Solar Thermal Systems: Solar Heating R&D
National Renewable Energy Laboratory
Sandia National Laboratories

U.S. Department of Energy
Solar Energy Technologies
Presentation Outline

• Description of solar thermal R&D activities in:
 – Low-cost passive solar hot water systems
 • Polymer integral collector-storage (PICS) systems
 – Low-cost active solar systems
 • Cold-climate solar water heating systems
 • Combined heating and cooling (CHC) systems
Solar Thermal Systems Participants

• National Laboratories
 – National Renewable Energy Laboratory
 – Sandia National Laboratories

• Industry
 – FAFCO (California)
 – Davis Energy Group / SunEarth (California)
 – DuPont Canada Inc. (Ontario)
 – SRP (Arizona)
 – Energy Laboratories Inc. (Florida)

• Universities
 – University of Minnesota
 – University of Colorado
 – University of Central Florida
Solar Thermal Systems R&D Goals

Near-Term (2006):
- Mild-climate solar water heating systems that deliver energy at $0.04 - $0.06/kWh

Mid-Term (2010):
- Cold-climate solar water heating systems that deliver energy at $0.05 - $0.06/kWh

Long-Term (2015-2020):
- Solar space heating and cooling systems that deliver energy at $0.04 - $0.05/kWh

U.S. Department of Energy
Solar Energy Technologies
Low-Cost Passive Solar Thermal Systems
Solar Water Heating

Common System Types

Passive

Active

U.S. Department of Energy
Solar Energy Technologies
Passive Solar Water Heating

Integral Collector-Storage (ICS) System

Gasket Glazings
Box
Insulation
Storage tanks
Innovative, Low-Cost Solar Water Heaters

Project Goal:
Cut the delivered, life-cycle energy cost of solar water heating systems in half by the year 2005.

Innovative, Low-Cost Solar Water Heaters

- **Hardware cost reduction**
 - Polymer technology
 - Parts integration
- **Installation cost reduction**
 - Lighter collectors, flexible bundled piping
 - Integrated balance of system
- **Marketing cost reduction**
 - New construction: SWH as standard feature or option
 - Do-it-yourself / Home improvement stores

U.S. Department of Energy
Solar Energy Technologies
Technical Challenges (Barriers):

• Polymer durability – the **key** technical challenge

• System performance
 – Overheating protection
 – Heat exchanger sizing and placement

• Building code issues
 – Use of plastics, e.g., flammability
 – Structural concerns, e.g., roof weight, wind loading

• Manufacturing process design
 – Thermoforming and rotomolding temperature tolerances
Innovative, Low-Cost Solar Water Heaters

Project Phases:

• **Concept Generation / Exploratory Research**
 – Identification of general system configurations which could conceivably reach the project’s cost goal

• **Concept Development / Prototype Test**
 – Development of detailed designs for promising concepts and construction and evaluation of prototypes

• **Advanced Development / Field Test**
 – Development of second-generation prototypes and conducting limited field testing and evaluation

• **Engineering / Manufacturing Development**
 – Construction of manufacturing facilities and evaluation of “near-final” systems in “real-world” applications
Davis Energy Group/SunEarth Design

U.S. Department of Energy
Solar Energy Technologies
Material Durability Testing
Durability Testing

Outdoor

Accelerated Laboratory Chambers

Ultra-Accelerated, Natural Sunlight

U.S. Department of Energy
Solar Energy Technologies
UV-Screened Polymeric Glazing Construction

<table>
<thead>
<tr>
<th>Layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screening Layer (UV absorbers)</td>
</tr>
<tr>
<td>Optional Bonding Layer (adhesive, etc.)</td>
</tr>
<tr>
<td>Candidate Polymeric Glazing</td>
</tr>
<tr>
<td>Another Polymeric Element (e.g., absorber)</td>
</tr>
</tbody>
</table>

U.S. Department of Energy
Solar Energy Technologies
GE HP92WDB 20-mil thick PC Film

No Korad UV screen; 8.2 months Ci5000 exposure

With Korad UV screen; 10 months Ci5000 exposure

U.S. Department of Energy
Solar Energy Technologies
Low-Cost Active Solar Thermal Systems
Geographical Limitations of ICS Systems

Probability of at Least One Pipe Freeze in 20 Years
Always Occupied (No Vacations/Draws made every day)

Pipe Diameter = 3/4"
Insulation Thickness = 1"
RC Time Constant = 4.24 hours
Residential Solar Water Heating

Common System Types

Passive

Active

U.S. Department of Energy
Solar Energy Technologies
Active Solar Water Heating

Flat Plate Collector

Indirect Circulation Solar System
Active Solar Water Heating System R&D

DuPont Canada

University of Minnesota

Labs and Industry

U.S. Department of Energy
Solar Energy Technologies
Low-Cost Solar Water Heaters for Cold Climates

Polymer Flat Plate Collector

DuPont / University of Minnesota Collaboration
Polymeric Absorber and Heat Exchanger Testing

- Nylon 6,6
- HTN
- Polybutylene
- Polypropylene
- Teflon
- Copper

Tensile strength testing
- Polyethylene
- Polypropylene

New In-situ optical device for measuring scale
University of Minnesota
For some polymers, hot chlorinated water significantly reduces strength.
- Alternate PB formulation (with additives) shows less degradation.
- Loss of strength occurs very rapidly in nylon 6,6.

Materials tested at U of MN in FY2003.
Polymer Tube Scaling

NATIVE

Teflon

AFTER
540 Hr exposure to hard water

Copper
Polymer Tube Scaling (cont.)

• Calcium carbonate accumulates on all polymers tested.

NATIVE

AFTER
540 Hr exposure to hard water

Nylon 6,6

PB

1 µm

10 µm
• Results indicate nylon 6,6 enhances scaling.
• Mass of scale on PP, PB, HTN, Teflon and copper tubes are similar.
Combined Heating and Cooling Systems
Features of polymer-based SWH systems:

- Year-round load: ✔ good system utilization
- New materials: ✔ lower cost
- Simple systems: ✔ higher reliability
Combined space heating and cooling systems

• Year-round load: ✔ good system utilization
• New materials: ✔ lower cost
• Simple systems: ✔ higher reliability
Combined Solar Heating & Cooling System
Albuquerque, NM
Unglazed Collector 126 ft², \(\Delta T_{HX} = 5 \)
Combined Heating and
Cooling Systems

Unglazed Collector Space Heating &
Hot Water Savings
Solar Thermal Systems R&D Goals

Near-Term (2006):
• Mild-climate solar water heating systems that deliver energy at $0.04 -$0.06/kWh

Mid-Term (2010):
• Cold-climate solar water heating systems that deliver energy at $0.05 - $0.06/kWh

Long-Term (2015-2020):
• Solar space heating and cooling systems that deliver energy at $0.04 - $0.05/kWh