

Solar Thermal Systems: Solar Heating R&D

National Renewable Energy Laboratory
Sandia National Laboratories

U.S. Department of Energy Solar Energy Technologies

- Description of solar thermal R&D activities in:
 - Low-cost passive solar hot water systems
 - Polymer integral collector-storage (PICS) systems
 - Low-cost active solar systems
 - Cold-climate solar water heating systems
 - Combined heating and cooling (CHC) systems

Solar Thermal Systems Participants

National Laboratories

- National Renewable Energy Laboratory
- Sandia National Laboratories

Industry

- FAFCO (California)
- Davis Energy Group / SunEarth (California)
- DuPont Canada Inc. (Ontario)
- SRP (Arizona)
- Energy Laboratories Inc. (Florida)

Universities

- University of Minnesota
- University of Colorado
- University of Central Florida

Solar Thermal Systems R&D Goals

Near-Term (2006):

• Mild-climate solar water heating systems that deliver energy at \$0.04 -\$0.06/kWh

Mid-Term (2010):

• Cold-climate solar water heating systems that deliver energy at \$0.05 - \$0.06/kWh

Long-Term (2015-2020):

• Solar space heating and cooling systems that deliver energy at \$0.04 - \$0.05/kWh

Solar Thermal Systems R&D

Low-Cost Passive Solar Thermal Systems

Solar Water Heating

Common System Types

Passive

Active

U.S. Department of Energy Solar Energy Technologies

Passive Solar Water Heating

Integral Collector-Storage (ICS) System

Project Goal:

Cut the delivered, life-cycle energy cost of solar water heating systems in half by the year 2005.

Source: Solar Buildings Technology Program: 5-Year Strategic Plan, January 31, 1998

Hardware cost reduction

- Polymer technology
- Parts integration

Installation cost reduction

- Lighter collectors, flexible bundled piping
- Integrated balance of system

Marketing cost reduction

- New construction: SWH as standard feature or option
- Do-it-yourself / Home improvement stores

Technical Challenges (Barriers):

- Polymer durability the **key** technical challenge
- System performance
 - Overheating protection
 - Heat exchanger sizing and placement
- Building code issues
 - Use of plastics, e.g., flammability
 - Structural concerns, e.g., roof weight, wind loading
- Manufacturing process design
 - Thermoforming and rotomolding temperature tolerances

Project Phases:

- Concept Generation / Exploratory Research
 - Identification of general system configurations which could conceivably reach the project's cost goal
- Concept Development / Prototype Test
 - Development of detailed designs for promising concepts and construction and evaluation of prototypes
- Advanced Development / Field Test
 - Development of second-generation prototypes and conducting limited field testing and evaluation
- Engineering / Manufacturing Development
 - Construction of manufacturing facilities and evaluation of "near-final" systems in "real-world" applications

Unpressurized Integral Collector Storage

U.S. Department of Energy Solar Energy Technologies

Davis Energy Group/SunEarth Design

U.S. Department of Energy Solar Energy Technologies

Davis Energy Group/SunEarth Field Test

U.S. Department of Energy Solar Energy Technologies

FAFCO Design

FAFCO Prototype

Solar Thermal Systems R&D

Material Durability Testing

Durability Testing

Outdoor

U.S. Department of Energy Solar Energy Technologies

Laboratory **Chambers**

Ultra-Accelerated, **Natural Sunlight**

UV-Screened Polymeric Glazing Construction

Screening Layer (UV absorbers)

Optional Bonding Layer (adhesive, etc.)

Candidate Polymeric Glazing

Another Polymeric Element (e.g., absorber)

U.S. Department of Energy Solar Energy Technologies

GE HP92WDB 20-mil thick PC Film

No Korad UV screen; 8.2 months Ci5000 exposure

With Korad UV screen; 10 months Ci5000 exposure

Solar Thermal Systems R&D

Low-Cost Active Solar Thermal Systems

Geographical Limitations of ICS Systems

Probability of at Least One Pipe Freeze in 20 Years

Always Occupied (No Vacations/Draws made every day)

Residential Solar Water Heating

Common System Types

Passive

sive

Active

U.S. Department of Energy Solar Energy Technologies

Active Solar Water Heating

Flat Plate Collector

Indirect Circulation Solar System

Active Solar Water Heating System R&D

DuPont Canada

University of Minnesota

Labs and Industry

U.S. Department of Energy Solar Energy Technologies

Low-Cost Solar Water Heaters for Cold Climates

Polymer Flat Plate Collector

DuPont / University of Minnesota Collaboration

Tensile strength testing

- Polyethylene
- Polypropylene

Polymeric Absorber and Heat Exchanger Testing

- Nylon 6,6
- HTN
- Polybutylene
- Polypropylene
- Teflon
- Copper

New In-situ optical device for measuring scale
University of Minnesota

Polymeric Absorber and Heat Exchanger Testing

Strength after aging in Hot, Chlorinated H₂O

Strength after 300-1200 hrs in ORP=825 mV

- ☐ For some polymers, hot chlorinated water significantly reduces strength.
- ☐ Alternate PB formulation (with additives) shows less degradation
- Loss of strength occurs very rapidly in nylon 6,6.

Materials tested at U of MN in FY2003

Polymer Tube Scaling

NATIVE

AFTER
540 Hr exposure to hard water

Polymer Tube Scaling (cont.)

• Calcium carbonate accumulates on all polymers tested.

NATIVE AFTER

540 Hr exposure to hard water

Polymer Tube Scaling

- Results indicate nylon 6,6 enhances scaling.
- Mass of scale on PP, PB, HTN, Teflon and copper tubes are similar.

Solar Thermal Systems R&D

Combined Heating and Cooling Systems

Solar Thermal Systems R&D Approach

Features of polymer-based SWH systems:

• Year-round load: ✓ good system utilization

• New materials:

✓ lower cost

Solar Thermal Systems R&D Approach

Combined space heating and cooling systems

• Year-round load:

✓ good system utilization

• New materials:

✓ lower cost

Combined Solar Heating & Cooling System

TRIPLE PLAY MODEL

U.S. Department of Energy Solar Energy Technologies

U.S. Department of Energy Solar Energy Technologies

Combined Heating and Cooling Systems

Unglazed Collector Space Heating & Hot Water Savings

Solar Thermal Systems R&D Goals

Near-Term (2006):

• Mild-climate solar water heating systems that deliver energy at \$0.04 -\$0.06/kWh

Mid-Term (2010):

• Cold-climate solar water heating systems that deliver energy at \$0.05 - \$0.06/kWh

Long-Term (2015-2020):

• Solar space heating and cooling systems that deliver energy at \$0.04 - \$0.05/kWh