Results are significant and dramatic

One such successful collaboration is a joint project with industry and researchers at four DOE national labs: ORNL, ANL, PNNL, and NREL. The R&D 100 award-winning process converts corn starch into a cost-effective source of the chemicals used to make a variety of consumer and industrial products. Advantages of the new process include the use of renewable resources, lower cost, and reduced energy consumption.

Another successful collaboration involved a Cooperative Research and Development Agreement between laboratories, a university, and industry. This consortium undertook a fundamental study to improve energy efficiency and understand the underlying causes of toxic air emissions from industrial burners. The industry successfully used these results in negotiating environmental toxic air emission regulations. The industry partners cited this laboratory-industry partnership as an excellent example of government support to meet public needs.

Laboratory partnerships with the private sector and academia are being pursued following technology roadmaps in aluminum, chemicals, forest products, glass, metal casting, and steel. Significant laboratory contributions are being made in materials science, modeling, advanced sensing and process control, and separations.

For more information, contact:

Pacific Northwest National Laboratory (PNNL)
1999 Chair-Steven C. Weiner, sc.weiner@pnl.gov
Phone:202.646.7870

Oak Ridge National Laboratory (ORNL)
1998 Chair-Anthony C. Schaffhauser, acs@ornl.gov

National Renewable Energy Laboratory (NREL)
1997 Chair-Helena Chum, Helena_Chum@nrel.gov

Argonne National Laboratory (ANL)
1996 Chair-William Schertz, schertzww@anl.gov

Albany Research Center
William Riley, riley@alrc.doe.gov

Ames Laboratory
David Hoffman, hoffman@ameslab.gov

Brookhaven National Laboratory (BNL)
Michael Greene, mgreene@bnl.gov

Federal Energy Technology Center (FETC)
Curtis Nakaishi, CURTIS.NAKAISHI@fetc.doe.gov

Idaho National Engineering and Environmental Laboratory (INEEL)
Barry Short, BJS1@inel.gov

Kansas City Plant
Jack Quint, jquint@kcp.com

Lawrence Berkeley National Laboratory (LBNL)
Don Grether, DFGrether@lbl.gov

Lawrence Livermore National Laboratory (LLNL)
Jill L. Watz, watz1@llnl.gov

Los Alamos National Laboratory (LANL)
Melissa Miller, mami@lanl.gov

Sandia National Laboratories (SNL)
Bill McLean, bill_mclean@sandia.gov

Savannah River Technology Center
Ed Danko, edward.danko@rsr.gov

Y-12 Plant
Bill Brosey, broseywd@ornl.gov

The mobilization time between identifying a need and establishing research commitments has been significantly shortened.
The nation’s network of DOE Laboratories and Facilities hold an extensive store of research and development expertise and unique equipment developed for their various missions. How can U.S. industry unlock this treasure of knowledge and experience? The Laboratory Coordinating Council has forged an important key.

The LCC gives U.S. industry access to a “virtual” laboratory that can be tailored to meet the specific requirements of almost any research project. Industry researchers no longer need to approach each lab separately to gauge suitability and work out agreements. The laboratories now function in a distributed manner through common intellectual property agreements and other mechanisms. Because each laboratory and facility has specific areas of excellence, the LCC developed a matrix of competencies, assembling directly related and crosscutting R&D for each of the areas identified by these industries.

Established in 1995, the LCC responds to the major process industries’ R&D needs with the capabilities of 16 DOE Laboratories and Facilities.

The most waste- and energy-intensive industries in the U.S., the focus of the Office of Industrial Technologies’ (OIT) Industries of the Future initiative, include agriculture, aluminum, chemicals, forest products, glass, metal casting, mining, petroleum refining, and steel.

The Industries of the Future have signed agreements of understanding and cooperation with DOE. With OIT acting as a catalyst, vision documents that reflect industry-wide goals to achieve greater competitiveness, efficiency, waste reduction, and pollution prevention, are then published. The visions are followed by technology roadmaps that spell out the prioritized, specific action areas to meet the goals contained within the visions. This process has created a common understanding of industry’s R&D needs, which can then be addressed by the broad research community, focusing national talents on the most important priorities of U.S. industry as a whole. LCC teams work in tandem with industry to achieve targeted priorities with in the R&D visions.

Participating members of the Laboratory Coordinating Council are highlighted on the map at left. As can be seen, some of the finest government research facilities are available to help U.S. industry become more efficient and competitive in the global marketplace as we move into the next century.
The most waste- and energy-intensive industries in the U.S., the focus of the Office of Industrial Technologies’ (OIT) Industries of the Future initiative, include agriculture, aluminum, chemicals, forest products, glass, metal casting, mining, petroleum refining, and steel.

The Industries of the Future have signed agreements of understanding and cooperation with DOE. With OIT acting as a catalyst, vision documents that reflect industry-wide goals to achieve greater competitiveness, efficiency, waste reduction, and pollution prevention, are then published. The visions are followed by technology roadmaps that spell out the prioritized, specific action areas to meet the goals contained within the visions. This process has created a common understanding of industry’s R&D needs, which can then be addressed by the broad research community, focusing national talents on the most important priorities of U.S. industry as a whole. LCC teams work in tandem with industry to achieve targeted priorities with in the R&D visions.

Industry can make the most of scarce R&D funds by accessing the specialized expertise of the Department of Energy’s (DOE’s) 16 Laboratories.

Established in 1995, the LCC responds to the major process industries’ R&D needs with the capabilities of 16 DOE Laboratories and Facilities.
Results are significant and dramatic

One such successful collaboration is a joint project with industry and researchers at four DOE national labs: ORNL, ANL, PNNL, and NREL. The R&D 100 award-winning process converts corn starch into a cost-effective source of the chemicals used to make a variety of consumer and industrial products. Advantages of the new process include the use of renewable resources, lower cost, and reduced energy consumption.

Another successful collaboration involved a Cooperative Research and Development Agreement between laboratories, a university, and industry. This consortium undertook a fundamental study to improve energy efficiency and understand the underlying causes of toxic air emissions from industrial burners. The industry successfully used these results in negotiating environmental toxic air emission regulations. The industry partners cited this laboratory-industry partnership as an excellent example of government support to meet public needs.

Laboratory partnerships with the private sector and academia are being pursued following technology roadmaps in aluminum, chemicals, forest products, glass, metal casting, and steel. Significant laboratory contributions are being made in materials science, modeling, advanced sensing and process control, and separations.

The mobilization time between identifying a need and establishing research commitments has been significantly shortened.

For more information, contact:

Pacific Northwest National Laboratory (PNNL)
1999 Chair-Steven C. Weiner, sc.weiner@pnl.gov
Phone: 202.646.7870

Oak Ridge National Laboratory (ORNL)
1998 Chair-Anthony C. Schaffhauser, acs@ornl.gov

National Renewable Energy Laboratory (NREL)
1997 Chair-Helena Chum, Helena_Chum@nrel.gov

Argonne National Laboratory (ANL)
1996 Chair-William Schertz, Schertzww@anl.gov

Albany Research Center
William Riley, riley@alrc.doe.gov

Ames Laboratory
David Hoffman, hoffman@ameslab.gov

Brookhaven National Laboratory (BNL)
Michael Greene, mgreene@bnl.gov

Federal Energy Technology Center (FETC)
Curtis Nakaishi, CURTIS.NAKAISHI@fetc.doe.gov

Idaho National Engineering and Environmental Laboratory (INEEL)
Barry Short, BJS1@inel.gov

Kansas City Plant
Jack Quint, jquint@kcp.com

Lawrence Berkeley National Laboratory (LBNL)
Don Grether, DFGrether@lbl.gov

Lawrence Livermore National Laboratory (LLNL)
Jill L. Watz, watz1@llnl.gov

Los Alamos National Laboratory (LANL)
Melissa Miller, mami@lanl.gov

Sandia National Laboratories (SNL)
Bill McLean, bill_mclean@sandia.gov

Savannah River Technology Center
Ed Danko, edward.danko@rsrs.gov

Y-12 Plant
Bill Brosey, broseywd@ornl.gov

DOE GO-10098-673 November 1998
Printed with a renewable-source ink on paper containing at least 50% wastepaper, including 20% postconsumer waste

Laboratory Coordinating Council
Partnerships with Industry
Unlocking the nation's priceless store of research and development expertise at DOE laboratories and facilities.

http://www.oit.doe.gov/LCC
Unlocking the nation’s priceless store of research and development expertise at DOE laboratories and facilities.

Pacific Northwest National Laboratory (PNNL)
1999 Chair-Steven C. Weiner, sc.weiner@pnl.gov
Phone:202.646.7870

Oak Ridge National Laboratory (ORNL)
1998 Chair-Anthony C. Schaffhauser, acs@ornl.gov

National Renewable Energy Laboratory (NREL)
1997 Chair-Helena Chum, Helena.Chum@nrel.gov

Argonne National Laboratory (ANL)
1996 Chair-William Schertz, Schertzww@anl.gov

Albany Research Center
William Riley, riley@alrc.doe.gov

Ames Laboratory
David Hoffman, hoffman@ameslab.gov

Brookhaven National Laboratory (BNL)
Michael Greene, mgreene@bnl.gov

Federal Energy Technology Center (FETC)
Curtis Nakaishi, CURTIS.NAKAISHI@fetc.doe.gov

Idaho National Engineering and Environmental Laboratory (INEEL)
Barry Short, BJS1@inel.gov

Lawrence Berkeley National Laboratory (LBNL)
Don Grether, DFGrether@lbl.gov

Lawrence Livermore National Laboratory (LLNL)
Jill L. Watz, watz1@llnl.gov

Los Alamos National Laboratory (LANL)
Melissa Miller, mami@lanl.gov

Sandia National Laboratories (SNL)
Bill McLean, bill_mclean@sandia.gov

Savannah River Technology Center
Ed Danko, edward.danko@srs.gov

Y-12 Plant
Bill Brosey, broseywd@ornl.gov

For more information, contact:

Results are significant and dramatic

One such successful collaboration is a joint project with industry and researchers at four DOE national labs: ORNL, ANL, PNNL, and NREL. The R&D 100 award-winning process converts corn starch into a cost-effective source of the chemicals used to make a variety of consumer and industrial products. Advantages of the new process include the use of renewable resources, lower cost, and reduced energy consumption.

Another successful collaboration involved a Cooperative Research and Development Agreement between laboratories, a university, and industry. This consortium undertook a fundamental study to improve energy efficiency and understand the underlying causes of toxic air emissions from industrial burners. The industry successfully used these results in negotiating environmental toxic air emission regulations. The industry partners cited this laboratory-industry partnership as an excellent example of government support to meet public needs.

Laboratory partnerships with the private sector and academia are being pursued following technology roadmaps in aluminum, chemicals, forest products, glass, metal casting, and steel. Significant laboratory contributions are being made in materials science, modeling, advanced sensing and process control, and separations.

The mobilization time between identifying a need and establishing research commitments has been significantly shortened.

Partnerships with Industry
Unlocking the nation's priceless store of research and development expertise at DOE laboratories and facilities.