Junction Formation in CuInSe$_2$ Based Thin Film Devices

K. Ramanathan, H. Wiesner, S. Asher, R.N. Bhattacharya, J. Keane, M. Contreras, and R. Noufi
National Renewable Energy Laboratory

Presented at the National Center for Photovoltaics Program Review Meeting
Denver, Colorado
September 8-11, 1998

National Renewable Energy Laboratory
1617 Cole Boulevard
Golden, Colorado 80401-3393
A national laboratory of the U.S. Department of Energy
Managed by Midwest Research Institute
for the U.S. Department of Energy
under contract No. DE-AC36-83CH10093

Work performed under task number PV904301
November 1998
NOTICE

This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.

Available to DOE and DOE contractors from:
Office of Scientific and Technical Information (OSTI)
P.O. Box 62
Oak Ridge, TN 37831
Prices available by calling 423-576-8401

Available to the public from:
National Technical Information Service (NTIS)
U.S. Department of Commerce
5285 Port Royal Road
Springfield, VA 22161
703-605-6000 or 800-553-6847
or
DOE Information Bridge
http://www.doe.gov/bridge/home.html

Printed on paper containing at least 50% wastepaper, including 10% postconsumer waste
Junction Formation in CuInSe$_2$-Based Thin-Film Devices

K. Ramanathan, H. Wiesner, S. Asher, R. N. Bhattacharya, J. Keane, M.A. Contreras, and R. Noufi

Abstract. The nature of the interface between CuInSe$_2$ (CIS) and the chemical bath deposited CdS layer has been investigated. We show that heat-treating the absorbers in Cd- or Zn-containing solutions in the presence of ammonium hydroxide sets up a chemical reaction which facilitates an extraction of Cu from the lattice and an in-diffusion of Cd. The characteristics of devices made in this manner suggest that the reaction generates a thin, n-doped region in the absorber. It is quite possible that the CdS/CuInSe$_2$ device is a buried, shallow junction with a CdS window layer, rather than a heterojunction. We have used these ideas to develop methods for fabricating devices without CdS or Cd. A 14.2% efficiency ZnO/CIGS device was obtained through aqueous treatment in Zn solutions.

INTRODUCTION

Thin films of ternary chalcopyrite semiconductor CuInSe$_2$ (CIS) and its solid solutions with CuGaSe$_2$ (CIGS) and CuInS$_2$ are one of the major options for realizing low-cost photovoltaic devices. Excellent device efficiencies have been demonstrated in small and large areas (1,2). The devices are also known for their long-term stability in the field. All of these factors have enabled the commercialization of the CIS photovoltaic technology by Siemens Solar Industries. One of the critical elements of this technology is the junction formation step. The preferred approach is the deposition of a thin CdS layer produced by a chemical reaction in an aqueous bath, called the chemical bath deposition (CBD) process. No other semiconductor layer substituted for the CBD CdS has demonstrated devices comparable in efficiency or stability. Similarly, devices made by using CBD CdS exhibit better characteristics than those with CdS layers deposited by other methods such as vacuum evaporation or sputtering. The most important question in this field can be stated as follows: What makes the CBD CdS superior?

A set of explanations have been put forth to account for the advantages of the CBD CdS. The commonly held beliefs are that the CBD process produces uniform, thin, covering films. The films are highly resistive, and this leads to the notion that the CdS layer in a device is fully depleted. The CdS/CIS junction has been treated as an abrupt heterojunction, and this assumption has never been put to rigorous experimental test. The existence of ordered vacancy phases (OVC) such as CuIn$_5$Se$_5$ and CuIn$_5$Se$_8$ at the surface region of the chalcopyrite is thought to yield a buried junction (3,4). However, when these compounds are synthesized separately, they do not show sufficiently high conductivity or definite conductivity type to persuade us to believe they can create an efficient junction with the (112) chalcopyrite phase (5). It is not clear whether the OVC phases exist in all films as segregated layers of finite thickness at the surface. The surface regions of the absorbers are also sinks for large amounts of alkali impurities such as Na diffusing out of the substrate. For a device engineer, this is a complicated picture to contend with. Given the fact that the OVC and the CdS layers are both...
low in carrier density, one must explain where the n-side of the device is, and where the
electric field is developed.

Experience prior to the advent of CBD CdS was with evaporated CdS layers. Regardless of
whether thin films or single crystals were used, buried junctions were observed. The first
CuInSe\textsubscript{2} homojunctions were obtained by converting the surface of p-type single crystals by
extrinsic doping to n-type with Cd or Zn (6). The electrical activity of II\textsubscript{B} elements in CuInSe\textsubscript{2}
was established, and the experimental data up to this point showed that homojunctions or
buried junctions actually resulted. The picture we have at present is different in many ways,
and one must put this to experimental tests as much as possible.

From a practical viewpoint, it would be most desirable to replace the wet chemistry step
with a vacuum process step. A second objective is the replacement of Cd to make the devices
environmentally friendly. The ultimate goal is to make this the final step of the absorber
preparation such that the entire processing can proceed in a seamless manner. To accomplish
this, it would be helpful to know how the CBD process creates the junction, and use that
knowledge to find alternative processes. At present, the alternatives consist of In\textsubscript{x}Se\textsubscript{y} and
ZnIn\textsubscript{2}Se\textsubscript{4} layers evaporated at the end of the absorber fabrication (7); Zn (OSOH) complex
grown by CBD (8); and ZnO buffer layers by CVD (9). A general comment on the first two
approaches is that the devices made by these processes are sensitive to light and temperature,
and they become fully efficient only after long heat treatments or light soaking. This is
obviously a handicap.

Under the Thin Film PV Partnership Program of the NREL/DOE PV Program, two
National teams consisting of researchers from industries, universities and NREL have been
studying these issues. The Present Junctions group focused its efforts on the CBD CdS
junctions, and the New Junctions group worked on junctions without CdS. This has proved to
be an effective vehicle for solving technical problems of major importance. The work
summarized below is a summary of the accomplishments of the Present Junction group.

EXPERIMENTAL

The CIGS thin films used in this study were grown by the three-stage process described
elsewhere (10). The experimental details for the deposition of CdS and ZnO layers can be
found in ref (11,12). P-type single crystals of CuInSe\textsubscript{2} were used for some studies, and these
were grown by gradient freeze method. They were mechanically polished to a mirrorlike
finish. Current-voltage characteristics of the devices were measured under AM 1.5 Global
spectrum adjusted for 1000 W/m2 illumination. Secondary ion mass spectrometry (SIMS) was
used to determine the distribution of the elements in the films and crystals. A low beam energy
of 5 kV was chosen to minimize the effect of sputter mixing, and the sampling rate was high to
ensure high depth resolution. The analyzed area was about 60 \(\mu \)m diameter. \((M+Cs)^+\)
were used to minimize matrix and surface ion yield variations. This also maximized the Cd signal.

We used partial electrolyte (PE) solutions to isolate the effect of Cd ions. For example, a
Cd PE solution contains the cadmium salt and ammonium hydroxide in the same molar
proportions as the CBD bath and is designated Cd PE. This allowed us to subject the absorbers
to Cd and ammonium hydroxide only without the influence of thiourea. Absorbers were
subjected to the Cd PE treatments for different times and temperatures. Identical baths were
also constituted for the case of Zn. Following the solution treatments, a standard bilayer ZnO
was sputter deposited to complete the devices.
We have also attempted to react Zn compounds in vapor or solid state. The idea is to diffuse Zn into the surface region and dope it n-type. ZnCl$_2$ dispersed in methanol was applied to the surface of the CIGS films, and they were baked at 200°C for 1-2 h in air. Following this step, the reaction products were etched in 10%-50% HCl. This ensured removal of residual chloride and hydroxide phases, and rendered the surfaces free of contaminants. Bilayer ZnO was again sputter deposited for device completion. These devices do not have a “buffer layer”.

RESULTS

First, we describe the results from Cd or Zn PE treatments of CuInSe$_2$ films at 85°C for 10 min. The window layer is standard bilayer ZnO described above, and it has not been specially designed to optimize the performance of devices without CdS. Fig. 1 shows the current-voltage (I-V) curves for three devices made from the same CuInSe$_2$ film. The corresponding photovoltaic parameters are shown in Table 1.

![Fig. 1: Light I-V parameters of CuInSe$_2$ devices with CdS, Cd PE and Zn PE treatments. All have two layer ZnO window. Total area, 0.43 cm2. Before AR coating.](image)

Table 1. Light I-V parameters of CuInSe$_2$ devices with CdS, Cd PE and Zn PE treatments. Total area, 0.43 cm2. After MgF$_2$ antireflection coating.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>ZnO/CdS</th>
<th>ZnO/Zn PE</th>
<th>ZnO/ Cd PE</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{oc}(V)</td>
<td>0.485</td>
<td>0.444</td>
<td>0.443</td>
</tr>
<tr>
<td>J$_{sc}$ (mA.cm$^{-2}$)</td>
<td>36.6</td>
<td>38.97</td>
<td>38.09</td>
</tr>
<tr>
<td>Fill factor</td>
<td>0.72</td>
<td>0.67</td>
<td>0.68</td>
</tr>
<tr>
<td>Efficiency (%)</td>
<td>12.78</td>
<td>11.56</td>
<td>11.46</td>
</tr>
</tbody>
</table>

The CdS device efficiency is 12.8%, which compares very favorably with the best devices reported to date. A comparison of its parameters with those of the Cd- and Zn-treated devices shows that there is an increase in the current density (J_{sc}) and this is the expected gain when
CdS-related absorption losses are eliminated. Reflectance losses of devices without CdS are considerably higher, and an antireflective coating increases the J_{sc} even further. The other interesting features are that the open circuit voltages (V_{oc}) of the Cd and Zn treated devices are within 50 mV of the CdS device, and the fill factors are close to 0.7. These losses are a consequence of a higher diode quality factor and a higher reverse saturation current density, and these are likely to arise from ZnO/CIS interface recombination. We must point out that devices made by directly sputtering ZnO on the CIS films result in poor diode characteristics. Typically, much lower voltages and fill factors are observed in comparison to the Cd-or Zn-treated devices. The spectral response of the above devices is depicted in Fig. 2, and the gain in the blue region is obvious. Similar results have also been obtained for Ga containing absorbers where V_{oc}’s of 0.55 V have been observed as a result of Cd or Zn treatments. Trends in current densities and fill factors are the same as those described for CuInSe$_2$ devices.

At this point, we must identify the possible mechanisms by which the PE treatments improve the diode properties. It is possible that Cd (Zn) species present in the alkaline solution interact with the absorber and induce some compositional and/or electronic changes. To understand these potential effects, we have conducted X-ray Photoelectron Spectroscopy (XPS) and SIMS measurements of Cd PE treated thin films and single crystals, the results of which are summarized below very briefly. Our earlier publications (11,12) provide detailed accounts of the SIMS, XPS and PL measurements.

SIMS Results

Fig. 3 shows the SIMS profile of a Cd PE treated CuInSe$_2$ thin film and an as grown film. The interpretation of SIMS data must take into account several factors specific to thin films such as surface roughness, and preferential sputtering. Because of these influences, it is difficult to make quantitative determinations of the concentrations. However, one can make the following observations about the trends. There appears to be an increase in the Cd concentration in the front region to a depth of 0.05-0.1 µm. The Cd level for longer depths is higher than the baseline, and it tends to approach the baseline in an asymptotic manner. This tail might be indicative of a faster diffusion through grain boundaries. The detection limit for Cd in the system is on the order of 10^{16} cm3, and this suggests that the measured Cd concentrations might be an order or two higher. Diffusion in polycrystalline thin films can be quite aggressive through the grain boundaries, and it is important to sort out the contributions of intergrain and intragrain effects. Single crystals were chosen for this purpose.
The SIMS profile of a Cd PE treated single crystal sample is shown in Fig. 4. Here, the difference in Cd concentrations between the baseline (as grown crystal), and the Cd treated crystal is very clear, and the Cd signal reaches the baseline value. The in-diffusion of Cd coincides with a slight depletion of Cu level in the front region (not shown). We conclude from the above data that Cd is indeed incorporated in the absorber films. The mechanism of the reaction through which this occurs must be clarified. To explore this further, we soaked several large pieces of single crystals in a solution of 1.0 M CdSO₄ in 30% ammonium hydroxide at room temperature. The concentrations in this mixture are much greater than one would use in a CBD reaction, and the purpose here is to exaggerate the effects in a reasonable time. After 4 days, the solution was decanted and analyzed by inductively coupled plasma spectroscopy. The results were compared with a blank solution. The atomic concentrations, in ppm, were as follows, where the blank values are given in parentheses: Cu: 0.90 (0.02); In: 0.08 (0.01); and Se: 0.47 (0.09). We find that Cu is preferentially leached out, and some Se is also carried with it.

To summarize, our results suggest that the interaction of the absorber with the CBD solution results in an interfacial reaction. This might be the most important aspect of the CBD CdS process. The evidence for this is the fact that excellent devices are obtained simply by treating the absorbers in a combination of a Cd salt and ammonium hydroxide. The implication here is that the introduction of Cd can dope the absorber n-type and create a buried
junction. This is consistent with the early observations on single crystals, where Cd and Zn were found to dope the crystals n-type (6). In studying the time dependence of this reaction, we found that the Cd profiles are established at low temperatures (40°C) and short times (1 min). One might envisage a chemical reaction where the removal of Cu and the in-diffusion of Cd are both facilitated by the ability of ammonia to complex the ions. The creation of a thin, heavily doped n-region can explain much of the observed phenomena. In a CdS device, the electric field will be supported entirely, or mostly, by this n-region, depending on the doping level. It is also quite possible that the Cu-deficient nature of the surfaces present natural sites for the occupation by Cd. In any case, we find that an enhanced n-doped region is more likely the heart of the device, rather than the CdS layer itself. The latter undoubtedly offers the benefits of superb passivation and excellent lattice-matching, and it shields the absorber from ZnO and sputter damage. The foregoing discussion applies equally well to Zn as we have demonstrated with the Zn PE treatments.

Alternative Junction Strategies

The solutions to finding an alternative method for forming the junction follow from the previous section. Our approach is to develop methods for forming an n-type, emitter region by extrinsic doping. The most obvious candidates appear to be the II_B elements substituting for Cu; IV elements for the In or Ga; and the halogens for the Se atoms. The efficiency of the Cd “doping” suggests that Zn is the logical choice. Similarly, Cl or F could be effective on the Se sites. We have experimented with a variety of Zn sources, including elemental Zn. ZnCl_2 was chosen as the best candidate because of its low melting point and high vapor pressure at 200°C. The method of delivering the ZnCl_2 to the absorber surface has been varied. The best result obtained by contact annealing ZnCl_2, described in the experimental section, is a 13.5% efficiency device, and it did not require a light soak or heat treatment to realize the efficiency. The parameters of this device are: \(V_{oc} = 0.527 \text{ V}, \quad J_{sc} = 36.01 \text{ mA.cm}^{-2}, \quad \text{and} \quad FF = 0.71. \) At the time of writing this paper, we have also fabricated a 14.2% device by optimizing the aqueous Zn PE treatment described above. The above methods are viewed as temporary solutions that help establish our understanding of the junction formation, and they will be instrumental in the development of completely “dry” methods such as close-spaced annealing to make the processing more suitable for manufacturing.

CONCLUSIONS

We have shown that the interfacial reaction that occurs in the chemical bath is instrumental in creating a buried junction in CIS-based absorbers. Ample evidence has been presented to show that Cd is introduced to such levels that it could form a thin, n-type region. Devices made by wet chemical treatments in Cd or Zn solutions function like n+p junctions with a ZnO window layer, and these offer the most compelling proof for this model. During the CBD CdS process, these changes could occur long before the CdS growth commences. The CdS layer provides a good lattice match to the absorber, a possible compositional grading at the interface region, and shielding from the sputter effects. It is unlikely that the junction is created solely by the OVC or the CdS, because neither component has demonstrated the carrier density to provide the electric field. The conductivity of the OVC layer is most likely enhanced by Cd doping, and this enables the formation of a more efficient junction. The inability to make
An efficient device from CuGaSe$_2$ or CuIn$_{0.5}$Ga$_{0.5}$Se$_2$ might stem from the fact that the former has not been made usefully n-type by extrinsic doping [13]. Finally, we show how the concept of extrinsic doping can be used to create a Zn based junctions in the CIS based thin films.

ACKNOWLEDGMENTS

The authors wish to acknowledge the support of the National CIS Team of the Thin Film Partnership Program and our collaborators, B. Stanbery, I. Eisgruber, J. Granata and N. Dhere. We thank A. Mason, H. Field, D. Dunlavy, and J. Webb of the NREL Measurements and Characterization Division for invaluable support. Contributions of Jim Dolan, Jeff Alleman H. Ullal, and K. Zweibel are acknowledged. This work is supported by the U. S. Department of Energy under Contract No. DE-AC36-83CH10093 to the National Renewable Energy Laboratory.

REFERENCES

(2) R. Wieting et. al., paper presented at this conference.