0	. 0.0	0.00	0.0	0.00	0.0
4-PHENYL-1-BUTENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	, 0.00	0.0
M-DIETHYLBENZENE	· 0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.0
1-METHYL-3-PROPYLB ^{CNI} ZENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.0
N-BUTYLBENZENE/P-DIETHYLBENZENE	· . 0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.0
O-DIETHYLBENZENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.0
2-METHYLDECANE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.0
BICYCLOPENTYL	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.0
UNDECANE	· · · 0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.0
1,3,5-TRIMETHYLBENZENE	0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.0
C7 OLEFINS	· 0	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.0
C8-C9 OLEFINS	· o	0.0	0.00	. 0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.0
C9-C11 PARAFFINS, OLEFINS, AROMATICS	· 0·	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0.0	0.00	0.0
FORMALDEHYDE	20	5.7	1.19	0	0.1	0.15	0	0.0	0.00	1.2	0.67	8.8
ACETALDEHYDE	5	1.5	0.31	0	0.0	0.01	0	0.0	0.03	0.3	0.17	1.7
ACROLEIN	1	0.4	0.09	0	0.0	0.00	0	0.0	0.00	0.1	0.05	0.5
ACETONE	3	0.9	0.19	2	0.6	0.69	3	0.7	0.47	0.7	0.00	0.3
PROPIONALDEHYDE	. 1	0.3	0.06	0	0.0	0.00	0	0.0	0.00	0.1	0.03	0.3
CROTONALDEHYDE	0	0.0	0.00	0	0.0	0.00	o o	0.0	0.00	0.0	0.00	0.0
SOBUTYRALDEHYDE	0	0.1	0.02	0	0.0	0.00		0.0	0.00	0.0	0.00	0.0
	0	0.1	0.02	0	0.0	0.00	0	0.0	0.00	0.0	0.01	0.0
BENZALDEHYDE		0.0	0.02	o o	0.0	0.00	0	0.0	0.00		0.00	
HEXANALDEHYDE	- 0	0.0	0.00	o	0.0	0.00	. 0	0.0	0.00	0.0		0.0
		0.0	0.00	U	0.0	0.00	. 0		0.00	0.0	0.00	0.0
					·							
	·		н 1			1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -		•	. •			
		· · ·							•		1	
		н	н 1.		· · · ·					1. J.		
			: 1	4	· ·		1	· · ·			- · ·	L .

Document Control Page		1. NREL Report No.	2. NTIS Accession No.	3. Recipient's Accession No.
		TP-421-5462	DE93010035	
4.	Title and Subtitle       5. Publication Date         Evaluation of Aftermarket LPG Conversion Kits in Light-Duty Vehicle       5. Publication Date         Applications       6.			
7.	Author(s) E.A. Bass			8. Performing Organization Rept. No.
9.	Performing Organiz Southwest Research 6220 Culebra Road		10. Project/Task/Work Unit No. FU321010	
	P.O. Drawer 28510 San Antonio, TX		(C) (G) Name and Address 13. Type of Report & Period Covered	
				(G)
12.	Jational Renewable Energy Laboratory     Covered       617 Cole Boulevard     Subcontract report			
	Golden, CO 8040	1-3393		14.
15.	Supplementary Not	es		
16.	Abstract (Limit: 200 words) Three liquefied propane gas (LPG) conversion kits were evaluated on a Chevrolet Lumina. The objective of the project was to measure the Federal Test Procedure emissions and the fuel economy of these kits, and compare their performance to the vehicle's operation on gasoline. The three kits were also compared to each other. Study conclusions and recommendations are included.			
17.	Document Analysis a. Descriptors alternative fuels	, liquefied propane gas, co	nversion kits	
	b. Identifiers/Open			
	c. UC Categories 3	555		
`18.	<ul> <li>Availability Statement</li> <li>National Technical Information Service</li> <li>U.S. Department of Commerce</li> <li>5285 Port Royal Road</li> </ul>			<b>19. No. of Pages</b> 153
	5285 Port Royal Road Springfield, VA 22161		20. Price A08	

Form No. 0069E (6-30-87)