Analysis Methods For Wind Energy Applications
The Solar Energy Research Institute

The Solar Energy Research Institute was created by Congress in 1974 to provide the country with a national center of excellence dedicated to serving the needs of the public and industry in the development of solar energy. SERI began operations in July 1977, in Golden, Colorado. SERI is operated by the Midwest Research Institute for the U.S. Department of Energy (DOE). The primary mission of SERI is to function as the U.S. Department of Energy's lead institution for solar energy research, development, and application.

For information on the general operations of SERI, contact:

Public Information Office
Solar Energy Research Institute
1536 Cole Boulevard
Golden, CO 80401
(303) 231-1000

Other publications in this series include:

Analysis Methods for Photovoltaic Applications, SERI/SP-35-230

This brochure was prepared by the Market Development and Communications Branches, Technology Commercialization Division, under the Systems Analysis and Testing (SAT) Program, funded by the Solar Heating and Cooling Research and Development Branch, Office of Conservation and Solar Applications, U.S. Department of Energy. Responsibility for the technical content of this document as well as for the SAT Program lies in the Systems Analysis Branch, Research Division.
Analysis Methods for Wind Energy Applications

Enormous currents of air flow over the surface of the continents and oceans. Though sails and windmill blades supplied much of the energy that people used in past centuries, wind power has been largely forgotten until economics and environmental concerns have now dictated that it be "rediscovered." As we rapidly consume limited fuels and pollute the air and water, wind becomes essential in the blend of energy sources now being developed by the federal government and private industry. By the year 2000, wind energy should prove to be an important power generation source, contributing an estimated 1 to 7 quads of energy to our nation's energy supply.

To accelerate the commercialization of wind energy systems, the Solar Energy Research Institute (SERI) is helping researchers, engineers, utility planners, and others gain access to wind energy simulation methods and analytic modeling techniques. This brochure has been prepared to indicate previous work done in developing wind energy simulation methods. This list of methods is not claimed to be all-inclusive; rather, it provides an insight into the variety of tools available.

Certain computer programs listed here are not publicly available at this time; they are included because potential users should be aware of their existence and possible release in the future.

Information on programs not included here and the methodology used in the survey from which this brochure was generated can be found in "Survey of Currently Used Wind Turbine Performance Prediction Computer Codes," by Fred Perkins, SERI/TR-35-225, Solar Energy Research Institute, Golden, Colorado. This brochure is scheduled for periodic review and update. Persons knowing of models or tools not listed here are asked to contact the Design Tool Manager, Market Development Branch, SERI, so that future versions will contain current state-of-the-art information on wind energy analysis methods.

Most reference documents cited in the text are available from the National Technical Information Service (NTIS), 5282 Port Royal Road, Springfield, VA 22161.
Summary of Analysis Tools

<table>
<thead>
<tr>
<th>Program Name</th>
<th>Availability</th>
<th>Documentation</th>
<th>Rotor Types</th>
<th>Control Strategy</th>
<th>Inputs</th>
<th>Program Type</th>
<th>Experimental Verification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>User’s Manual</td>
<td>High Speed</td>
<td>Constant Speed</td>
<td>Constant Tip</td>
<td>Design Tool</td>
<td>Wind Tunnel Field Data</td>
</tr>
<tr>
<td>CROFTAN</td>
<td></td>
<td>Manual References</td>
<td>Horizontal</td>
<td>Speed</td>
<td>Speed Rate</td>
<td>Tool (5)</td>
<td>Data</td>
</tr>
<tr>
<td>F762</td>
<td></td>
<td>Manual</td>
<td>Darrieus</td>
<td>Single Speed</td>
<td>Wind Speed</td>
<td>Economic Analysis</td>
<td></td>
</tr>
<tr>
<td>G400</td>
<td></td>
<td>Manual</td>
<td>Giromill</td>
<td>Weather</td>
<td>Distribution</td>
<td>Analysis</td>
<td></td>
</tr>
<tr>
<td>GIROMILL PERF.</td>
<td></td>
<td>Manual</td>
<td></td>
<td>Tapes</td>
<td></td>
<td>Aerodynamic</td>
<td></td>
</tr>
<tr>
<td>GOLDSTEIN P.A.</td>
<td></td>
<td>Manual</td>
<td></td>
<td></td>
<td></td>
<td>Analysis</td>
<td></td>
</tr>
<tr>
<td>OFF DESIGN</td>
<td></td>
<td>Manual</td>
<td></td>
<td></td>
<td></td>
<td>Field</td>
<td></td>
</tr>
<tr>
<td>PAREP</td>
<td></td>
<td>Manual</td>
<td></td>
<td></td>
<td></td>
<td>Data</td>
<td></td>
</tr>
<tr>
<td>PROP (7)</td>
<td></td>
<td>Manual</td>
<td></td>
<td></td>
<td></td>
<td>Data</td>
<td></td>
</tr>
<tr>
<td>PROP (8)</td>
<td></td>
<td>Manual</td>
<td></td>
<td></td>
<td></td>
<td>Data</td>
<td></td>
</tr>
<tr>
<td>ROTOR</td>
<td></td>
<td>Manual</td>
<td></td>
<td></td>
<td></td>
<td>Data</td>
<td></td>
</tr>
<tr>
<td>SERIES/WINDS</td>
<td></td>
<td>Manual</td>
<td></td>
<td></td>
<td></td>
<td>Data</td>
<td></td>
</tr>
<tr>
<td>SIMWEST</td>
<td></td>
<td>Manual</td>
<td></td>
<td></td>
<td></td>
<td>Data</td>
<td></td>
</tr>
<tr>
<td>UTRC PWPA</td>
<td></td>
<td>Manual</td>
<td></td>
<td></td>
<td></td>
<td>Data</td>
<td></td>
</tr>
<tr>
<td>VAWTOP</td>
<td></td>
<td>Manual</td>
<td></td>
<td></td>
<td></td>
<td>Data</td>
<td></td>
</tr>
<tr>
<td>VERSION 16</td>
<td></td>
<td>Manual</td>
<td></td>
<td></td>
<td></td>
<td>Data</td>
<td></td>
</tr>
<tr>
<td>WIND OPT</td>
<td></td>
<td>Manual</td>
<td></td>
<td></td>
<td></td>
<td>Data</td>
<td></td>
</tr>
<tr>
<td>WRFP</td>
<td></td>
<td>Manual</td>
<td></td>
<td></td>
<td></td>
<td>Data</td>
<td></td>
</tr>
</tbody>
</table>

1. This program is not currently available to the public. See text describing this program for details.
2. User’s manual is defined to be minimum description of the program necessary for its operation.
3. Program manual is a detailed operations manual including instructions for program modifications.
4. A high speed wind turbine is one in which the linear speed of some portion of the rotating parts is five times or more the oncoming wind speed during normal operations.
5. The output of these programs includes the loads and power output of a particular wind turbine. This information is necessary for design.
6. The output of these programs includes some information on the economic qualities of the considered system.
7. NASA Lewis Research Center version.
8. Aerovironment version.
CROFTAN

This program is useful for the analysis of the aerodynamic performance of a giromill. Manuals have been written for the program. The program is primarily a design tool and has been verified with field data.

Input Requirements
Wind speed, rotor geometry

Output Data
Loads, power

Reference
Walters, R.E. et al., “Vertical Axis Wind Turbine Experiments and Analysis.” ORO/5135-78/1, Dept. of Aerospace Engineering, West Virginia University, May 1978. (Contact University Library.)

Contact
Richard E. Walters
Dept. of Aerospace Engineering
West Virginia University
Morgantown, WV 26506
(304) 293-2570

F782 Wind Turbine Aeroelastics/Aerodynamics Analysis

This program can accommodate only a small amount of linear blade twist. The equations of motion couple the blade deflections with the support flexibility. An equivalent spring and damper is one of the load options. This program is useful for the analysis of high speed horizontal axis wind turbines. The program has been verified with field and wind tunnel data. It is presently proprietary but may be made public within one or two years.

Input Requirements
Rotor and support geometry

Output Data
Natural modes, natural frequencies

Contact
Dr. Richard L. Bielawa
United Technologies Research Center
Silver Lane MS-16
East Hartford, CT 06108
(203) 727-7154
G400 — Rotor Aeroelastics/Aerodynamics Analysis

G400 is the successor to F762. Both employ elastic coupling between the blades and support. G400 allows non-linear blade twist and the resolution of more natural frequencies than F762. This program is useful for the analysis of high speed horizontal axis wind turbines. It has been verified with both field and wind tunnel data. A basic rotor version is available from NASA-Langley for a fee.

Input Requirements
- Rotor and support geometry

Output Data
- Natural modes, natural frequencies

Reference

Contact
For information:
Dr. Richard L. Bielawa
United Technologies Research Center
Silver Lane MS-16
East Hartford, CT 06108
(203) 727-7154

For program acquisition:
John Shipley or Gene Hammond
Air Mobility Res. & Dev. Lab.
Langley Directorate
NASA Langley Research Center
Hampton, VA 24015

Giromill Performance

This program is still under development. It is intended to be a design tool for the analysis of giromill wind turbines. The input options allow the resolution of loads with respect to either a geometrically or aerodynamically constant angle of attack. The program has been verified with wind tunnel data.

Input Requirements
- Rotor geometry, wind speed, tip speed ratio, desired angle of attack (actual or effective)

Output Data
- Side forces, axial forces, torque, power

Reference

Contact
Prof. H.C. Larsen
A.F. Institute of Technology/END
Area B, Bldg. 640
Wright Paterson AFB, OH 45433
(513) 255-3633
Goldstein Performance Analysis

This program is used for routine wind turbine and rotor/propellor performance calculations at the United Technologies Corporation when relatively short computer times are desired. This program is a design tool for the analysis of high speed horizontal axis wind turbines; it has been verified with wind tunnel data. The program is not publicly available.

Input Requirements
Rotor geometry, wind speed, angular speed

Output Data
Power, loads

Contact
Anton J. Landgrebe
United Technologies Research Center
Silver Lane
East Hartford, CT 06108
(203) 727-7358

Off Design

This is a General Electric Company version of the Wind Optimization Code designed to indicate economic performance away from the design wind speed. It is intended for the prediction of the economic performance of high speed horizontal axis wind turbines.

Input Requirements
Wind speed, design wind speed

Output Data
Energy cost, energy collected

Reference

Contact
W.N. Sullivan
Division 4715
Sandia Laboratories
Albuquerque, NM 87112
(505) 264-6434

PAREP — Aerodynamic Performance Model for Vertical Axis Wind Turbine Systems

The program models the performance of a Darrieus VAWT constrained to operate at constant rpm in conjunction with a utility grid. It is intended for use in an interactive time sharing mode. A graphics package is included for output formatting. This model has been verified with wind tunnel and field data.

Input Requirements
Rotor geometry, rpm

Output Data
Power coefficient vs. tip speed ratio

Contact
Frank Barr
General Electric Company
P.O. Box 8555
Philadelphia, PA 19101
(215) 962-2903
PROP (NASA-LeRC)

This program is a design tool for the analysis of high speed horizontal axis wind turbines. It computes the effects of wake interference and tip losses. The output is in tabular form. A program manual exists. The program has been verified with field data.

Input Requirements
- Rotor geometry, wind speed, tip speed ratio

Output Data
- Loads, torque, power

Reference
Wilson, Robert E. and Lissaman, Peter B.S., "Applied Aerodynamics of Wind Power Machines." Oregon State University, May 1974. (Contact University Library.)

Contact
For questions of use by NASA:
David C. Janetzke
NASA-LeRC MS 49-6
21000 Brookpark Road
Cleveland, OH 44135
(216) 433-4400 X 5102

For acquiring program and manual:
Prof. Robert E. Wilson
Dept. of Mechanical Engineering
Oregon State University
Corvallis, OR 97331
(503) 754-2218

PROP (Aerovironment)

This is an updated version of PROP (NASA-LeRC). Manuals have been written. The program, useful for the analysis of high speed horizontal axis wind turbines, has been verified with both field and wind tunnel data. It is not publicly available.

Input Requirements
- Rotor geometry, wind speed, rotational speed

Output Data
- Loads, torque, power

Reference

Contact
Stel N. Walker
Aerovironment, Inc.
145 Vista Avenue
Pasadena, CA 91107
(213) 449-4392
ROTOR

This program is a design tool for the analysis of high speed horizontal axis wind turbines. It has been verified with both wind tunnel and field data.

Input Requirements
Rotor geometry, operation mode, wind speed

Output Data
Power, loads

Contact
Dr. P.M. Sforza
Polytechnic Institute of New York
Farmingdale, NY 11735
(516) 694-5500

SERIES/WINDS

This program will use up to 5 years of weather data from the National Climatic Center to establish the performance characteristics of an average wind turbine in an array, taking into account spatial and time variations between individual turbines. It considers only high speed horizontal axis wind turbines. The program has not been experimentally verified.

Input Requirements
Five years of wind data, wind turbine power characteristics

Output Data
Performance of an average wind turbine in an array

Reference

Contact
Martin Goldenblatt
JBF Scientific Corporation
2 Jewel Drive
Wilmington, MA 01887
(617)657-4170

SIMWEST

This program is designed for the simulation of wind energy storage systems. It is a modular program arranged in subroutines representing components (e.g., wind turbines, generator, battery storage, etc.) which may be assembled at the user's discretion. Statistical treatment of the output data and plots of any variable vs. any other variable are available. The program requires a large computer facility. The output requires the use of a line printer for reasonable connect times.

Input Requirements
System configuration wind speed, component costs

Output Data
Energy cost, energy collected, system status

Reference

Contact
Design Tool Manager
Market Development Branch
Solar Energy Research Institute
1536 Cole Boulevard
Golden, CO 80401
(303) 231-1261
UTRC Prescribed Wake Performance Analysis

This program is a design tool. Once the wake geometry and rotor geometry are specified, the loads are also specified. This program is useful for the analysis of high speed horizontal axis wind turbines. It has been verified with wind tunnel data. The program could be made available following additional documentation, demonstration, and refinement. The cost to acquire would involve only these activities.

Input Requirements
Rotor geometry, wake geometry, wind speed

Output Data
Rotor loads, power, torque

Contact
Anton J. Landgrebe
United Technologies Research Center
Silver Lane
East Hartford, CT 06108
(203) 727-7358

VAWTOP

Using prescribed scaling factors, the program optimizes VAWT component sizes with respect to minimum energy cost. The program is dated, so the absolute numbers presented are incorrect. The program is useful for parametric studies, however.

Input Requirements
Rated power, design wind speed

Output Data
Component costs optimized for minimum electricity cost. Rotor cost, tower cost, gearbox cost, generator cost, blade cost, and energy collected

Contact
Frank Barr
General Electric Company
P.O. Box 8555
Philadelphia, PA 19101
(215) 962-2903

Version 16

This program analyzes the economic performance of a Darrieus VAWT operated at constant rpm in conjunction with a grid. It is intended for use in an interactive time sharing mode. A graphics package is included for output formatting.

Input Requirements
System component specifications, rotor geometry, wind speed distribution

Output Data
Annual energy, energy cost, peak power, rated power, component cost

Reference

Contact
W.N. Sullivan
Division 4715
Sandia Laboratories
Albuquerque, NM 87112
(505) 264-6434
Wind Optimization Code

Using prescribed scaling factors, the program optimizes HAWT components with respect to energy cost. The program is dated, so the absolute numbers presented are incorrect. It is useful for parametric studies, however. It is written for the analysis of high speed horizontal axis wind turbines. Cursory manuals only have been written.

Input Requirements
Rated power, design wind speed

Output Data
Component costs optimized for minimum electricity cost. Rotor cost, tower cost, gearbox cost, generator cost, blade cost, and energy collected

Contact
Frank Barr
General Electric Company
P.O. Box 8555
Philadelphia, PA 19101
(215) 962-2903

WRFP

WRFP is a BASIC version of PROP (NASA-LeRC). The program is useful for the analysis of high speed horizontal axis wind turbines and has been verified with field data. This program is not public property.

Input Requirements
Rotor geometry, rotational speed, wind speed

Output Data
Loads, torque, power

Contact
Dr. William Drake
Enertech Corporation
P.O. Box 420
Norwich, VT 05055
(802) 649-1145