Solar Two is a concentrating solar power plant that can supply electric power “on demand” to the local utility, Southern California Edison Company. It can do so because it operates not only during sunny parts of the day, but it can store enough thermal energy from the sun to operate during cloudy periods and after dark, for up to three hours, at its rated output of 10 megawatts (MW). For the first time ever, a utility-scale solar power plant can supply electricity when the utility needs it most, to satisfy the energy requirements of its customers.

Located near Barstow, California, this power tower demonstration project is sponsored by the Solar Two Consortium, whose members are listed on p. 2, in partnership with the U.S. Department of Energy (DOE).

Technical Achievement

Solar Two represents a major technical achievement. The design is based on lessons learned at Solar One, this country’s first power tower. Solar One operated as a pilot plant from 1982 to 1988 and proved that power towers can reliably produce electricity.

Solar One used water as a working fluid to generate the steam required to drive a conventional turbine. Project engineers calculated the power tower would operate more efficiently if it used a working fluid that could absorb and store thermal energy effectively. Molten salt was chosen as the preferred heat-storage medium because of its superior physical properties. The same substance used in nitrogen fertilizers, the salt for Solar Two is safe and environmentally benign.

Operation

As Solar Two operates, 2000 heliostats — sun-tracking mirrors — reflect sunlight onto a receiver located at the top of a 300-foot tower. A digital control system focuses the heliostats precisely on the receiver as they track the sun across the sky, and the sunlight is concentrated up to 800 times its normal intensity.

The receiver is built using hundreds of vertical tubes; concentrated sunlight heats the molten salt as it flows through them. The salt reaches temperatures as high as 565°C (1050°F), then it flows to the base of the tower where it is stored in a “hot” tank. When power production is needed, hot salt is pumped from the hot tank to generate steam, and electricity is produced by a conventional steam turbine. After the molten salt has cooled to about 285°C (550°F) in producing the steam, it is again pumped to the top of the tower to be heated; and the cycle continues.
To reduce construction costs, several large components from Solar One were used in Solar Two, including the tower, the original field of heliostats, and the turbine-generator.

Current Activities

Solar Two was inaugurated in June 1996 and is scheduled to produce power through 1999. During this time, Solar Two will undergo continuous testing and evaluation. By testing Solar Two in a power production setting, engineers can increase confidence in the reliability and cost of future commercial power towers. Increased data on operating costs will be critical in convincing potential users to install this technology.

Several members of the Solar Two Consortium, including Bechtel Corporation and Rocketdyne Division of Boeing North American, are exploring commercial prospects for power towers. Using the experience of

The Solar Two Consortium

These Companies and Agencies Made it Possible:

Consortium Participants

Arizona Public Service Company Phoenix, Arizona
Bechtel Corporation San Francisco, California
California Energy Commission Sacramento, California
Electric Power Research Institute Palo Alto, California
Idaho Power Company Boise, Idaho
Los Angeles Department of Water and Power Los Angeles, California
PacifiCorp Portland, Oregon
Sacramento Municipal Utility District Sacramento, California
Salt River Project Phoenix, Arizona
Southern California Edison Company Irwindale, California

Contributors

ABB Lummus Blumfield, New Jersey
Chilean Nitrate New York, New York
Gould Pumps Seneca Falls, New York
General Process Controls Pleasanton, California
Pitt-Des Moines Pittsburgh, Pennsylvania
Raychem Corporation Menlo Park, California
Rocketdyne Division of Boeing Canoga Park, California
North American

Government Partners

U.S. Department of Energy Washington, DC
Sandia National Laboratories Albuquerque, New Mexico
National Renewable Energy Laboratory Golden, Colorado

Supplying 10 MW — enough to power 10,000 homes — to Southern California Edison Company’s electric distribution grid during periods of peak demand, Solar Two is proving the value and technical capability of power towers.

Solar Two, U.S. industry can position itself to take advantage of what DOE and the International Energy Agency predict will become a multibillion dollar market for power towers during the next 10 to 20 years.