Alternative Fuels and Systems for Refuse Trucks

Richard Parish
National Renewable Energy Laboratory

Municipal Waste Management Association
March 23, 2005
Purpose: Overview of alternative fuel and advanced propulsion technologies for refuse applications, which reduce regulated emissions and potentially lower O&M costs

• Alternative fuels
 – Natural gas
 • Natural gas engine and vehicle R&D
 • Landfill gas to LNG
 – Biodiesel blends

• Hybrid propulsion systems
 – Hydraulic hybrids
 – Hybrid electrics
Natural Gas

New Jersey EcoComplex, Burlington Co., NJ
Natural Gas Engines

• Benefits
 – Petroleum displacement
 – Meet EPA emissions requirements ahead of schedule
 – Less noise than conventional diesel
 – No diesel smell
 – Lower fuel cost
 • NG – Roughly $1.50/diesel gallon equivalent
 • Diesel – Over $2/gallon
 – O&M costs are becoming equivalent to diesel
 – Carl Moyer credits

• Issues
 – Fueling station cost
 – Limited range with CNG; less of an issue with LNG
Next Generation Natural Gas Vehicle Activity

• DOE, NREL, SCAQMD, CEC started Next Generation Natural Gas Vehicle activity in 2000
 – Focused on developing natural gas engines and platforms for medium- and heavy-duty applications
 – Meet or beat EPA standards
 • 2007 - 1.2g/bhp-hr NOx; 0.01g/bhp-hr PM
 • 2010 - 0.2g/bhp-hr NOx; 0.01g/bhp-hr PM
 – Conducted workshops involving engine and vehicle OEMs and other stakeholders to gather their input
Next Generation Natural Gas Vehicle Activity

• Market assessment indicated refuse trucks and transit buses best applications of NG engines

• Vocation profile data included
 – Annual mileage
 – Range
 – Power requirement
 – Fuel economy
 – Refueling practices
 – Trade cycles

• End users surveyed to assess decision factors
 – Reliability
 – Maintenance cost
 – Vehicle purchase cost

• Lifecycle cost analysis indicated vehicle cost and annual mileage/fuel use are most critical to refuse collection

• Less critical – fuel cost, fuel station cost, annual maintenance cost
Natural Gas Engine Development

• Current or near-term availability
 – Cummins Westport (1.5g NOx + NMHC)
 • B Gas Plus; 5.9L; 195 hp; 420–500 lb-ft torque
 • C Gas Plus; 8.3L; 250–280 hp; 660–850 lb-ft torque
 • L Gas Plus; 8.9L; 320 hp; 1000 lb-ft torque
 – John Deere (1.2g NOx)
 • 6081H; 8.1L; 250–280 hp; 735–900 lb-ft torque
 – Mack (aiming for 2010 EPA compliance)
 • E7G; 12L; 325hp; 1250 lb-ft torque
 – Clean Air Power (2007-2010 EPA compliance)
 • C-13 Caterpillar; 13L; 425hp; 1450 lb-ft torque

• 2010 EPA compliant engines are being developed for MY2007 production
Natural Gas Engines

• NREL has performed in-service evaluations of natural gas refuse trucks
 – Waste Management; Washington, PA
 – Norcal Waste System; San Francisco, CA
 – Los Angeles Bureau of Sanitation

• Evaluations available on Advanced Vehicle Testing website

• Results
 – Start-up problems were experienced but were overcome
 – Drivers reported that the performance of the natural gas trucks was as good or better than diesel
 – Fuel economy for natural gas engines is improving
 – Maintenance costs are higher, but should improve
 – LNG cost was a major component of operational costs
Landfill Gas to LNG

• DOE/Brookhaven National Lab working on LFG to LNG process

• Benefits
 – Greenhouse gas reduction
 – Co-production of food-grade liquid CO\textsubscript{2}
 – Imported petroleum displacement

• Sites
 – Arden Landfill in Washington, PA
 • Waste Management; Applied LNG Technology; Mack Truck
 – Burlington County Landfill, NJ
 • Acrion; Mack Truck; Air Products

• Enabling technologies
 – Gas cleanup
 – Liquefiers for LNG (-259\degree F)
Landfill Gas to LNG

• Gas cleanup
 – Typical LFG composition: 50% methane, 40% carbon dioxide, and 10% nitrogen, oxygen, volatile organic compounds
 – Challenge is removal of CO$_2$
 – Acrion CO$_2$ wash technology looks promising

• Liquefiers
 – Small-scale liquefiers (10,000 gal/day) typically operate at lower efficiency, but adequate using low cost/no cost fuel
 – Design requirements
 • Low initial cost
 • Reliable performance
 • Robust refrigeration system
 • Residual CO$_2$ removal
Landfill Gas to LNG

- Process energy efficiency roughly 80%
- 1MMBtu methane = 2,000 SCF of LFG = ~10 gal LNG
- System cost effectiveness a function of equipment investment expense, operational cost, available gas volume, and LNG price
- 10K gallon/day process ~ $4M initial cost
Biodiesel

Harvesting rapeseed, a biodiesel feedstock
Biodiesel Blends

• Most diesel engine manufacturers approve B5 (5% biodiesel) blends
• B20 blend is becoming socially acceptable, but not fully supported by engine manufacturers
Biodiesel Blends

• Benefits
 – Petroleum displacement
 – Greenhouse gas emission reduction
 – Increased lubricity
 – No engine or infrastructure modifications required
 – Less PM emissions, diesel odor and smoke (B20)
 – Domestic, “homegrown” fuel

• Issues
 – Slightly higher NOx emissions
 – Fuel quality has been inconsistent
 – Higher cost (may be offset by a tax credit)
Heavy Hybrids
Hydraulic Hybrids

- Pressurized hydraulic fluid captures braking energy
- Reversible hydraulic pump/motor coupled to the driveshaft
 - Braking pumps fluid from low pressure to high pressure accumulator
 - During acceleration, high pressure fluid flows through hydraulic motor to low pressure accumulator to provide torque to the driveshaft
- Peterbilt and Eaton are developing a Model 320 using Hydraulic Launch Assist™
Hydraulic Hybrids

• Benefits
 – Higher fuel economy
 – Reduced vehicle emissions
 – Reduced brake and drivetrain wear
 – Equal or improved vehicle acceleration
 – Lower cost than electric hybrids

• Issues
 – Unproven technology
Hybrid Electric Vehicles

• Hybrid electric systems manipulate electrical energy
 – Generator operates during coasting, braking, idling
 – Energy stored in batteries and/or ultracapacitors for use by electric motor during acceleration
 – Electric motor and ICE can operate together (parallel) or ICE can function as a generator (series)

• Benefits
 – Improved fuel efficiency
 – Reduced emissions
 – Lower operational costs due to decreased brake wear
 – Improved acceleration

• Issues
 – High cost
 – O&M costs could be high
DOE Advanced Heavy Hybrid Propulsion Systems (AH2PS) Project

- AH2PS goal is to commercialize vehicles by 2010
 - Increase powertrain efficiency 100%
 - Meet 2007-2010 EPA emissions standards
 - Increase component reliability and durability
- Project teams
 - Eaton/International/Ricardo
 - Oshkosh/Rockwell/Ohio State U.
 - General Motors/Allison transmission
 - Caterpillar Inc.
Advanced Heavy Hybrid Propulsion Systems Project

- Next-generation technologies
 - Propulsion systems
 - Engine technologies
 - Motor/generator technologies and motor control
 - Energy storage architectures/systems
 - Power electronics & control systems
 - Auxiliary load electrification
 - Advanced vehicle systems modeling & optimization
 - Waste heat recovery systems
 - Heavy hybrid testing development

- Hybrid electric transit buses are starting to emerge; no commercial product on the horizon for trash haulers
Summary

• Emerging alternative technologies reduce regulated emissions and are targeted to provide lower O&M costs
• Some technologies are ready-to-go
 – Natural gas
 – Biodiesel
• Others are near term
 – Landfill gas
 – Hydraulic hybrid
• Longer term
 – Hybrid electrics
 – Fuel cell