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FuelLib1 is an open-source Python-based fuel library, developed by NREL, that leverages the group 
contribution method (GCM) of [1] to systematically estimate the thermodynamic and transport 
properties of hydrocarbon fuels. FuelLib predicts these properties based on the molecular structure of 
individual compounds or compound families, using weight percentages of a fuel’s composition, 
typically measured using techniques such as gas chromatography (GC). FuelLib enables property 
estimation over a wide range of temperatures and pressures of multi-component fuels in the absence of 
detailed molecular composition data, making it particularly valuable for complex fuel mixtures where 
detailed experimental characterization of fuel composition is unavailable. These capabilities contribute 
directly to synthetic aviation turbine fuels (SATF) development, supporting the short-term American 
Society for Testing and Materials (ASTM) qualification of drop-in fuels while potentially expanding 
ASTM boundaries to certify a broader range of fuels. 

Background 
Aircraft engines must deliver large amounts of power with high energy density while operating in harsh 
conditions, yet also require extremely high system robustness, safety, and reliability. Liquid 
hydrocarbon fuels remain the only viable energy carrier for commercial aviation, particularly for long 
distances, high capacities, and higher-speed flight, and are likely to remain so for many years. However, 
price volatility of conventional jet fuel is a significant drag on the commercial aviation industry [2]. 
SATF have many potential advantages as a supplement to conventional jet fuel. These fuels enhance 
energy security by providing an additional domestic source of aviation fuel and could eventually help to 
insulate against the price volatility of conventional fuels on the global market [3]. The supply chain for 
production of bio-based fuels promotes economic growth and creates jobs in rural/agricultural 
communities [4]. SATFs also typically have lower aromatic content than conventional fuel, which 
reduces the formation of particulate pollutants that are harmful to human health [5]. Gaining regulatory 
acceptance and certification of neat SATF as a fuel is critical for the U.S. aviation industry both to meet 
the demand of domestic airlines that wish to use these fuels [6] and for domestic manufacturers to 
remain competitive on the global market where SATF use is required in many places [7]. For these 
reasons, scientific research to understand the impacts of synthetic fuels on aviation combustor directly 
aligns with the goals set out in the first Secretarial Order of the current Secretary of Energy to "unleash 
American energy at home and abroad to restore energy dominance" and "bolster America’s 
manufacturing competitiveness and supply chain security".  

To be certified for commercial aviation in the U.S., fuels must comply with ASTM standards: ASTM 
D1655 for petroleum-based fuels [8] and ASTM D7566 for SATF [9]. These standards define 
acceptable ranges for key physical and chemical properties, including density, viscosity, flash point, 
freezing point, heat of combustion, smoke point, and aromatic content. A fuel that meets all 
specifications may be certified for drop-in use. To date, eight SATF blends, ranging between blend 
limits of 5-50% with Jet-A from petroleum, have been certified, but no SATF formulation has been 
approved for 100% drop-in use without blending. Given the high cost of experimental testing, 
simulations can play a crucial role in de-risking and reducing cost of certifying SATF candidates. 

 
1 https://dmontgomerynrel.github.io/FuelLib/ 
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To support the development and certification of new SATF blends, NREL has developed and 
maintained multiple open-source tools including the Pele2 suite of reacting flow simulators and analysis 
tools [10, 11], and our most recent addition, FuelLib. 

Properties of SATFs can have a significant effect on the liquid fuel atomization and vaporization process 
leading to significant impact on flame stabilization and pollutant formation from aviation gas turbine 
combustors [12]. Therefore, to assess the potential viability of new SATF pathways through combustor 
simulations, it is essential to have accurate property prediction capability, despite the fuels being 
complex mixtures of molecules for which measurements at the relevant conditions may not be practical. 
FuelLib builds toward a capability based on compositional measurements coupled to the GCM that 
enables accurate property estimation for new SATF pathways. Figure 1 shows density and kinematic 
viscosity predictions from FuelLib compared against property measurements at Air Force Research 
Laboratories (AFRL) and NREL's Fuel characterization laboratory, of three different fuels, petroleum-
based Jet-A, SATFs - hydroprocessed esters and fatty acids (HEFA) and Alcohol to Jet (ATJ). 

 
Figure 1: Comparison of property predictions from FuelLib with measurement data from the Air Force 

Research Lab [13] and NREL’s Fuels and Combustion Science team. Plots illustrate differences in density 
and kinematic viscosity for conventional Jet A fuel and surrogates of ATJ [14] and HEFA-SPK. The 

symbols are experimentally measured data, and solid lines are FuelLib predictions. 
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