Research on Polycrystalline Thin-Film Materials, Cells, and Modules

R. L. Mitchell
K. Zweibel
H. S. Ullal

November 1990

Prepared under Task No. PV140301

Solar Energy Research Institute
A Division of Midwest Research Institute

1617 Cole Boulevard
Golden, Colorado 80401-3393

Prepared for the
U.S. Department of Energy
Contract No. DE-AC02-83CH10093
ABSTRACT

The U.S. Department of Energy (DOE) supports research activities in polycrystalline thin films through the Polycrystalline Thin-Film Program at the Solar Energy Research Institute (SERI). This program includes research and development (R&D) in both copper indium diselenide and cadmium telluride thin films for photovoltaic applications. The objective of this program is to support R&D of photovoltaic cells and modules that meet the DOE long-term goals of high efficiency (15%-20%), low cost ($50/m²), and reliability (30-year life time). Research carried out in this area is receiving increased recognition due to important advances in polycrystalline thin-film CuInSe₂ and CdTe solar cells and modules. These have become the leading thin-film materials for photovoltaics in terms of efficiency and stability. DOE has recognized this potential through a competitive initiative for the development of CuInSe₂ and CdTe modules. This paper focuses on the recent progress and future directions of the Polycrystalline Thin-Film Program and the status of the subcontracted research on these promising photovoltaic materials.

INTRODUCTION

The Polycrystalline Thin-Film Program at SERI is part of the United States National Photovoltaic Program. The objective of this Program is to support research to develop cells and modules that meet DOE's long-term goals by achieving high efficiencies (15%-20%), low cost ($50/m²), and long time reliability (30 years) [Five Year Research Plan, 1987]. This paper covers the current status of the subcontracted research program in the polycrystalline thin-film area.

The two main materials of interest in this program are copper indium diselenide (CuInSe₂) and cadmium telluride (CdTe). Specific research areas include fundamentals, modeling, characterization, measurements, device design, solar cell fabrication, module design and development, module processing, and stability of both CuInSe₂ and CdTe [Ullal, 1989]. Both CuInSe₂ and CdTe technologies were competing for attention with other materials in the early 1980s. These other materials included ZnP, CuS, CuTe, GaAs and other polycrystalline thin-films. At that time, devices of only around 8%-9% efficiency and about 1 cm² were being fabricated from CuInSe₂ and CdTe. Cell efficiencies in both technologies rose to about 10%-11% in the mid-1980s. But the potential of these materials remained unrecognized, as there were few increases in performance; processes for making larger areas were in doubt; modules were not being made; and few CuInSe₂ or CdTe products were commercially available. Subsequently, both CuInSe₂ and CdTe made significant progress (Figure 1), and that progress led to considerable increased attention. One result was an expanded interest in the performance testing and evaluation of these emerging technologies. The Photovoltaics for Utility Scale Applications (PVUSA) project - a joint project between a utility consortium and DOE - has awarded contracts for 20-kW CuInSe₂ and CdTe systems to be installed in Davis, California in 1991.

![Figure 1. Progress in thin-film module efficiencies.](image-url)
COPPER INDIUM DISELENIDE

During the past decade, progress in CuInSe₂ technology has been significant and this photovoltaic material is now considered the leading thin-film candidate in terms of efficiency and long-term reliability [Zweibel and Ullal, 1989]. Theoretical efficiencies for CuInSe₂ are as high as 23.5% [Sines, 1988]. Several deposition processes have been used in its fabrication (coevaporation, electrodeposition/selenization, spraying, screening printing, close spaced vapor transport, hybrid evaporation/sputtering, electron-beam evaporation/selenization, sputtering/selenization, reactive sputtering, sputtering/laser assisted annealing, sputtering/rapid thermal processing, and metal organic chemical vapor deposition) [Zweibel et al., 1990]. These options range from the experimental to those that have been proven at the prototype manufacturing level.

Wagner and co-workers at Bell Labs first fabricated 12% efficient single-crystal CuInSe₂ cells in 1974 [Wagner et al., 1974]. Although single crystals are too expensive for practical applications, they did stimulate research in thin-film CuInSe₂ devices. Grindle et al. (1980), at the University of Maine were able to make 5% efficient cells by thermally evaporating CuInSe₂ on low-cost substrates. This was followed by successful work by Mickelsen and Chen at Boeing Aerospace, who were able to make 10% efficient CuInSe₂ cells (with DOE/SERI support) by coevaporation in 1982 [Mickelsen and Chen, 1982].

Following the CuInSe₂ research at Boeing, several groups initiated research programs in CuInSe₂. Among these were ARCO Solar (now Siemens Solar Industries), the Institute of Energy Conversion (University of Delaware), and SERI. All of these groups were able to quickly reproduce the Boeing results in CuInSe₂ cell efficiency by making cells in excess of 10% [Meakin, 1985; Zweibel and Surek, 1985]. ARCO Solar improved their cell design by enhancing the blue response of their devices, improving their cell efficiencies to 12.5% [Potter et al., 1985]. Choudary et al. (1986), proposed replacing the thick CdS layer (2.4 eV) with a "thin CdS" layer (<500 Å) and a wide band gap ZnO (3.2 eV) window layer. This improved the current density by about 15% (6 mA/cm²). With this novel design (Figure 2), and the addition of a small amount (<10%) of Ga in place of the In, ARCO Solar was able to report achieving a 14.1% active-area efficiency for a 3.5-cm² device (Figure 3)[Mitchell and Liu, 1988]. The addition of Ga improved the open-circuit voltage (Vₜₙₑ) of their CuInSe₂ devices. During the same period, Boeing also improved their cell performance, reaching 12.5% (1 cm² - total area) by adding 27% Ga to make CuGaInSe₂ cells (shown in Figure 4)[Devaney et al., 1990]. The Vₜₙₑ of their device was 555 mV due to the increased band gap.

International Solar Electric Technology (ISET), another participant in the SERI program, successfully made a 10.9% (active area) device by a low-cost two-stage process [Basol et al.]. In their process, Cu and In layers are deposited by E-beam evaporation on Mo-coated glass substrates. The Cu-In layer is then exposed to a Se-bearing gas that reacts to form high-quality CuInSe₂. A thin layer of dip-coated CdS is then deposited on the CuInSe₂ for heterojunction formation. Using a similar approach, the Institute of Energy Conversion has also demonstrated a CuInSe₂ cell with a short-circuit current (Jₜₙₑ) of 42 mA/cm² [Birkmire et al., 1989].

<table>
<thead>
<tr>
<th>1.5 μm</th>
<th>ZnO</th>
<th>MOCVD Sputtering</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05 μm</td>
<td>CdS</td>
<td>Solution Growth</td>
</tr>
<tr>
<td>2.0 μm</td>
<td>CuGaInSe₂</td>
<td>E-Beam/Selenization Sputtering/Selenization</td>
</tr>
<tr>
<td>1.0 μm</td>
<td>Mo</td>
<td>Sputtering</td>
</tr>
<tr>
<td></td>
<td>Glass</td>
<td></td>
</tr>
</tbody>
</table>

Figure 2. Device structure of a polycrystalline thin-film glass/Mo/CuInSe₂/CdS/ZnO solar cell.

![Current-Voltage Curve](image)

Figure 3. Light I-V characteristics of ARCO Solar's 14.1% efficient CuInSe₂ cell.

<table>
<thead>
<tr>
<th>ZnO/CdZnS/CuGaInSe₂/Mo/Alumina</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Area: 0.987 cm²</td>
</tr>
<tr>
<td>Jₜₙₑ: 34.16 mA/cm²</td>
</tr>
<tr>
<td>Vₜₙₑ: 0.555 Volt</td>
</tr>
<tr>
<td>FF: 0.657</td>
</tr>
<tr>
<td>Eff: 12.5%</td>
</tr>
</tbody>
</table>

Figure 4. Light I-V characteristics of Boeing's 12.5% efficient CuInSe₂ cell.
Some CulnSe₂ processes are approaching the stage of scale up for manufacturing. Siemens Solar Industries has successfully scaled up their proprietary process for large-area CulnSe₂ module fabrication. A sputtering/seleнизation method has been described in both U.S. [Love and Choudary, 1984] and European patents and applications [Eberspacher et al., 1989; Ermer and Love, 1989]. Using this process, Ermer and co-workers have reported achieving an 11.1% efficient 938-cm² CulnSe₂ module [1989, 1990], the most efficient at its size among the various thin films. They have also reported an efficiency in excess of 9.7% for an even larger area (3905 cm² - unencapsulated module) with a power output of 37.8 W (Figure 5)[Ermer et al., 1990]. With this success, Siemens Solar Industries was selected as one of the participants in the PVUSA project. They are scheduled to contribute 20 kW of CulnSe₂ modules for this project in 1991.

One of the strengths of the CulnSe₂ technology is its invulnerability to light-induced instability. Over the last two years, SERI has carried out substantial stability testing on several "zero-th generation CulnSe₂ modules supplied by Siemens Solar Industries. These load and open-circuit outdoor tests have demonstrated excellent reliability (Figure 6) [Mtg and Rummel, 1989]. Excellent outdoor stability is critical to the future acceptance of CulnSe₂ modules, and continued tests at SERI should provide important feedback for this requirement.

CADMIUM TELLURIDE

Technical progress in CdTe research has also been significant in the past few years. Based on a band gap of 1.45 eV, which is an optimum match with the solar spectrum, practical CdTe devices could potentially achieve efficiencies over 18%. Theoretical efficiencies are as high as 27.5% [Sikes, 1988].

Historically, the CdTe technology was actually under development before a-Si and CulnSe₂. It made impressive advances in the 1970s and early 1980s, but cell efficiencies temporarily leveled off. Y.S. Tyan and E.A. Perez-Albuerne of Kodak were the first to report reaching 10% efficiency in thin film in 1982 [Tyan and Perez-Albuerne, 1982]. Since then, groups such as Ametek, ARCO Solar, BP Solar, Monosolar, ISET, Photon Energy, SOHIO, Southern Methodist University, and Matsushita Battery have all reported efficiencies over 10%.

A number of methods are used for depositing CdTe thin-films (electrodeposition, spraying, screening printing, close spaced vapor transport, chemical vapor deposition, hot-wall evaporation, ion-assisted evaporation, laser-assisted evaporation, thermal evaporation, sputtering, sputtering/laser assisted annealing, molecular beam epitaxy, and metal organic chemical vapor deposition). At this time, the most promising low-cost approaches are electrodeposition and spraying. Screening printing, a low-cost process, has had limited success due to limitations in module processing.

Electrodeposition is a low-cost, non vacuum method for the deposition of thin-film CdTe. Both Ametek and BP Solar have pursued this approach. BP Solar has reported the fabrication of a 9% efficient 900-cm² modules using this deposition technology.

Ametek developed a new CdTe cell design to circumvent one of the key problems encountered in fabricating these thin-film devices - poor contact to the CdTe surface. This has been accomplished through the development of a novel n-i-p cell structure, which is shown in Figure 7. In this design, undoped CdTe acts as an intrinsic layer sandwiched between n-type CdS and p-type ZnTe layers, creating a drift field across the CdTe. (Figure 7 shows the Auger depth profile for this cell structure.) One of the key processing steps in these n-i-p devices is a heat treatment at 400°C for about 20 minutes. This step results in a significant change in film morphology [Ullal, 1988; Zweibel et al., 1988] and is a key to high process yield. During this heat treatment, the polycrystalline grains at the CdS-CdTe interface are believed to coalesce or fuse, thus vastly reducing the density of grain boundary states. Also during this step, a recrystallization occurs over the entire thickness of the CdTe film. Using electrodeposition techniques with this cell design, Ametek has fabricated an 11.2% cell (shown in Figure 9) [Meyers and Liu, 1988]. Ametek recently halted their work in this field and transferred this promising
Spray deposition processes have also demonstrated significant promise. Photon Energy has successfully used this technique to fabricate both high-efficiency cells (12.3%, Figure 10) and square-foot modules (7.3%, Figure 11) [Albright et al., 1990]. They have also fabricated the first-ever 4-ft² prototype CdTe module. Photon Energy has very aggressive near-term goals to enter photovoltaic production markets. Their cost estimates suggest that they have a potential for being one of the lowest cost module manufacturers in the near future. Due to the simplicity of their process, it does not appear to require the same manufacturing level (i.e. 10 MW/year) to achieve economies of scale. In fact, Photon Energy claims that they will achieve low-cost ($1-$2/W) modules at about 3 MW/year. Photon Energy has been selected to provide 20 kW of CdTe modules for the PVUSA project.

As with CuInSe₂, CdTe devices are not vulnerable to light-induced instability. Almost a year of loaded and open-circuit stability testing data from “zero-th” generation CdTe modules at SERI are shown in Figure 12. These tests, carried out on CdTe modules supplied by Photon Energy, have demonstrated excellent reliability [Mrig and Rummel, 1989]. Ametek has also tested their cells and submodules and have reported over 5,000 hours of stability. Continued SERI outdoor testing is expected to provide updated information on the long-term stability of CdTe technologies.

CASCADE (TANDEM) CELLS

Cascade cell configurations with polycrystalline thin-films are also investigated under the SERI program as small efforts at the University of South Florida (USF) and Georgia Institute of Technology (GIT). These research efforts are directed at making “top cells” for these cascade devices with a CuInSe₂ bottom cell structure. Band gaps of interest for the top cells in these studies are in the 1.7-2.0 eV range. USF is working on HgZnTe cells deposited by metal organic chemical vapor deposition, where the band gap can be varied through variations in the Hg content. GIT is fabricating “top cells” with band gaps near 1.7 eV based on the addition of Zn to form CdZnTe.
THE POLYCRYSTALLINE THIN-FILM MODULE DEVELOPMENT INITIATIVE

SERI maintained a small research program in CuInSe₂ and CdTe throughout the 1980s. The funding level for this research was held at about $3 million annually, funding subcontracted activities in both of these technologies, internal R&D in CuInSe₂, and various analysis and characterization support activities.

In response to the success of both the CuInSe₂ and CdTe technologies, SERI released a request for proposals (RFP) in 1989 for new subcontracts to begin in 1990. This RFP represented a 50% increase in the polycrystalline thin-film effort in 1990. These subcontracts, each 30%-50% cost-shared by industry, include lower-tier university participants. In this way, research awards encourage industry to lead the R&D effort while encouraging collaboration and support between industry and the research efforts at universities. Total funding for the first year of the three-year awards is about $3 million. The objectives of the RFP were to: increase module areas and efficiencies toward the long-term DOE goal of 15%; increase cell efficiencies toward and beyond 15%; assist in the development of new, lower-cost processes, where appropriate; assure that all stability issues are addressed; assist the development of a basic understanding of CuInSe₂ and CdTe materials and devices; and assure a U.S. leadership role in commercialization of CuInSe₂ and CdTe modules.

Those organizations who were awarded subcontracts under this RFP are listed in Table 1, along with the corresponding focus of each for their subcontracts. Also listed are ongoing participants in the SERI program. Those have been universities, for the most part, and form a significant core program from which the RFP participants and SERI internal researchers will draw support and collaboration.

CONCLUSIONS

Polycrystalline thin-film CuInSe₂ and CdTe cells and modules have made rapid advances and are now recognized, in terms of efficiency and stability, as the leading thin-films for photovoltaics. They have attained the highest cell efficiencies (14.1% for CuInSe₂ and 12.3% for CdTe), the highest module efficiencies (11.1% - CuInSe₂ on 1 ft²; 9.7% - CuInSe₂ on 4 ft²); the best stabilities (CuInSe₂ - 500 days, CdTe - 300 days, without degradation), and are made by the lowest cost processes (spraying, electrodeposition, sputtering, and selenization). We can be optimistic about both of these technologies achieving the DOE long-term goal of 15% module efficiency. Both CuInSe₂ and CdTe are now moving out of the lab and into demonstrations in the form of PVUSA projects. This is demonstrated through the 20-kW systems of CuInSe₂ (to be supplied by Siemens Solar Industries) and CdTe (to be supplied by Photon Energy), soon to be installed in Davis, California, for field testing and evaluation.

ACKNOWLEDGMENT

This work was supported by the U. S. Department of Energy under contract # DE-AC02-83CH10093
Table 1. Participants in the Polycrystalline Thin-Film Program (October 1990)

<table>
<thead>
<tr>
<th>Research Organization</th>
<th>Topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Institute of Energy Conversion</td>
<td>Selenized and Evaporated CulnSe₂ and CdTe; Cells & Device Modeling</td>
</tr>
<tr>
<td>International Solar Electric Technology</td>
<td>E-beam/Sputtering of Cu,In Layers and Selenization; Submodules</td>
</tr>
<tr>
<td>University of Illinois</td>
<td>Sputtered/Evaporated CulnSe₂; Cells</td>
</tr>
<tr>
<td>University of Colorado</td>
<td>Rapid Thermal Processing of CuIn/Se Films by Electroplating or Sputtering; Cells and Materials Research</td>
</tr>
<tr>
<td>California Institute of Technology</td>
<td>Contact Investigation of CulnSe₂/Mo Interface; Device Modeling</td>
</tr>
<tr>
<td>Solar Energy Research Institute</td>
<td>Growth, Characterization and Device Fabrication of CulnSe₂; Cells and Device Modeling</td>
</tr>
<tr>
<td>Colorado State University</td>
<td>Characterization and Modeling of CdTe and CulnSe₂ Cells; Device Modeling</td>
</tr>
<tr>
<td>Purdue University</td>
<td>Modeling of CulnSe₂ and CdTe Cells</td>
</tr>
<tr>
<td>Photon Energy</td>
<td>Spray Deposition of 900 to 3900 cm² CdTe; Modules</td>
</tr>
<tr>
<td>University of South Florida</td>
<td>MOCVD and Close Space Sublimation of CdTe & ZnTe; Cells</td>
</tr>
<tr>
<td>Georgia Institute of Technology</td>
<td>MOCVD of Cd₅Te & CdₓZnₓTe; Cells</td>
</tr>
<tr>
<td>University of Toledo</td>
<td>Laser Driven Physical Vapor Deposition of CdTe; Cells & Submodules</td>
</tr>
<tr>
<td>Solarex</td>
<td>CulnSe₂ Submodule Fabrication of 900 cm² by Sputtering</td>
</tr>
<tr>
<td>Boeing Aerospace and Electronics</td>
<td>Coevaporation of High-Efficiency CuGaInSe₂ Solar Cells</td>
</tr>
<tr>
<td>Siemens Solar Industries</td>
<td>CulnSe₂ Module Fabrication of 900 to 3900 cm²</td>
</tr>
</tbody>
</table>

REFERENCES

Basol B.M., Kapur V.K., and Kullberg R.C., Solar Cells, to be published.

Ullal H.S. (Ed.), "Proceedings of the Polycrystalline Thin-Film Program Meeting," Lakewood, CO, August 16-17, 1989; SERI/CP-211-3550.

