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Executive Summary 
The updated version of the Wind Integration National Dataset (WIND) Toolkit (Draxl et al. 
2015a)—named WIND Toolkit Long-term Ensemble Dataset (WTK-LED)—is a meteorological 
dataset that provides high-resolution time series, including interannual variability and model 
uncertainty of wind speed at every modeling grid point to indicate ranges of possible wind 
speeds. WTK-LED aims to close gaps in current public datasets to better serve stakeholders in 
the distributed and utility-scale wind industries, the emerging airborne wind energy field, grid 
integration, power systems modeling, environmental modeling, national laboratories, and 
academia. The data were produced using the Weather Research and Forecasting (WRF) Model. 
The vertical grid used in WTK-LED includes many vertical layers in the atmospheric boundary 
layer to provide information on atmospheric quantities across the rotor layer of utility-scale and 
distributed wind turbines. WTK-LED includes: 

• WTK-LED CONUS and WTK-LED Alaska: Numerical simulations of wind speed and 
other meteorological variables covering the contiguous United States (CONUS) and 
Alaska, with high-resolution (5-minute [min], 2-kilometer [km]) data for 3 years (2018–
2020) from 10 to 1,000 m above ground level. 

• WTK-LED Climate: Climate simulations from Argonne National Laboratory covering 
North America, including Alaska, Canada, and most of Mexico and the Caribbean 
islands. These simulations complement the new WTK-LED to offer a 4-km, hourly 
dataset covering 20 years (2001–2020) from 10 to 1,000 m above ground level. 

• NOW-23: Specific long-term, high-resolution offshore simulations have been conducted 
separately for the U.S. coasts, Hawaii, and the Great Lakes, leading to the 2023 National 
Offshore Wind dataset (NOW-23). The data for Hawaii include land-based data and are 
part of WTK-LED Hawaii. NOW-23 is a 2-km, 5-min dataset from 10 – 500 m above 
ground level.  

Note that the original WIND Toolkit was developed for grid integration studies; it therefore 
mimicked forecast errors and contained power forecasts alongside meteorological “actuals.” The 
WTK-LED was developed as a meteorological reanalysis-type dataset that satisfies the needs of 
many stakeholders, such as those in the distributed and utility-scale wind industry, the emerging 
airborne wind energy field, grid integration, power systems modeling, environmental modeling, 
and academia. As such, it was not tailored specifically to grid integration studies. Users should 
be aware of this difference between the WIND Toolkit and WTK-LED and are encouraged to 
follow the authors’ recommendations for use documented in this report (Table ES-1). 

Because the accuracy of simulations from a mesoscale model such as WRF varies depending on 
location and weather situation, and because the model bias or errors can reach up to several 
meters per second for wind speed, we provide simulated wind speed uncertainty estimates to use 
in conjunction with the deterministic model simulations. Sixteen ensembles were run over 
CONUS, Alaska, Hawaii, and other areas in North America to estimate both the model structural 
uncertainty and uncertainty due to internal model variability. Structural uncertainty results from 
unknowns in the physics parameterizations used in the model. Internal variability results from 
the nonlinearity in the equations that underpin the weather forecasting models. Thus, when using 
different physics parameterizations or different initial conditions, models can generate different 
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solutions. The estimates of the simulated wind speed uncertainty can be valuable for assessing 
distributions of simulated wind speeds per model grid point.  

In summary, we found that summer generally exhibits lower wind speeds than other seasons, 
while winter shows higher wind speeds than other seasons. However, summer has higher model 
internal variability, whereas winter has lower model internal variability but larger structural 
uncertainty. We also found that the larger model domain (i.e., North America Climate domain) 
shows larger internal variabilities and structural uncertainties (especially in the summer) than the 
smaller model domain (i.e., CONUS or Alaska). Comparing the two sources of uncertainty over 
the same domain and same season, the physics uncertainty is larger than the uncertainty from 
model internal variability in general but depends on specific locations. The uncertainty range due 
to internal variability does not change significantly when using different physics schemes, when 
using different forcing data, or in a different year. In general, the model uncertainty is much 
larger for shorter timescales, such as days or hours, and is smaller on a weekly, monthly, or 
seasonal scale. 

The WTK-LED is available in NREL’s Wind Resource Database, an interactive web platform, at 
https://wrdb.nrel.gov/. Additionally, the WTK-LED data are available on OpenEI 
(https://data.openei.org/submissions/2) and can be accessed via an AWS Public Dataset Bucket. 
The Wind Resource Database also houses the original WIND Toolkit, which provides time series 
of meteorological variables every 5 min and every 2 km across CONUS from 2007 to 2013.  

This report focuses on a description of (1) the land-based WTK-LED for CONUS, Hawaii, and 
Alaska at a spatial resolution of 2 km and a temporal resolution of 5 min, (2) the 20-year WTK-
LED Climate dataset covering North America at a spatial resolution of 4 km and temporal 
resolution of 1 hour, and (3) the methods of uncertainty quantification and expression. We also 
provide limited model validation results, as we are preparing a rigorous validation to be 
published in an upcoming journal article. Data users are strongly advised to perform a priori 
validation of the data based on their needs. Following our validation results to date, we 
suggest use cases and applications for each dataset of the WTK-LED as shown in Figure ES-1:  

  

https://wrdb.nrel.gov/
https://data.openei.org/submissions/2
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Table ES-1. Suggested Use Cases for the High-Resolution 3-Year WTK-LED Datasets, the Hourly 
4-km WTK-LED Climate Dataset, and the NOW-23 Offshore Dataset. A priori validation of the data 

is strongly recommended. 

Dataset WTK-LED CONUS and 
WTK-LED Alaska 

WTK-LED Climate NOW-23 

Description Simulations from 2018 to 
2020 at 5 min and 2 km 
resolution 

Simulations covering North 
America from 2001 to 2020 
at hourly and 4 km resolution 

Simulations at 5 min and 2 km 
resolution for offshore areas 
and Hawaii for 20+ years 

Use case: 
wind resource 
assessments 

Preliminary land-based 
wind resource 
assessments including 
interannual, seasonal, 
diurnal variability 
assessments 

Averaged wind resource 
estimates (e.g., interannual 
variability, long-term 
averaged seasonal and 
diurnal variabilities); 
Applications needing high-
resolution data covering 
North America 

Preliminary offshore wind 
resource assessments, 
including interannual, 
seasonal, diurnal variability 
assessments 

Use case:  
grid 
integration 

Land-based grid 
integration studies  

Avoid time-specific grid 
integration analyses 

Offshore grid integration 
studies  

Use case: 
environmental 
modeling and 
airborne wind 
energy 

Environmental modeling 
(the data include vertical 
wind speed and 
turbulence kinetic 
energy) or airborne wind 
energy assessments 
(the data are available 
up to 1000 m above 
ground level) 

Vertical wind speed and 
turbulence kinetic energy is 
not available. 

Offshore studies requiring data 
up to 500 m; vertical wind 
speed and turbulence kinetic 
energy not included 

Use case: 
statistical 
weather 
analyses 

Shorter-term (up to 3-
year) statistical analyses 

Risk analysis about wind 
extremes due to natural 
hazards (hurricanes, wildfire) 

Risk analysis about wind 
extremes due to natural 
hazards (hurricanes) 
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1 Introduction 
Wind energy has experienced extensive growth over the last decades, and as more wind farms 
are built over land and offshore, existing gaps in wind energy research will need to be addressed 
in the years to come (Veers et al. 2022). Various stakeholders in the wind energy community rely 
on atmospheric datasets, such as those in the distributed and utility-scale wind industry, the 
emerging airborne wind energy field, grid integration, power systems modeling, environmental 
modeling, and academia. They use these datasets to analyze weather conditions and wind 
resources in their regions of interest—from seasonal trends down to the 5-minute (min) 
variability of wind speeds. In the absence of measurements that would describe atmospheric 
conditions over large areas, the atmospheric datasets are simulated, mostly with numerical 
weather prediction models. 

In an attempt to create a dataset that fits many needs, in particular the needs of the stakeholders 
in grid integration, the original Wind Integration National Dataset (WIND) Toolkit (Draxl et al. 
2015a) was designed as the most up-to-date and largest freely available grid integration dataset at 
the time of its creation. It provides time series of meteorological variables every 5 min and every 
2 kilometers (km) across the contiguous United States (CONUS) in the 7 years spanning 2007 to 
2013. It also includes power forecasts for selected sites. The WIND Toolkit was created with the 
Weather Research and Forecasting (WRF) Model (Skamarock and Klemp 2008, 
https://www.mmm.ucar.edu/models/wrf), simulating CONUS in one model domain to avoid 
spatial seams. The computational expense was huge, and at the time, the WRF code was 
modified to use parallel asynchronous input/output to keep pace with the continuous generation 
of output data resulting from very high spatial and temporal resolutions.  

Since its release, the WIND Toolkit has been widely used across academia, industry, and 
national laboratories for various applications. The two primary uses have been wind resource 
assessment and grid integration studies. For wind resource assessment, the toolkit has been 
employed to evaluate the feasibility of wind and solar energy integration (McCullough et al. 
2024), assess the impacts of siting considerations on offshore wind potential (Zuckerman et al. 
2023), estimate offshore wind speeds (James, Benjamin, and Marquis 2018), compare different 
wind resource assessment methods (Pronk et al. 2022), and investigate the potential for wind and 
solar to replace coal (Morse et al. 2022). Researchers have also used it to examine the influence 
of land use and turbine technology on wind potential (Lopez et al. 2021), quantify uncertainty in 
wind resource modeling (Bodini, Castagneri, and Optis 2023), characterize offshore wind power 
potential (Wang et al. 2022), detect and characterize sea breezes (Xia et al. 2022), and assess the 
resource and load compatibility of wind energy (Ortega et al. 2020). In grid integration analyses, 
the WIND Toolkit has been used to assess wind resources at specific locations and how they 
might complement existing grids (Douville and Bhatnagar 2021; Novacheck and Schwarz 2021; 
Mai et al. 2021) and to explore the economic and technical challenges of integrating offshore 
wind into existing grid infrastructure (Beiter et al. 2020a, 2020b). Additionally, studies have 
used the toolkit to investigate wind power variability (Yuan 2020; Boretti and Castelletto 2020) 
and the impact of forecasting accuracy on grid stability (Wang et al. 2016). For modeling and 
optimization, researchers have used the toolkit to optimize grid planning and operation with wind 
energy (Maloney et al. 2019; Satkauskas et al. 2022).  

https://www.mmm.ucar.edu/models/wrf
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The WIND Toolkit has also contributed significantly to wind power forecasting research: it has 
been used to develop and evaluate short-term forecasting algorithms (Perr-Sauer et al. 2020), 
create probabilistic forecasts (Sun, Feng, and Zhang 2020), characterize wind site forecast-ability 
(Feng et al. 2019), and analyze the diversity of wind time series data (Feng et al. 2017). The 
toolkit has further been applied to distributed wind energy research, with studies investigating 
short-term forecasting for distributed wind (Sheridan et al. 2024), exploring challenges in 
resource assessment for distributed wind turbines (Phillips et al. 2024), and validating wind 
resource and energy production simulations (Sheridan et al. 2022). Other applications include 
research tailored to wind power plants, where it has been used to optimize layouts (Stanley et al. 
2022), understand impacts (Abraham and Hong 2021), model performance (Hawbecker, Basu, 
and Manuel 2017), and evaluate economics (Hamilton et al. 2020). The WIND Toolkit has also 
supported airborne wind energy research (e.g., Weber et al. 2021), and artificial 
intelligence/machine learning applications for wind resource assessment (Frech et al. 2024), 
high-resolution data creation (Benton et al. 2024), and optimization of wind plant layouts 
(Harrison-Atlas et al. 2024). Lastly, the WIND Toolkit has been used to study legal and 
environmental aspects of wind energy, including laws, siting challenges (Stahl and Chavarria 
2009; Andriano 2009), and environmental impacts like bat detection strategies (Rabie et al. 
2022). It has also been employed in evaluating the value of hybrid energy systems, such as those 
combining wind energy with solar and storage (Schleifer et al. 2023; Riccobono 2023). 

The meteorological WIND Toolkit is a deterministic dataset, i.e., it provides one value for each 
atmospheric variable at each time stamp per 2-km grid cell. In the absence of widely available 
measurements, especially at hub height, the modeling error is mostly unknown, except for sites 
where validation studies have been carried out (e.g., Draxl et al. 2015b).  

Over the years, various other public datasets have been used by stakeholders, such as reanalysis 
datasets (e.g., the European Centre for Medium-Range Weather Forecasts Reanalysis v5 [ERA5; 
Hersbach et al. 2020], ERA-Interim, Modern-Era Retrospective analysis for Research and 
Applications [MERRA; Millstein et al. 2023]), or the High-Resolution Rapid Refresh (HRRR) 
model output developed by the National Oceanic and Atmospheric Administration (n.d.). 
Recently, CONUS404, a 4-km reanalysis dataset over the conterminous United States was 
produced by the National Center for Atmospheric Research (Rasmussen et al. 2023). A report 
published by the Energy Systems Integration Group (2023) compared many of these widely used 
datasets for power system applications. They showed that all the datasets have some of the 
required characteristics needed for wind energy applications, and that all also have shortcomings. 
For example, the HRRR seems to have the appropriate resolution, but because it is an operational 
forecasting product, the many code updates and improvements make its performance and bias 
change over the years. None of the products mentioned above include uncertainty information, 
and none but the WIND Toolkit are available at a temporal resolution of less than 1 h. 

To satisfy a wide range of stakeholders across various wind energy disciplines and to close some 
of the gaps that current public datasets have, we aimed to develop an updated version of the 
meteorological WIND Toolkit. The updated WIND Toolkit, named WIND Toolkit Long-term 
Ensemble Dataset (WTK-LED), is a collection of meteorological datasets with specific spatial 
and temporal resolutions. WTK-LED includes model uncertainty and interannual wind speed 
variability at every modeling grid point to give users a range of possible wind speeds. WTK-
LED includes: 
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• Numerical simulations of wind speed and other meteorological variables covering 
CONUS and Alaska with high-resolution (5-min, 2-km) data available for 3 years (2018–
2020): WTK-LED CONUS, WTK-LED Alaska. Note that some non-wind-related 
meteorological variables are made available hourly only (see Section 5.3). 

• Climate simulations covering the North American continent, including Alaska, Canada, 
and most of Mexico, and the Caribbean islands. These simulations complement the new 
WTK-LED to offer a 4-km, hourly dataset covering 20 years, from 2001 to 2020: WTK-
LED Climate. 

• Specific long-term, high-resolution offshore simulations have been conducted separately 
for the U.S. coasts, Hawaii, and the Great Lakes, leading to the 2023 National Offshore 
Wind dataset: NOW-23. The data for Hawaii include land-based data and are part of 
WTK-LED Hawaii. 
 

Note that the original WIND Toolkit was developed for grid integration studies; it therefore 
mimicked forecast errors and contained power forecasts alongside meteorological “actuals.” The 
WTK-LED was developed as a meteorological reanalysis-type dataset that satisfies the needs of 
many stakeholders. As such, it was not tailored to grid integration studies. Users should be aware 
of this difference between the WIND Toolkit and WTK-LED and are encouraged to follow the 
authors’ recommendations for use documented in Section 6 Discussion. Table 1 summarizes the 
differences between WTK-LED and the WIND Toolkit, which has been widely used to date. 
More details can be found in Section 6 Discussion. The reader is referred to Cox et al. (2018) for 
information on the limitations and benefits of various types of data in renewable energy analyses 
to support informed renewable energy decision-making. 
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Table 1. Characteristics of WTK-LED vs. WIND Toolkit  

 WTK-LED CONUS, 
Alaska, Hawaii 

WTK-LED Climate WIND Toolkit 

WRF version 4.1.3 and 4.2.1 4.2.1 for the 20-years, 4.1.3 
for the ensemble 

3.4.1 

Simulated period 2018–2020 2000–2020 2007–2013 

Boundary conditions 
for WRF simulations 

ERA5, no nudging ERA5, no nudging ERA Interim, spectral 
nudging 

Model uncertainty Ensemble run over 
Alaska and Hawaii 

Ensemble Deterministic dataset 

Region covered CONUS, Alaska, 
Hawaii 

North America CONUS 

Dataset Meteorological Meteorological Meteorological and 
power forecasts 

Suggested use Preliminary wind 
resource assessments 
(a priori validation of 
data strongly 
recommended), risk 
analysis about wind 
extremes due to 
natural hazards (e.g., 
hurricanes); can be 
used for grid 
integration studies 

Risk analysis about wind 
extremes due to natural 
hazards; wind resource 
estimates (interannual 
variability, long-term averaged 
seasonal and diurnal 
variabilities); applications 
using high-resolution data 
covering a big geographical 
area; avoid weather-scale 
applications or time-specific 
grid integration analyses 

Developed as a grid 
integration dataset to 
mimic forecast errors; 
meteorological dataset 
has been used for 
resource assessments 
(a priori validation of 
data strongly 
recommended) 

The creation of WTK-LED was initially funded by the Distributed Wind Tools Assessing 
Performance project (NREL n.d.). The initial intent was to provide a resource dataset to the 
distributed wind community, focusing on modeling winds for hub heights lower than 100 meters 
(m). Stakeholders across other disciplines, such as utility-scale wind and airborne wind energy, 
grid integration, power systems modeling, and environmental modeling, also expressed the need 
for an updated WIND Toolkit. The vertical grid used in WTK-LED therefore includes more 
vertical layers than are available from commonly used reanalysis products, which is important to 
accurately model winds across the rotor layer of utility-scale and distributed wind turbines. The 
final dataset is available for heights up to 1,000 m. Funding for the NOW-23 dataset came from 
the National Offshore Wind Research and Development Consortium and the Bureau of Ocean 
Energy Management. Funding for the computation of the 4-km dataset came from the Argonne 
Leadership Computing Facility, and dataset analysis was supported by the Argonne Climate 
Action Initiative and the Tools Assessing Performance Project. 
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Because the NOW-23 dataset is documented separately (Bodini, Castagneri, and Optis 2023; 
Bodini et al. 2022; Bodini et al. 2024), this report focuses on a description of the land-based 
WTK-LED for CONUS and Alaska for the 3-year, 2-km/5-min dataset, the NOW-23 2-km/5-
min Hawaii simulations, and the WTK-LED Climate 20-year 4-km/hourly dataset. Section 2 
describes the methods used to create the data, including the ensemble runs. Data validation 
results are presented in Section 3, followed by a detailed description of our uncertainty 
quantification in Section 4. NREL developed a novel web platform to make the data publicly 
available, which is highlighted in Section 5. The discussion in Section 6 provides users with 
guidance on which datasets to use for their specific needs. Section 7 includes summary and 
conclusions.  
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2 Data and Methods 
The WTK-LED was simulated using the WRF model. WRF modeling necessitates assumptions 
and tradeoffs with regards to model setup, resolution, and computation. The steps of dataset 
creation are portrayed in Figure 1. First, to establish the best balance of assumptions and 
tradeoffs, we convened a WRF expert steering committee comprising modeling experts from 
Pacific Northwest National Laboratory, Argonne National Laboratory (Argonne), National 
Renewable Energy Laboratory (NREL), and the University of Colorado Boulder to discuss the 
WRF settings to consider. To identify the most important model setups and physics in the WRF 
model with implications for wind energy, we conducted 10 tests over a relatively small domain 
using various physics parameterizations (land surface models and planetary boundary layer 
schemes) and boundary conditions (i.e., ERA5, MERRA2). We conducted the tests for June 
2018 over the southern Great Plains using different spatial resolutions (2 and 4 km), with and 
without spectral nudging. June 2018 was chosen because of the frequently observed low-level 
jets passing through the selected region. We then evaluated the tests using observations and 
calculated bias, root-mean-square error (RMSE), mean absolute error (MAE), and correlation, 
and identified a setup using the Noah land surface model (LSM) and the Yonsei University 
(YSU) planetary boundary layer (PBL) scheme. We selected an additional setup with the Mellor-
Yamada-Nakanishi-Niino (MYNN) PBL scheme (which was important for the output of 
turbulence kinetic energy [TKE] and because it has been improved over the last few years for 
wind energy applications [Olsen et al. 2019]). Out of those 10 experiments, 6 were selected that 
cover the best- and worst-performing setups and the middle of all members with the goal of 
covering a range of uncertainties by considering the overall performance. We also performed an 
analysis of wind speed differences between the long-term means of HRRR, Vortex data from the 
Global Atlas of the International Renewable Energy Agency (n.d.), and the original WIND 
Toolkit to determine trends and whether the simulations performed reasonably. Finally, the best 
setup was used to create simulations from 2018 to 2020, which were reinitialized monthly. On an 
ongoing basis we compared the simulations with observations at selected grid points, and we 
compared averages to Vortex data and the original WIND Toolkit to make sure the simulations 
were behaving as expected. 
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Figure 1. Creation of the land-based WTK-LED  

2.1 WRF Setup 
The WRF model versions 4.1.3 and 4.2.1 were used to perform the numerical simulations. The 
model performance between these two versions is very similar. A single domain was forced by 
ERA-5 (Hersbach et al. 2020) boundary conditions for the CONUS, Alaska, and North America 
simulations every 3 h. Two nested domains were used over Hawaii to match the NOW-23 
Hawaii simulation setup (Bodini et al. 2024). For all but the North America climate simulations, 
the model was run with 61 vertical levels; the levels relevant for heights where most wind 
turbines operate are at approximately 6 m, 23 m, 42 m, 59 m, 75 m, 94 m, 117 m, 145 m, 176 m, 
212 m, 252 m, and 297 m. North America climate simulations have 49 vertical levels; those 
relevant for hub heights are at approximately 8 m, 24 m, 40 m, 57 m, 73 m, 101 m, 141 m, 182 
m, 223 m, and 265 m. The final files made available to the public were postprocessed and 
contain variables interpolated to specific heights (Section 5.3).  

We tested several options for running the WRF model, including (1) spectral nudging, (2) the 
frequency of the boundary conditions (3 h versus 6 h), (3) the need for 2-km resolution 
simulations compared to 4-km and coarser spatial resolutions, (4) the frequency at which the data 
should be stored to capture the short-term variations in the wind fields and obtain estimates of 
computing resources needed, and (5) different data sources for boundary conditions. For the 
creation of the original WIND Toolkit (Draxl et al. 2015a), nudging was considered crucial to 
avoid model drift in long-term simulations (e.g., months, decades). However, nudging is 
computationally very expensive and can add 25%–40% of the computational cost, depending on 
the size of the model domain. An alternative way to maintain the model performance and keep 
the cost reasonable is to reinitialize the model and let it run for a relatively short time with a 
sufficient spin-up time (Pan et al. 1999; Qian, Seth, and Zebiak 2003; Lo, Yang, and Pielke 
2008). The number of rows for specified boundary value nudging was set to 10 to account for the 
fact that we used only one modeling domain. The WTK-LED CONUS, Alaska, and Hawaii 
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simulations were reinitialized every month, with 2 days of spin-up time and simulation times of 1 
month to create overlap to average over the seams that are created by restarting the model. Such 
seams could lead to artificial ramps in simulations of wind speed and other variables, especially 
at model outputs every 5 min. Tests showed no model drift within the 1-month periods; hence, 
nudging was not selected for the final runs. The 20-year-long WTK-LED Climate simulations 
were reinitialized every year and run for 14 months continuously without nudging, and with the 
first 2 months from previous years (November and December) as spin-up time. The reason for 
this decision was mainly due to the large demand of computational expense. We updated the 
boundary conditions more frequently (every 3 h) than typically done (e.g., every 6 h). We saved 
the data every 5 min for the final production runs from 2018 to 2020. For the ensembles that 
were used to estimate model uncertainty, we output data every 15 min.  

The WRF physics settings for the WTK-LED CONUS and Alaska simulations include the 
Morrison double-moment scheme, the Rapid Radiative Transfer Model (RRTMG) longwave and 
shortwave radiation schemes, the MYNN level 2.5 PBL and surface layer schemes, and the 
Unified Noah LSM. The cumulus parameterization was turned off because the spatial resolution 
is sufficient to explicitly resolve the convections. No upper damping was selected. A time-
varying sea surface temperature was chosen. We used a 3*dx exponential decay factor for the 
relaxation zone ramp. The radiation time step was set to 15 s. WTK-LED Hawaii uses a similar 
setup except that it uses 2 nested domains and Ferrier microphysics as well as the Kain-Fritsch 
cumulus parameterization for the outermost domain. The WTK-LED Climate simulations use a 
setup similar to the WTK-LED CONUS simulations, covering a significantly larger area 
comprising the North American continent and surrounding oceans, including Alaska, Canada, 
most of Mexico, and the Caribbean Islands. They use the YSU PBL scheme with topographic 
correction for surface winds to represent extra drag from subgrid topography and enhanced flow 
at hilltops, and the revised MM5 surface layer scheme. The spatial and temporal resolutions are 
not as high as for WTK-LED CONUS, given it was developed for studying climate variability 
and climate change (see more details in Akinsanola et al. 2024). Table 2 lists the differences 
between the WTK-LED simulations. 
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Table 2. WRF Setup of the CONUS, Alaska, Hawaii, and North America Climate Simulations  
Name list details can be found in the Appendix. 

 CONUS Alaska Hawaii North America 

Available period 2018–2020 2018–2020 2000–2019 2001–2020 

WRF version 4.1.3 4.1.3 4.2.1 4.2.1 

Restarts 48 h before the 
start of the month  

48 h before the 
start of the month 

48 h before the 
start of the month 

yearly every 
November 1 

Temporal 
resolution 

5 min 5 min 5 min 1 h 

Spatial resolution 2 km 2 km 6 km to 2 km 4 km 

Nested domains 1 1 2 1 

Vertical levels 61 61 61 49 

PBL scheme MYNN level 2.5 MYNN level 2.5 MYNN level 2.5 YSU + 
topographic 
correction for wind 
speed 

Cumulus 
parameterization 

- - Kain-Fritsch only 
in domain 1 

- 

Microphysics 
scheme 

Morrison Morrison Ferrier Morrison 

We found that using MERRA-2 boundary conditions did not improve the simulations when 
compared with observations, and due to the computational expense of the simulations, the team 
opted not to conduct simulations with boundary conditions other than ERA5. 

2.1.1 WTK-LED CONUS: High-Resolution Simulations Covering CONUS at 2-
km/5-min Resolution 

The simulation domain covering CONUS consists of 2,650 × 1,950 grid points (Figure 2) and 
covers the years 2018–2020. The WRF setup was the one explained in Section 2.1, using the 
specific parameters from Ensemble 1 (Table 2).  
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Figure 2. WRF model domain for CONUS at a spatial resolution of 2 km, with 2,650 × 1,950 grid 
points along the west-east and south-north directions 

2.1.2 WTK-LED Alaska: High-Resolution Simulations Covering Alaska at 2-km/5-
min Resolution 

The simulation domain covering Alaska consists of 1,889 × 1,419 grid points (Figure 3). The 
WRF setup was the one explained in Section 2.1, using the specific parameters from Ensemble 1 
(Table 2). The simulations were run for 2018–2020.  
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Figure 3. WRF model domain for Alaska at a spatial resolution of 2 km, with 1,889 × 1,419 grid 
points along the west-east and south-north directions 

2.1.3 WTK-LED Hawaii: Long-Term, High-Resolution Simulations Covering 
Hawaii at 2-km/5-min Resolution 

The 20-year (2000–2019) Hawaii simulations were conducted for and funded by the National 
Offshore Wind Research and Development Consortium project and are now part of the NOW-23 
dataset (Bodini et al. 2023). These simulations and their model setup were conducted and 
decided upon prior to the development of the WTK-LED. Consequently, the model setup is 
slightly different from what is used in the rest of the WTK-LED dataset. The simulation domain 
covering Hawaii consists of 309 × 283 grid points in Domain 1 with grid spacing of 6 km, and 
727 × 649 grid points in Domain 2 with grid spacing of 2 km (Figure 4). Differences to the 
model setup compared to the CONUS simulations include the use of WRF version 4.2.1, the 
Ostia sea surface temperature product, the Ferrier microphysics scheme, and the Kain-Fritsch 
cumulus parameterization in Domain 1. More details about the NOW-23 simulation setup can be 
found in Bodini et al. 2024. 
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Figure 4. Hawaii model domain. The outer domain has 6-km grid spacing, and the inner domain 
has 2-km grid spacing. 

2.1.4 WTK-LED Climate: Long-Term, High-Resolution Simulations Covering 
North America at 4-km/Hourly Resolution 

Simulations were conducted covering the North American continent and surrounding oceans, 
including Alaska, Canada, most of Mexico, and the Caribbean islands. These simulations were 
conducted by Argonne and constitute first-time climate-scale simulations using ultrahigh spatial 
resolutions (4 km per grid cell, convection-resolved scale). The simulation domain spans 2,050 × 
1,750 grid points (Figure 5). These calculations will directly support the National Climate 
Assessment 5 process that is currently underway because they can explain the physical 
mechanisms driving the precipitation intensity increase observed in the continental United States 
for improved climate assessments. The data are built on a previous climate dataset, called 
Argonne Downscaled Data Archive, supported by the U.S. Department of Defense Strategic 
Environment Research and Development Program, at 12 km, considering a series of model 
uncertainties. The data have supported multiple federal and industry projects and have been 
extensively evaluated (e.g., Zobel et al. 2018; Wang and Kotamarthi 2015; Wu et al. 2022; 
Pringle et al. 2021). The recently completed 4-km data are found to show better performance 
with smaller bias for wind, precipitation, hurricane intensity and eyewall features (Akinsanola et 
al. 2024; Tobias-Tarsh et al. 2023; Jung et al. 2023). The 4-km data also support the PR100 
project (Puerto Rico Grid Resilience and Transition to 100% Renewable Energy), which aims to 
develop 100% renewable energy in Puerto Rico considering climate change risks. These 
simulations serve as the long-term dataset for the WTK-LED.  
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The North America simulations use the same initial and boundary conditions as the 2-km/5-min 
run over CONUS. They also employ similar physics parameterizations and model setup as 
described in Section 2.1, except that they have 49 vertical levels (the lowest levels relevant for 
wind energy applications are at 7 m, 22 m, 37 m, 52 m, 67 m, 93 m, 131 m, 169 m, 207 m, 245 
m, 284 m, and 322 m). They use the YSU PBL scheme with topographic correction for surface 
winds to represent extra drag from subgrid topography and enhanced flow at hilltops, and the 
revised MM5 surface layer scheme.  

 

Figure 5. Model domain for North America at a grid spacing of 4 km, with 2,050 × 1,750 grid points 
along the west-east and south-north directions 

2.2 Ensemble Runs for Uncertainty Quantification 
Depending on the region, topography, and weather situation, even if optimized for a region, 
mesoscale WRF model output can only be expected to be accurate (e.g., RMSE) within 0.5 m/s 
to about 2 m/s. Therefore, the team was motivated to provide model uncertainty estimates to the 
community to be used in conjunction with the deterministic model simulations.  

Ensembles were set up over CONUS, Alaska, Hawaii, and North America to estimate both the 
model structural uncertainty and uncertainty due to model internal variability. Structural 
uncertainty results from unknowns in the physics parameterizations used in the model; internal 
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variability results from the nonlinearity in the equations that underpin the weather forecasting 
models (Hawkins and Sutton 2011). When the model is initialized on a different day or at a 
different hour, it can produce different solutions. 

Setting up and running ensembles is one way of quantifying a component of the model 
uncertainty (compared to the real world) that is linked to the specific WRF setups that were 
chosen. By using different PBL schemes (YSU and MYNN) as well as various LSM settings that 
were tested on small domains, we believe that the quantified uncertainty gives the user a decent 
estimate of the model uncertainty, which can be valuable in assessing the magnitude of possible 
wind speeds per grid point.  

2.2.1 Structural Uncertainty 
Structural uncertainty—also referred to as parametric uncertainty in the literature—is due to 
uncertainty inherent in using a computational model to model the real world. That model 
contains approximations of the real world to make the science problem tractable and produce 
solutions in a reasonable amount of time on high-performance computing systems. These 
approximations, known as parameterizations, are empirical formulations that describe physical 
phenomena ranging from the movement of air across the planet to the formation of clouds. 
Multiple options exist in WRF for modeling land surface processes, PBL physics, longwave and 
shortwave radiation, convection, and cloud microphysics. Regional models require surface layer, 
PBL, and LSM parameterizations to represent the transfer of heat, moisture, and momentum 
between the surface and atmosphere (Gilliam and Pleim 2010). The PBL scheme implemented in 
a model plays a decisive role in the accuracy of forecasted state and flow within the PBL because 
the wind varies according to the stability and baroclinic instability of the PBL. The surface layer 
is the lowest part of the atmosphere, typically about a tenth of the height of the PBL, where 
surface fluxes of scalars and momentum, nearly constant with height in this layer, dominate 
dynamics and physics. Vertical profiles of scalars and wind are determined by the Monin-
Obukhov similarity theory. LSM schemes combine atmospheric information from the surface 
layer scheme with land surface properties (dependent on land uses) to evaluate the vertical 
transport done in the PBL schemes, which has a direct influence on the estimation of the PBL 
height (Han, Ueda, and An 2008). Therefore, we created the ensemble runs by using different 
combinations of land surface, PBL, and surface layer models. In particular, we used the YSU 
(Hong and Lim 2006; Noh et al. 2003) and MYNN (Nakanishi and Niino 2006) PBL schemes, 
which have been used by the authors in past studies and were found to simulate the most realistic 
local winds and boundary layer characteristics. The Unified Noah LSM (Chen and Dudhia 2001) 
was selected for land surface processes. It is a four-layer soil temperature and moisture scheme 
that provides data of sensible and latent heat fluxes in the PBL. In addition, the Noah 
Multiparameterization (NoahMP) land surface model (Smirnova, Brown, and Benjamin 1997) 
was used with two options for the dynamic vegetation and surface options. 

Based on our analysis, we chose to explore the following physics options for structural 
uncertainty estimates: 

• PBL schemes: The YSU PBL scheme (Noh et al. 2003) and the MYNN PBL scheme 
(Mellor and Yamada 1982; Nakanishi and Niino 2006, 2009) were investigated. YSU is a 
highly parameterized mixing theory model that does not resolve the turbulence in the 
model and uses eddy mixing coefficients to represent mixing. This PBL scheme does not 
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output TKE. The MYNN PBL scheme is a level 2.5 closure scheme for turbulence in the 
equations and solves for turbulence using parametric equations (not explicitly). It gives 
estimates of TKE and dissipation rates within the boundary layer of the atmosphere. 
While mean wind forecasts between these two models would not be expected to deviate 
significantly, the higher computational costs of MYNN were considered to be necessary 
to obtain TKE information for wind applications.  

• Land surface models: The Noah (Chen and Dudhia 2001) and NoahMP (Niu et al. 
2011) models were evaluated. Noah relies on both soil and vegetation processes for water 
budgets and surface energy closures. The model is capable of modeling soil and land 
surface temperature, snow water equivalent, and the general water and energy fluxes. 
Noah-MP is an improved version of the Noah LSM and provides better representations of 
terrestrial biophysical and hydrological processes. Major physical mechanism 
improvements include improved treatment of soil moisture. Noah-MP is unique 
compared with the other LSMs, as it can generate hundreds of parameterization schemes 
through different combinations of processes, including dynamic leaf, canopy stomatal 
resistance, runoff and groundwater, a soil moisture factor controlling stomatal resistance, 
and six other processes. 

As mentioned in Section 2.1, we initially simulated 10 ensembles over a smaller domain 
(covering the southern Great Plains), after which we picked ensemble members that generate the 
highest and lowest wind speeds as well as wind speeds in between all ensemble members. These 
include six ensemble members, as listed in Table 3, that were the final ensemble members run 
for the year 2018 to characterize the structural uncertainty. 
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Table 3. The Six Ensemble Members Run To Determine Structural Uncertainty for 2018  

No.  Planetary Boundary Layer 
Scheme/Land Surface Model  

Other WRF Physics 
Options  

Temporal 
Resolution of Output 

1  MYNN2.5/Noah  

aer_opt=1  
radt=15  
swint_opt=1  
icloud=1  
sst_update=1  

5 min  

2  YSU/Noah  

Same as 1; plus  
sf_sfclay=1           
topowind=1  
lsm=1 

15 min  

3  YSU/NoahMP5-2  

Same as 1; plus  
sf_sfclay=1             
dveg=5  
opt_sfc=2  
topowind=1  
lsm=4 

15 min  

4  YSU/NoahMP5-1  

Same as 1; plus  
sf_sfclay=1           
dveg=5  
opt_sfc=1  
topowind=1  
lsm=4 

15 min  

5  MYNN2.5/NoahMP7-2  

Same as 1; plus 
sf_sfclay=5           
dveg=7  
opt_sfc=2  
lsm=4 

15 min  

6  MYNN2.5/NoahMP7-1  

Same as 1; plus  
sf_sfclay=5          
dveg=7  
opt_sfc=1  
lsm=4 

15 min  

2.2.2 Internal Variability 
Internal variability comes from the nonlinear physical and dynamical processes that are 
described by regional scale model equations and develops under given large-scale conditions 
(Giorgi and Mearns 1991). When there are small changes in model initial conditions, the model 
solution can be different, especially at short-term forecast scales (e.g., minute-to-hourly and daily 
scales). This spread in the model output at a given location for a particular time step in the 
simulation results is referred to as internal variability and is quantified by an ensemble spread 
represented by ensemble standard deviations (Lucas-Picher et al. 2008; Nikiéma and Laprise 
2011; Braun et al. 2012; Wang et al. 2018, Giorgi and Bi 2000). 
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Wang et al. (2018) have previously studied internal variability in the WRF model by running 16 
ensemble members for 3 years. They found clear seasonal cycles in the internal variability, but 
internal variabilities across years were nearly constant. They also found that the higher the 
spatial resolution, the larger the internal variability. Similarly, the larger the model domain, the 
larger the internal variability, because when the model domain is large enough, the regional 
model will have more freedom to develop its own variability. In contrast, if the domain is small, 
the model solution would be more constrained by the boundary conditions. In other words, the 
differences in solutions between two model simulations are higher when the model spatial 
resolution is higher and the domain size is larger. They also found that a minimum of 10 separate 
simulations with slightly different initial conditions are required to characterize internal 
variability. Because the internal variability is spatially dependent, there cannot be a single 
internal variability measure for the entire modeling domain, especially when the model domain 
covers multiple climate zones like the United States or North America. Therefore, we have 
conducted internal variability ensemble simulations for North America to understand the 
uncertainty due to internal variability over various regions. We have also conducted ensemble 
simulations for Alaska and Hawaii. These domains are much smaller, so their internal 
variabilities are expected to be smaller than those generated from the North America domain. 

For the WTK-LED, we ran 10 ensemble members with slightly different initial conditions. 
Specifically, the 10 members start with initial conditions 12 h apart, and the runs were conducted 
for summer (June to August) and winter (December to February) months, with a spin-up period 
varying from 3 to 6 days. Table 4 lists the details of the 10 ensembles that were run to determine 
uncertainty caused by internal variability. ERA5 was used for boundary conditions, and the 
PBL/LSM schemes and other physics options were the same as for Ensemble 1 from the 
structural uncertainty simulations (Table 3). The grid spacing was set to 2 km for the CONUS, 
Alaska, and Hawaii simulations and 4 km for the North America domain, and model output was 
saved every hour.  
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Table 4. Ten Ensemble Members of the WTK-LED To Determine Internal Variability in Summer 
(June to August) and Winter (December to February) Months of 2018  

No.  Start of the Simulations for Winter 
Months  

Start of the Simulations for Summer 
Months 

1IV  2017-11-26_00UTC  2018-05-26_00UTC 

2IV  2017-11-26_12UTC  2018-05-26_12UTC 

3IV  2017-11-27_00UTC  2018-05-27_00UTC 

4IV  2017-11-27_12UTC  2018-05-27_12UTC 

5IV  2017-11-28_00UTC  2018-05-28_00UTC 

6IV  2017-11-28_12UTC  2018-05-28_12UTC 

7IV  2017-11-29_00UTC  2018-05-29_00UTC 

8IV  2017-11-29_12UTC  2018-05-29_12UTC 

9IV  2017-11-29_06UTC  2018-05-29_06UTC 

10IV 2017-11-30_00UTC  2018-05-30_00UTC 

  

2.2.3 Ensemble Simulations Covering Alaska  
Additional ensemble simulations for Alaska were performed at 2 km for July–December 2018. 
These simulations will help quantify uncertainty at a higher resolution than the North America 
ensembles and will therefore help confirm whether the spatial resolution as well as model 
domain size will impact the uncertainty quantification. To reduce the computational expense, the 
domain used for these high-resolution ensembles was decreased to cover the majority of Alaska 
and excluded the very remote Aleutian islands with no living populations (Figure 3).   

Additionally, we conducted more tests using the Alaska domain at a grid spacing of 2 km to see 
whether the internal variability is significantly different if a different physics option is used to 
run 10 ensemble members: We conducted 10 simulations using the physics setup of Ensemble 3 
listed in Table 3. We chose Ensemble 3 because it uses different physics for both PBL and LSM 
compared to Ensemble 1. Therefore, we had a total of 24 ensemble runs covering structural 
uncertainties and internal variabilities. The main challenge of producing these ensemble runs was 
the need for massive computational resources and storage capacities. For example, it takes 1.36 
million CPU hours to compute these 24 ensembles for 1 month over the Alaska domain (1,320 × 
1,220 × 61 grid cells), generating 2.7 TB of data at 2-km grid spacing and hourly intervals. In 
Section 4.1, we present the sensitivity of uncertainty estimations to ensemble size using the 24 
ensemble runs conducted here. 
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2.2.4 Ensemble Simulations Covering Hawaii  
The domain setup for the Hawaii ensembles matches that for the long-term simulations (Section 
2.1). Model output was produced every 15 min for 2018. An ensemble of six members was 
conducted following Table 3 to capture the majority of the structural uncertainties; a 10-member 
ensemble was conducted following Table 4 to capture the internal variability. Both ensembles 
cover the time period of at least summer and winter months. 

2.2.5 Ensemble Simulations Covering North America 
The 4-km North America model output was characterized for internal variability using 10 
internal variability runs for the entire year (January–December). The whole-year simulation 
approach was used, from Nov. 1 until the end of the next year, because it is anticipated that the 
internal variability for the Alaska region from the North America setup will be larger than the 
internal variability using the Alaska domain only. The differences of the ensemble simulations 
compared to the long-term simulations were the same as listed in Table 3 for structural 
uncertainty. 
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3 WTK-LED Validation 
Initial validation was carried out for all modeling domains: Alaska, CONUS, North America, and 
Hawaii. This section summarizes the main validation results. Observations were mostly available 
at heights lower than typical hub heights for commercial wind turbines (i.e., below 80 m). 
Limited availability of measurements at hub heights is very typical, as those are often 
proprietary. The validation results presented here provide a preliminary assessment of the WTK-
LED performance, but users are strongly encouraged to perform additional validation studies that 
are tailored to their applications. 

In the validation studies in this section, we focused on the year 2018 because our analysis (not 
shown) revealed it is a neutral year and can represent general climatology. All three years from 
2018 to 2020 are relatively neutral without strong climate oscillations, which is why we 
simulated these years in WTK-LED CONUS and Alaska. It is crucial to immediately validate 
model output to detect potential issues in the simulations before many runs were submitted to the 
high-performance computing system. In addition to comparing WTK-LED model simulations to 
real-world observations, we also compared them to other publicly available datasets (Table 5). 
These datasets serve as benchmarks to test whether the WTK-LED follows the overall flow 
patterns or wind speed distributions. A more comprehensive comparison between these datasets 
is being prepared for a peer-reviewed journal article by Wang et al. from Argonne.   

Table 5. Publicly Available Datasets Used for Comparison With WTK-LED: Their Spatial and 
Temporal Resolution  

Dataset Spatial 
Resolution 

Temporal 
Resolution 

Remarks 

ERA5: 
https://www.ecmwf.int/
en/forecasts/dataset/e
cmwf-reanalysis-v5  

30 km hourly Used as boundary conditions for the WTK-LED 
WRF simulations; widely used in the wind energy 
community; global coverage from 1940 to present. 

Vortex: 
https://globalatlas.iren
a.org/workspace  

3 km monthly 
averages 
from 2001 
to 2020 

Part of the International Renewable Energy 
Agency Global Wind Atlas; used in the wind 
energy community; global coverage. 

Original WIND Toolkit: 
https://www.nrel.gov/gr
id/wind-toolkit.html 

2 km 5 min Produced for grid integration studies, this dataset 
is considered the dataset the WTK-LED succeeds. 
The WIND Toolkit is only available from 2007 to 
2013 and covers only CONUS.   

HRRR: 
https://rapidrefresh.no
aa.gov/hrrr/  

3 km hourly Operational model simulations, run in forecast 
mode. Multiple model updates throughout the 
years, i.e., model performance is not consistent 
across the years. There are Hawaii, Alaska, and 
CONUS domains. 

https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://globalatlas.irena.org/workspace
https://globalatlas.irena.org/workspace
https://www.nrel.gov/grid/wind-toolkit.html
https://www.nrel.gov/grid/wind-toolkit.html
https://rapidrefresh.noaa.gov/hrrr/
https://rapidrefresh.noaa.gov/hrrr/
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3.1 WTK-LED CONUS Validation 
We assessed the bias, MAE, and correlation of WTK-LED CONUS at various locations and 
various heights (Figure 6 and Figure 7) for January 2018. The model output was adjusted to the 
location and height of the observations via inverse distance weighted interpolation and the power 
law using temporally varying shear exponents based on the surrounding model heights, 
respectively. The bias is location-dependent: In certain areas, especially in the complex terrain of 
NREL’s National Wind Technology Center (NWTC) site, the bias is above 2 m/s, whereas 
certain areas exhibit bias values of less than 0.5 m/s. In general, the simulations exhibit a positive 
bias, meaning the WTK-LED suggests wind speeds were higher than observed at several 
observation sites. For most sites, the MAE is higher than that of the ERA5 dataset (differences 
vary between near zero to ~2 m/s), although for a few sites the opposite is true. Correlation 
values are, in general, lower than those of ERA5.  

 
Figure 6. Sites used to validate the 5-min, 2-km WTK-LED over CONUS. The height [m] at which 

the data were validated is indicated for each site. 
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Figure 7. (Top) Wind speed bias (m/s), (Middle) MAE, and (Bottom) correlation for the WTK-LED 
CONUS (“WRF”) (red) and ERA5 data (cyan) at the observation locations used for validation. Data 

are shown for January 2018. 

In addition to comparing WTK-LED model simulations to real-world observations, we also 
compared them to other publicly available datasets (Table 5). Figure 8 and Figure 9 are examples 
showing the comparison between WTK-LED CONUS and Global Wind Atlas Vortex. 
Specifically, we compared 100-m monthly mean wind speed of the WTK-LED CONUS 
simulation in 2018 with winds at the same height but from long-term (2001–2020) monthly mean 
Vortex data. Overall, WTK-LED-modeled 100-m winds are slightly higher than the long-term 
mean in the same month produced by Vortex (ratio larger than 1). This higher wind speed is seen 
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over the eastern, central, or western United States, depending on the months examined. In 
general, the geospatial pattern and the magnitude, as well as the seasonality of wind speeds in the 
Vortex data are well captured by the WTK-LED CONUS simulations.    

 

 

Figure 8. Comparison of 100-m wind speeds between WTK-LED CONUS simulated in 2018 and 
Vortex long-term mean. The left column maps are for March, and the right column maps are for 
June. (Top) Vortex multiyear mean. (Middle) WTK-LED CONUS mean for 2018. (Bottom) Ratio of 

WTK-LED CONUS/Vortex data. 
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Figure 9. Comparison of 100-m wind speeds between WTK-LED CONUS simulated in 2018 and 
Vortex long-term mean The left column maps are for September, and the right column maps are 
for December. (Top) Vortex multiyear mean. (Middle) WTK-LED CONUS mean for 2018. (Bottom) 

Ratio of WTK-LED CONUS/Vortex data.  

Figure 10 shows ratio maps similar to those in Figures 8 and 9, but for 2019 and 2020. In 2019, 
the 100-m wind speeds are slightly slower than the long-term mean from Vortex in March and 
June over the Northwest, but faster over the Southwest, Midwest, and especially the Southeast. 
The overestimation in the Southeast is common and is also seen in ERA5 because the wind 
speeds in this region are as low as the model’s uncertainty and usually not fast enough to operate 
wind farms. Accurately capturing these winds is challenging. Since the benchmark data from 
Vortex has the same long-term mean used for Figure 8 and Figure 9, the differences between 
these maps for different years (2018, 2019, and 2020) indicate clear interannual variability in 
wind speeds. This interannual variability is usually larger than the uncertainty due to internal 
variability from initial conditions. 
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Figure 10. Ratio of 2-km WTK-LED CONUS/Vortex for (Row 1) March, (Row 2) June, (Row 3) 
September, and (Row 4) December. Left: ratio based on WTK-LED CONUS in 2019; right: ratio 

based on WTK-LED CONUS in 2020. 

3.2 WTK-LED Alaska Validation 
We present an observational validation analysis for the 5-min/2-km WTK-LED Alaska at several 
locations (Figure 11) and several measurement heights. The observations were from the National 
Data Buoy Center (n.d.) and the Alaska Energy Authority (n.d.).  
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Figure 11. Location of measurements used to validate the WTK-LED over Alaska  

At these sites, the wind speed bias was assessed during June and December of 2018 (Figure 12) 
for both the WTK-LED and ERA5 data to demonstrate a comparison with ERA5 as well. In 
June, the WTK-LED model simulations show a smaller bias magnitude at 11 sites, and ERA5 
shows a smaller bias magnitude at 11 sites. For December, a smaller bias magnitude is shown at 
12 sites for WTK-LED and at 10 sites for ERA5. The spatial distribution of the bias is shown in 
Figure 13. 

Figure 14 and Figure 15 show the MAE: In June, the WTK-LED exhibits a smaller MAE at six 
sites, compared to ERA5, which shows a smaller MAE at 16 sites. For December, the WTK-
LED has a smaller MAE at five sites compared to ERA5, which shows a smaller MAE at 17 
sites. 

Correlation values are better for ERA5 than for the WTK-LED (Figure 16 and Figure 17): The 
WTK-LED has a higher correlation at two sites, and ERA has a higher correlation at 20 sites for 
both June and December. 
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Figure 12. Wind speed bias (m/s) for the WTK-LED (“WRF”) (red) and ERA5 data (cyan) at the 

observation locations used to validate the WTK-LED over Alaska 

 

 
Figure 13. Wind speed bias (m/s) at various observation locations over Alaska for the (Left) WTK-

LED (“WRF”) and (Right) ERA5  
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Figure 14. Wind speed MAE (m/s) for the WTK-LED (“WRF”) (red) and ERA5 data (cyan) at the 

observation locations used to validate the WTK-LED over Alaska 

 
Figure 15. Wind speed MAE (m/s) at various observation locations over Alaska for the (Left) WTK-

LED (“WRF”) and (Right) ERA5 

 
Figure 16. Wind speed correlation (m/s) for the WTK-LED (“WRF”) (red) and ERA5 data (cyan) at 

the observation locations used to validate the WTK-LED over Alaska  
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Figure 17. Wind speed correlation at various observation locations over Alaska for the (Left) WTK-

LED (“WRF”) and (Right) ERA5  
Additionally, a comparison analysis was performed with WTK-LED Alaska and Vortex data 
(Figure 18). Depending on the month and location, the ratio of WTK-LED Alaska/Vortex data 
can reach up to 2. 
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Figure 18. (Row 1) WTK-LED wind speed simulations at 100 m averaged over June 2018 (left) and 
December 2018 (right). (Row 2) VORTEX long-term averaged wind speeds at 100 m averaged over 

all months of June from 2001 to 2020 (left) and over all months of December from 2001 to 2020 
(right). (Row 3) Ratio between WTK-LED and VORTEX. 
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3.3 WTK-LED Hawaii Validation 
We compared the WTK-LED Hawaii simulations with those produced and published by the 
University of Hawaii (UH) available at https://www.pacioos.hawaii.edu/weather/model-wind-
mauioahu/#access. The WTK-LED model domain covers the entire island chain, whereas the 
domain from UH only covers part of the islands. Therefore, we compare the simulations only for 
the overlapping domain (Figure 19). Because we do not have any observations to validate the 
results, we do not assess the accuracy of the model simulations but use the simulations from UH 
as a reference to judge if the WTK-LED produces reasonable results over Hawaii. Note also that 
the UH simulations are hourly forecasts and not hindcasts like the WTK-LED. 

While the WTK-LED over Hawaii exhibits higher wind speeds than UH’s dataset, the WTK-
LED captures similar spatial patterns and seasonal variability (there is not much difference in 
wind speeds and directions between different seasons). Wind speeds are generally lower over the 
islands than over the ocean. There are some localized changes in wind speeds over the islands, 
indicating there are local structures that affect the wind speeds.  

  

https://www.pacioos.hawaii.edu/weather/model-wind-mauioahu/#access
https://www.pacioos.hawaii.edu/weather/model-wind-mauioahu/#access
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Figure 19. 10-m wind speed comparison between (Left) WTK-LED simulations and (Right) 
University of Hawaii’s 2-km WRF simulation, in (Row 1) March, (Row 2) June, (Row 3) September, 

and (Row 4) December. Note that the units in these maps are knots. 
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We have also computed island-wide averages using hourly wind speeds for three major 
Hawaiian islands. Their diurnal cycles and probability density functions (PDFs) in each month 
are shown in Figure 20. We found that winds simulated by WTK-LED are higher than those 
simulated by UH, but the diurnal patterns are very similar. The overlap of PDFs between two 
datasets are mostly larger than 70%, indicating similar distributions, except that the WTK-LED 
has a larger mean and median value. 

  

 

Figure 20. Comparison of diurnal cycles of island-wide averaged hourly wind speeds for July and 
December. Top two rows: Oahu, HI. Bottom two rows: Maui, HI. Left column: averaged diurnal 

cycle. Right column: probability density function of wind speeds. 
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3.4 WTK-LED Climate Validation 
We conducted preliminary validation of the WTK-LED Climate dataset at 4-km grid spacing and 
hourly intervals by comparing simulations to observations at various heights (Validation sites are 
shown in Figure 21). A more comprehensive validation will be presented in a forthcoming paper 
by Wang et al.  

 

  

Figure 21. Map showing the selected observation sites across the contiguous United States. The 
inset shows eight sites from the Second Wind Forecast Improvement Project (WFIP2) in the 

northwestern United States that were evaluated.  

Climate-scale simulations are meant to capture climatological statistics (e.g., mean, variance, 
maxima, minima). Our validation focuses on these aspects in Figure 22 showing PDFs over 
various terrain conditions. From this analysis, we conclude that WTK-LED Climate matches the 
observed PDFs reasonably well at most sites, even in complex terrain, although it overestimates 
wind speeds in some regions (e.g., southeastern United States). ERA5 performs well over 
relatively flat regions but struggles in complex terrain, with overestimations of low wind speeds 
and underestimations of high wind speeds, especially over mountains.  
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Figure 22. Observed, WTK-LED Climate, and ERA5 simulated PDFs of wind speeds at various sites 
and heights for 2013 and 2018. The overlapping ratio is indicated in the boxes for WTK-LED 

Climate (WRF simulations) and ERA5; the closer to 1, the better.  

Next, we evaluate the seasonally averaged diurnal cycle of wind speeds and seasonally averaged 
wind roses (Figure 23 and Figure 24 ). It is interesting to note that the performance of the WTK-
LED Climate simulations varies depending on the season and site. We use one of the sites at the 
Atmospheric Radiation Measurement user facility in Oklahoma, as many of the model physics 
parameterizations, including the radiative transfer model, were calibrated based on this site. 
While it is encouraging to see that the WTK-LED Climate data performs reasonably well at this 
site for both diurnal cycles in wind speeds and wind roses, we see different biases across various 
locations. In general, consistent with the PDFs, the model performs better over complex terrain 
than ERA5 and shows overestimations in flat regions. Wind directions are generally captured at 
all sites. These findings indicate that the WTK-LED Climate captures the main physics that 
govern the winds. 
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Figure 23. Averaged diurnal cycle of wind speeds at 65 m at the Southern Great Plains site in 
Oklahoma for ERA5, WTK-LED Climate (WRF), and observations for winter, spring, summer, and 
fall. The correlation is indicated in the boxes for WTK-LED Climate (WRF simulations) and ERA5. 
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Figure 24. Wind roses for 65-m wind speeds at the Southern Great Plains site in Oklahoma for 
(bottom row) WTK-LED Climate (WRF), and (top row) observations for winter, spring, summer, and 

fall  

Hour-to-hour variability is important for certain grid integration applications; therefore, we show 
the day-to-day variability of wind speeds in the WTK-LED Climate data at one specific location 
(Figure 25) as an example. We see that the simulations can capture peaks and the general 
characteristics of the flow, but often at different times than observed, resulting in poor data 
correlation (0.25). This bears the question: At what timescale do the WTK-LED Climate data 
depict the flow pattern accurately enough for various applications? In Figure 26 we therefore 
show RMSE and correlation at various sites for daily, weekly, biweekly, and monthly averages. 
As we average the data over longer timescales, the correlation increases, and the RMSE 
decreases at all but one site (Wasco, Oregon, with complex terrain). While these results are 
expected from a climate science perspective — showing performance with correlations close to 
0.9 and relative RMSE around 10% is considered decent in climate models — they should not be 
used for capturing hour-to-hour variability needed for grid integration applications.  
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Figure 25. Hour-to-hour variability of 10-m wind speed above ground level (AGL) (m/s) at the 

Argonne observation station in the first 20 days of July 2018. Observations are in black, and 4-km 
WTK-LED Climate simulations in red. The correlation has been calculated to be 0.25 for this time 

period.  

 

 

Figure 26. Relative RMSEs (red) and correlation (blue) of simulated wind speeds at various sites 
and heights for the year as indicated in the panel titles. The relative RMSE is calculated using 

RMSE divided by the observed annual mean wind speeds. 

ANL_OBS 
WRF_4km 
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4 Uncertainty Quantification 
For all the wind datasets and validation presented in this report and for publicly available wind 
data products, including WIND Toolkit, Global Atlas Vortex, and HRRR, the data are created 
deterministically. This means the potential range of the data is not shown if the model is run 
using different physics or is initialized from a different day or hour. At locations with high wind 
speeds, the uncertainty can also be high, whereas at locations with slightly lower wind speeds, 
the uncertainty can be low. Wind farm planners need this information to better inform siting 
decisions and avoid regions with high uncertainties and large variabilities in wind energy 
potential. To address this need, ensembles were set up to estimate wind speed model uncertainty 
for CONUS, Alaska, and Hawaii, accounting for both model structural uncertainty and 
uncertainty due to internal variability. We describe how model uncertainty was deduced from 
these ensembles. Quantifying this uncertainty is crucial for providing accurate assessments of the 
confidence surrounding the deterministic wind speeds used to assess wind resources at different 
locations. Note that we are not estimating the uncertainty that arises from comparing model 
simulations with real-world observations. 

4.1 Sensitivity of Uncertainty Estimation to Ensemble Size 
As described in Section 2.2.3, we conducted 24 ensemble runs for the WTK-LED Alaska setup, 
which allows us to study the sensitivity of ensemble size uncertainty estimation. A statistical 
bootstrapping (a resampling) technique is applied to the 24 runs in December along the hourly 
time dimension (744 time steps in each December) to produce a sample pool with 500 
augmented Decembers. Augmented Decembers still have 744 time steps per month and maintain 
temporal dependence but are generated by selecting wind speeds at each time step that may come 
from any of the 24 runs. That is, an individual sample is produced when one of the data points 
(24 × 744) is randomly selected to create a new time series for 100-m wind speeds (Figure 27). 
Each resampled time series is the same size as the original data—744 time points in December at 
hourly intervals. The augmented sample pool of ensemble members is used to represent a range 
of wind speeds created by considering both uncertainty sources. To cover that wind speed range, 
we can take medians (50th percentile), upper bounds (97.5th percentile), and lower bounds (2.5th 
percentile) from the 500 × 744 wind speed sample pool.  
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Figure 27. Statistical resampling demonstration with (a) 22 original ensembles and (b) those 22 
ensembles resampled 500 times to produce a large, augmented time series with the same time-

dependence as the original ensembles. Uncertainty calculated on 500 resampled time series 
provides more robust characterization of ensemble variability than on the original pool. 

To investigate the minimum ensemble size required for a robust estimation of wind speed 
uncertainty or to examine whether the 24 members are sufficient for covering the uncertainty 
range of wind speeds, we can estimate the 5th, 50th, and 95th percentiles based on bootstrapping 
different numbers of ensemble runs. For example, we start with selecting two ensemble members 
randomly from the 24-member ensemble, then carry out a series of bootstrapping experiments by 
progressively increasing the ensemble size (Alexandru, de Elía, and Laprise 2007). We made 
sure that the chosen ensemble members always include both uncertainty sources. If a quantity of 
interest (e.g., 50th percentile) converges to a very small variability in wind speed when we reach 
a certain ensemble size, that means the ensemble size is sufficient to cover both uncertainty 
sources studied here. Note that this bootstrapping approach can incorporate more uncertainty 
sources, such as parameter uncertainty, forcing data uncertainty, and others if the ensemble is 
available. 

Figure 28 demonstrates that small ensemble sizes generate a large spread of model variability 
estimates without capturing the full magnitude of variability. Five members generally capture the 
full magnitude of variability (with the exception of the Southeast Coast Region), but may still 
underestimate the variability depending on which ensembles are randomly sampled. Good 
agreement for ensemble sizes greater than 12 indicates the ability to generate a robust assessment 
of wind speed variability considering both structural and internal variability. This means that, 
even if we included more than our 16 ensemble runs, we expect the variability of the model 
simulated wind speed would not significantly change. This is an encouraging finding, because 
running more ensemble members requires a large amount of computational resources and storage 
space.  
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Figure 28. Ensemble-size experiment over four locations in Alaska indicated by the latitudes and 
longitudes: variation of the 100-m wind speeds created by ensembles considering both internal 

variability and structural uncertainty, with the ensemble size from 2 to 20, randomly sampled from 
the 24 members. Note that the variability on the y-axis is averaged across time (744 time points). 

The variability at hourly scale (without averaging) is much larger than shown. 
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4.2 Expressing the Uncertainty  
After confirming that the 16 ensemble members (10 representing structural uncertainty and 6 
representing internal variability) are sufficient, we performed statistical bootstrapping on the 
ensemble runs. This process generated 500 augmented ensemble members, each with the same 
spatial and temporal domain as one of the original 16 ensemble members. Subsequent analysis 
took different time averages across the 500 ensemble members, including daily averages, weekly 
averages, biweekly averages, and daytime and nighttime averages for the entire month. For the 
daytime and nighttime averages, we averaged every 21 UTC (daytime) and 06 UTC (nighttime) 
across all 31 days of January. Once the averages were calculated, we determined the percentiles 
(5th, 25th, 50th, 75th, and 95th) across the 500 ensemble members for every spatial grid point 
and time step. This helped us analyze the degree of spread between the upper and lower bounds 
of the 100-m wind speeds. The range between the 5th and 95th percentiles from the 500 
ensemble members ultimately represents the uncertainty in the wind speeds over a certain 
location across the domains covered by all WTK-LED simulations. 

Figure 29 shows the resulting uncertainties of 100-m wind speeds using the method described 
above for the WTK-LED Climate data over North America for January 2018. Here, we present 
weekly and biweekly timescales. For each timescale, a random time step (e.g., a certain week or 
a certain day) was chosen to plot the maps in the figure. Intuitively, the magnitude of the 
uncertainties scales with the resolution of the temporal averages. The biweekly uncertainties 
mostly fall within the range of 0.3–0.7 m/s across the contiguous United States, with higher 
uncertainties over the Rockies, Great Lakes and Northeast. The weekly uncertainties are notably 
higher, ranging mostly between 0.5 and 1.2 m/s. The daily average, at the highest temporal 
resolution used in this analysis, shows the highest uncertainties across the spatial domain, with 
most values exceeding 2.5 m/s, especially in regions where the wind speed itself is low, such as 
in the western and southern United States. This means that if the model simulations are 
conducted using different physics parameterizations or initial conditions, the output can vary 
significantly, with differences as large as the wind speeds at these locations. This also indicates 
that the numerical models are not capable of accurately simulating very low wind speeds, which 
often fall within the range of model uncertainty. Fortunately, the wind farms do not operate until 
wind speeds reach 4–5 m/s, so this limitation has minimal impact on operational decisions. 
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Figure 29. 5th percentile, 95th percentile, and 95th minus 5th percentile taken across the 500 

resampled ensembles at the biweekly (1st row) and weekly (2nd row) averaged timescale 

Figure 30 shows an example of uncertainty in August 2018 over the Hawaiian Islands and the 
surrounding Pacific Ocean. Presented here are the nighttime and daytime monthly averaged 100-
m wind speeds. Note that both daytime and nighttime are represented by only one hour, resulting 
in a relatively large uncertainty compared to monthly or biweekly mean wind speeds. Summer 
has the highest wind speeds due to persistent trade winds blowing in from the northeast. In 
contrast, winter winds can come from any direction and may also yield high winds, but not as 
persistently strong as in summer. We can see that in August, and summer in general, wind 
uncertainty over the upwind side (east coast) is smaller than over the downwind side (west 
coast). Once the winds pass through the islands and are influenced by terrain effect, the model 
uncertainty becomes larger. 
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Figure 30. 5th percentile, 95th percentile, and 95th minus 5th percentile taken across the 500 
resampled ensembles at the daytime and nighttime monthly averaged timescale in the month of 

August.  
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5 WTK-LED Dissemination and Public Access 
The WTK-LED data are licensed for public use using a modified three-clause Berkeley Software 
Distribution open-source data license and indexed in key public data repositories such as OpenEI 
and Data.gov. The data, while large, are made available using several different systems to suit 
different users’ needs, as described in the subsequent sections. 

5.1 Data Format and HPC Access 
After postprocessing, the WTK-LED data are stored in HDF5 files on NREL’s Kestrel high-
performance computing system. These files are available on a high-performance file system to 
all researchers and users of this system. The resulting files sizes per year are shown in Table 6. 

Table 6. Annual Dataset File Information 

Dataset Individual Size 
(terabytes) 

Number of Files Total Size 
(terabytes) 

Alaska, 5-min/2-kma ~0.68 15 9.9 

Alaska, hourly 2.4 1 2.4 

CONUS, 5-min/2-kma ~2.8 15 36 

CONUS, hourly 5.8 1 5.8 

North America Climate 3 1 3 
a The 5-min files are stored as separate files per available height. 

5.2 Scalable Data Platform 
To support dissemination of this large data resource to various tools and platforms, the WTK-
LED uses the same system for data dissemination pioneered by the original WIND Toolkit. This 
system leverages the HDF Group’s Highly Scalable Data System (HSDS) and the Amazon 
computational cloud Simple Storage Service and Elastic Cloud Compute (Phillips et al. 2024). 
This system has several key benefits: 

1. As a member of Amazon’s Public Data Initiative (Amazon Sustainability Data Initiative, 
n.d.), the WTK-LED is available free of charge. This means no access or egress fees for 
data requests to the Simple Storage Service platform. 

2. The HSDS service, running on Amazon Elastic Cloud Compute, is able to subset the files 
stored in their native HDF5 format, allowing users to select just the values or subsets of 
values needed from the source data. A public instance allows users to do this for free, and 
the open-source nature of the design means individual users can also deploy their own 
HSDS instance for arbitrary scalability. 

3. Finally, the API Umbrella framework (https://github.com/NREL/api-umbrella) and 
infrastructure at api.data.gov allow for controlled access to the public HSDS service, 
preventing misuse or abuse while not preventing those users needing access to the full 
data to do so through Simple Storage Service. 

In addition to this platform, ongoing work is evaluating additional serverless frameworks that 
can support very high volumes of queries, e.g., for public API access not needing rate limiting or 
control. 

https://github.com/NREL/api-umbrella
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5.3 Web Platform 
The WTK-LED is available in NREL’s Wind Resource Database (WRDB), an interactive web 
platform, at https://wrdb.nrel.gov (Figure 31). Postprocessed data are available from the 4-km 
North America domain, the 2-km CONUS and Alaska domains, and over Hawaii. The WRDB is 
a collection of modeled wind resource estimates not only for the United States but also for 
various countries around the globe. The web-based platform allows the user to view and 
download datasets over various countries at various spatial and temporal resolutions. For the 20-
year climate data over North America as well as the Hawaii and Alaska simulations, uncertainty 
estimates will be provided in the future. The available meteorological variables are listed in 
Table 7.  

In addition to the WRDB, the WTK-LED data will be available on OpenEI 
(https://data.openei.org/submissions/2) and can be accessed via an AWS Public Dataset Bucket. 

 

 
Figure 31. Screenshot of the Wind Resource Database 

 
  

https://wrdb.nrel.gov/
https://data.openei.org/submissions/2
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Table 7. Height and Temporal Resolution for WTK-LED Variables for the North America, CONUS, 
and Alaska Domains  

Variable Height (m) Temporal Resolution 

Wind speed 10, 20, 40, 60, 80, 100, 120, 
140, 160, 180, 200, 250, 300, 
500, 1,000 

2018–2020: 5 min, 2 km 
2000–2020 climate: hourly, 4 km 

Wind direction 10, 20, 40, 60, 80, 100, 120, 
140, 160, 180, 200, 250, 300, 
500, 1,000 

2018–2020: 5 min, 2 km 
2000–2020 climate: hourly, 4 km 

Temperature 2, 20, 40, 60, 80, 100, 200, 300, 
500, 1,000 

Hourly 

Virtual potential temperature 2, 20, 40, 60, 80, 100, 200, 300, 
500, 1,000 

Hourly 

Pressure 0, 100, 200, 500 Hourly 

Turbulence kinetic energy* 2, 20, 40, 60, 80, 100, 200, 300, 
500, 1,000 

2018–2020: 5 min, 2 km 

Vertical wind speed* 10, 40, 80, 120, 200, 500 2018–2020: hourly, 2 km 

Cumulative precipitation 0 Hourly 

Inverse Monin-Obukhov length 2 Hourly 

Skin temperature 0 Hourly 

Latent heat flux 0 Hourly 

Sensible heat flux 0 Hourly 

Friction velocity 2 Hourly 

Boundary layer height N/A Hourly 
*Not available for WTK-LED Climate 

  



48 
This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

6 Discussion 
The WTK-LED aims to provide valuable data to a wide group of stakeholders across various 
wind energy disciplines and to address some of the gaps in current publicly available datasets. 
These gaps include long-term continuity, high spatial and temporal resolution, inclusion of 
variables relevant to wind energy, and estimates of model uncertainty. The latter is particularly 
important: The Energy Systems Integration Group (2023) report states, “It should be understood 
that no model can consistently predict wind speeds to within the 1-2 m/s accuracy range that is 
needed” for power systems applications, and that “any gridded dataset will be imperfect.” By 
making uncertainty estimates available to the community, users can incorporate these into their 
analyses and find ways to work around the inherent inaccuracy of modeled data. Acknowledging 
and embracing model uncertainty is crucial, as errors in hub-height wind speed estimates can 
have serious financial implications (Veers et al. 2019).  

The overall uncertainty of the WTK-LED can only be assessed through rigorous validation and 
comparison with observations, but those are sparse at hub height. This report includes some 
validation results, yet we encourage WTK-LED data users to perform additional validation 
studies based on their needs and required hub heights. For WTK-LED Climate, our results show 
reasonable outcomes on an aggregated timescale and indicate that for grid integration 
applications that require hour-to-hour variability, the WTK-LED Climate data should not be 
used. 

Based on our results to date, Table 8 provides recommendations and suggested use cases and 
applications for each dataset of the WTK-LED.  

Table 8. Suggested Use Cases for WTK-LED Datasets. Note that for all datasets a priori validation 
is strongly recommended.  

Dataset WTK-LED CONUS and 
WTK-LED Alaska 

WTK-LED Climate NOW-23 

Description Simulations from 2018 to 
2020 at 5 min and 2 km 
resolution 

Simulations covering North 
America from 2001 to 2020 
at hourly and 4 km resolution 

Simulations at 5 min and 2 km 
resolution for offshore areas 
and Hawaii for 20+ years 

Use case: 
wind resource 
assessments 

Preliminary land-based 
wind resource 
assessments including 
interannual, seasonal, 
diurnal variability 
assessments 

Averaged wind resource 
estimates (e.g., interannual 
variability, long-term 
averaged seasonal and 
diurnal variabilities); 
Applications needing high-
resolution data covering 
North America 

Preliminary offshore wind 
resource assessments, 
including interannual, 
seasonal, diurnal variability 
assessments 

Use case:  
grid 
integration 

Land-based grid 
integration studies  

Avoid time-specific grid 
integration analyses 

Offshore grid integration 
studies  
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Use case: 
environmental 
modeling and 
airborne wind 
energy 

Environmental modeling 
(the data include vertical 
wind speed and 
turbulence kinetic 
energy) or airborne wind 
energy assessments 
(the data are available 
up to 1000 m above 
ground level) 

Vertical wind speed and 
turbulence kinetic energy is 
not available. 

Offshore studies requiring data 
up to 500 m; vertical wind 
speed and turbulence kinetic 
energy not included 

Use case: 
statistical 
weather 
analyses 

Shorter-term (up to 3-
year) statistical analyses 

Risk analysis about wind 
extremes due to natural 
hazards (hurricanes, wildfire) 

Risk analysis about wind 
extremes due to natural 
hazards (hurricanes) 

 

In the future, we plan to offer WTK-LED bias correction for locations with sufficient 
observational coverage. A variety of correction methodologies were assessed using the original 
WIND Toolkit and reanalysis models to narrow down the best techniques to apply to the WTK-
LED in the future. At 10 spatially and temporally diverse observational locations, four 
computationally inexpensive techniques were tested with the WIND Toolkit: linear scaling, 
variance scaling, Weibull scaling (Li et al. 2019), and multiplicative ratio (Valappil et al. 2020). 
Each correction technique was applied according to the following spatiotemporal designations: 

1. Bulk: Information is utilized from the entire time period of each surrounding 
observational contribution, and the results are averaged across the spatial domain prior to 
application to the bias correction schemes. Temporal coverage can vary between 
observational location and height. 

2. Inverse distance weighted: This correction follows the form of the bulk correction, but 
instead of averaging the information from the surrounding points, inverse distance 
weighting is employed so that the surrounding points closest to the central point impact 
the correction schemes more than distant surrounding points. 

3. Vertical nearest neighbor: This correction also follows the form of the bulk correction, 
but with the restriction of including only the nearest neighbor in vertical height from each 
surrounding point to the correction height. 

4. Seasonal: A unique correction is applied for each season, defined as winter (December, 
January, February), spring (March, April, May), summer (June, July, August), and fall 
(September, October, November). 

5. Diurnal: A unique correction is applied for different times of day, defined as morning 
(0600–1159 local time), afternoon (1200–1759 local time), evening (1800–2359 local 
time), and night (0000–0500 local time). 

6. Seasonal + diurnal: Each seasonal definition in conjunction with each diurnal definition is 
applied, resulting in 16 unique corrections based on time of year and day. 

Meteorological tower and airport station data were sourced from Bonneville Power Association, 
the National Data Buoy Center, the University of Massachusetts, the National Centers for 
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Environmental Information, and proprietary sources to perform the bias correction assessment 
(Duplyakin et al. 2021). The computationally inexpensive bias correction assessment showed 
that linear scaling with any spatiotemporal application and multiplicative ratio scaling applied 
diurnally reduce the WIND Toolkit bias without degrading the remaining error statistics, namely 
MAE, RMSE, and R2. Therefore, the bias correction strategy considered will consider bulk linear 
scaling and diurnal multiplicative ratio scaling as viable options for bias correcting the WTK-
LED in regions with sufficient observational coverage and bias consistency.  

Phillips et al. (2022) and Phillips et al. (2024) tested three data-driven bias correction techniques 
on the KNW-Atlas reanalysis model using observational data from small wind turbines in the 
Netherlands: multiple linear regression fitted by ordinary least squares, random forest, and 
support vector regression. Similarly, Sheridan et al. (2024) assessed the performance of 
multivariable linear regression, adaptive regression splines, and random forest using observations 
with durations of one year or less. Across the studies, random forest was found to best model the 
training data in terms of reducing bias, so this method was also selected for consideration in the 
bias correction strategy.  
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7 Summary and Conclusions 
To satisfy a wide group of stakeholders across various wind energy disciplines and to close some 
of the gaps that current publicly available datasets have, our team developed an updated version 
of the original meteorological WIND Toolkit (Draxl et al. 2015a) that now includes the entire 
United States as well as estimates of model uncertainty of wind speed at every modeling grid 
point. The updated WIND Toolkit, named WIND Toolkit Long-term Ensemble Dataset (WTK-
LED), includes the contiguous United States and Alaska with high-resolution data available for 3 
years (2018–2020). Additionally, we leveraged climate simulations from Argonne National 
Laboratory, which complement the new WTK-LED to offer a 4-km dataset covering 20 years, 
from 2001 to 2020, covering the North American continent and surrounding oceans, including 
Alaska, Canada, most of Mexico, and the Caribbean islands. Additionally, specific long-term, 
high-resolution offshore simulations have been conducted for offshore wind resource 
assessments in the Atlantic, Great Lakes, Hawaii, Pacific regions, and Gulf of Mexico (NOW-
23; Bodini et al. 2024). Because the offshore simulations are documented separately, this report 
focuses on a description of the land-based WTK-LED for CONUS, Hawaii, and Alaska. 

We generated 16 ensemble members to estimate model uncertainty, including internal variability 
and structural uncertainty, for both summer and winter months. In summary, we found that 
regardless of the domain size (Alaska vs. North America), summer generally exhibits lower wind 
speeds while winter shows higher wind speeds. However, summer has higher internal 
variabilities while winter has lower internal variability. Regardless of the domain size, winter has 
larger structural uncertainty, which is due to the selected model physics options. We also found 
that the larger model domain (i.e., North America domain) shows larger internal variabilities as 
well as structural uncertainties (especially in the summer) (not shown). Comparing the two 
sources of uncertainty over the same domain and same season, the physics uncertainty is larger 
than the uncertainty due to model internal variability, but this depends on specific locations. The 
uncertainty due to internal variability does not change much when using different physics 
schemes or different forcing data, or in a different year (similar findings can be found in Wang et 
al. 2018, Lucas-Picher et al. 2008, Braun et al. 2012). 

In general, the model uncertainty is much larger for shorter timescales of days or hours and 
smaller on a monthly scale. We found that the ensemble size required to quantify uncertainty 
from both interannual variability and structural uncertainty should not be smaller than 12. Most 
importantly, because the model uncertainty is heavily dependent on the domain size, it has to be 
quantified for any particular model domain size used for generating wind resource data. Data 
generated based on one domain size do not have the same uncertainties as the data generated 
based on another domain size, even when using the same numerical model and model setup. 

Simply adding up the uncertainties of structural uncertainty and internal variability is not the best 
way to express model uncertainty. We developed a resampling strategy and probability 
distribution functions to quantify the uncertainty of simulated quantities of interest for the AT&T 
climate risk and resilience project (Gamelin et al. 2022). Therefore, we will make the 
uncertainties available in the format suggested by Gamelin et al. (2022). 

Lastly, the authors would like to reiterate that with any simulated dataset, the value of the dataset 
increases as more validation is carried out and limitations of the dataset are known. To that end, 
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we have started to develop recommendations for each of the datasets included in the WTK-LED 
in Table 8 and will update our guidance as more studies become available. Please contact us for 
questions and to share results at windtoolkit@nrel.gov.    

  

mailto:windtoolkit@nrel.gov
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Appendix A. WRF Name Lists 
A.1 Simulations for CONUS: 
&time_control 
 interval_seconds                    = 10800, 
 input_from_file                     = .true., 
 history_interval                     = 18000000, 
 frames_per_outfile                = 1,  
 restart                                     = .true., 
 restart_interval                       = 7200, 
 io_form_history                     = 11 
 io_form_restart                      = 102 
 io_form_input                        = 11 
 io_form_boundary                  = 11 
 auxinput4_inname                  = "wrflowinp_d<domain>", 
 auxinput4_interval                  = 180, 
 io_form_auxinput4                  = 2, 
 auxhist15_interval                  = 5,  
 frames_per_auxhist15             = 1,  
 io_form_auxhist15                  = 11, 
 iofields_filename                     = "myoutfields.txt" 
 ignore_iofields_warning         = .true., 
 / 
 
 &domains 
 time_step                           = 5, 
 max_dom                           = 1, 
 e_we                                  = 2650,     
 e_sn                                   = 1950,    
 e_vert                                 = 61,    
 p_top_requested                 = 5000, 
 num_metgrid_levels           = 38, 
 num_metgrid_soil_levels   = 4, 
 dx                                        = 2000,  
 dy                                        = 2000,  
 grid_id                                 = 1,     
 parent_id                              = 0,     
 i_parent_start                       = 1,    
 j_parent_start                       = 1,    
 parent_grid_ratio                 = 1,     
 parent_time_step_ratio        = 1,    
 feedback                              = 0, 
 smooth_option                    = 2, 
 eta_levels                          = 1.0, 0.998600, 0.996000, 0.994000, 0.992000, 
                                       0.990000, 0.987592, 0.984486, 0.980977, 0.977016, 
                                       0.972544, 0.967500, 0.961813, 0.955403, 0.948185, 
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                                       0.940062, 0.930929, 0.920670, 0.909158, 0.896257, 
                                       0.881820, 0.859633, 0.830162, 0.794019, 0.751945, 
                                       0.704330, 0.659043, 0.615990, 0.575078, 0.536219, 
                                       0.499329, 0.464324, 0.431126, 0.399657, 0.369845, 
                                       0.341616, 0.314904, 0.289641, 0.265763, 0.243210, 
                                       0.221922, 0.201841, 0.182641, 0.164410, 0.148206, 
                                       0.132526, 0.117709, 0.104002, 0.091398, 0.079808, 
                                       0.069150, 0.059351, 0.050340, 0.042054, 0.034434, 
                                       0.027428, 0.020986, 0.015062, 0.009615, 0.004606, 
                                       0.0, 
&physics 
 mp_physics                    =  10,   
 cu_physics                     =  0,    
 ra_lw_physics                =  4,    
 ra_sw_physics                =  4,    
 bl_pbl_physics               =  5, 
 sf_sfclay_physics           =  5, 
 sf_surface_physics         =  2, 
 aer_opt                           = 1, 
 radt                                 = 15,    
 swint_opt                       = 1, 
 bldt                                 = 0,    
 cudt                                 = 5,    
 icloud                              = 1, 
 num_land_cat                 = 21, 
 sst_update                       = 1, 
 sf_urban_physics            = 0,     
 surface_input_source      = 1, 
 num_soil_layers              = 4, 
 / 
&dynamics 
 w_damping                      = 1, 
 diff_opt                            = 1,      
 km_opt                             = 4,      
 diff_6th_opt                      = 0,     
 diff_6th_factor                  = 0.12,   
 base_temp                         = 290. 
 damp_opt                           = 0, 
 zdamp                                = 5000.,  
 dampcoef                           = 0.2,   
 khdif                                  = 0,      
 kvdif                                  = 0,    
 non_hydrostatic                 = .true.,  
 moist_adv_opt                     = 1,    
 scalar_adv_opt                     = 1,     
 gwd_opt                               = 0, 
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 / 
 &bdy_control 
 spec_bdy_width                   = 10, 
 spec_zone                             = 1, 
 relax_zone                            = 9, 
 spec_exp                               = 0.33 
 specified                               = .true., 
 nested                                   = .false., 
 / 
 &grib2 
 / 
 &namelist_quilt 
 nio_tasks_per_group           = 0, 
 nio_groups                           = 1, 
 / 
A.2 Simulations for North America (Differences to CONUS 
Simulations Only): 
&time_control 
interval_seconds                    = 21600 
restart_interval                    = 10080, 
write_hist_at_0h_rst                = .true. 
override_restart_timers             = .true. 
auxinput4_interval                  = 360 
auxhist15_interval                  = 60,  
/ 
 &domains 
 time_step                           = 10, 
 e_we                                = 2050,    
 e_sn                                = 1750,        
 e_vert                              = 49 
 eta_levels                          = 1.000, 0.998, 0.996, 0.994, 0.992, 0.990, 0.985, 0.980, 0.975, 0.970, 0.965, 0.960, 
0.955, 0.950, 0.940, 0.930, 0.920, 0.900, 0.880, 0.860, 0.840, 0.820, 0.800, 0.780, 0.760, 0.740, 0.700, 0.660, 
0.620, 0.580, 0.540, 0.510, 0.480, 0.450, 0.420, 0.390, 0.360, 0.330, 0.300, 0.270, 0.240, 0.210, 0.180, 0.150, 
0.120, 0.090, 0.060, 0.030, 0.000 
dx                                  = 4000, 
dy                                  = 4000, 
smooth_option                       = 0 
 use_adaptive_time_step  = .true., 
 step_to_output_time     = .true., 
 target_cfl              = 1.2,  
 target_hcfl             = .84,  
 max_step_increase_pct   = 5, 
 starting_time_step      = -1, 
 max_time_step           = -1, 
 min_time_step           =  5,  
 adaptation_domain       = 1, 
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 sfcp_to_sfcp            = .true. 
/ 
 &physics 
  bl_pbl_physics                      = 1,    
 sf_sfclay_physics                   = 1,   
 sf_surface_physics                  = 2,    
 radt                                = 30,    
 topo_wind                           = 1, 
 / 
 &dynamics   
 epssm                               = 0.4 
 / 
 &bdy_control 
 spec_exp                            = 0 
 / 
 
A.3 Simulations for Hawaii (Differences to CONUS Simulations Only): 
 &time_control 
 interval_seconds                    = 3600, 
 history_interval                    = 180,  180, 
 frames_per_outfile                  = 8, 8, 
 auxinput4_interval                  = 60, 60, 
 auxhist15_interval                  = 180, 5, 
 frames_per_auxhist15                = 8, 1, 
 / 
 &domains 
 time_step                           = 20, 
 max_dom                             = 2, 
 e_we                                = 309, 727, 
 e_sn                                = 283, 649, 
 dx                                  = 6000,  2000, 
 dy                                  = 6000,  2000, 
 i_parent_start                      = 1,     35, 
 j_parent_start                      = 1,     33, 
/ 
&physics 
 mp_physics                          =  5,   5, 
 cu_physics                          =  1,   0, 
 radt                                =  6,   6, 
 / 
 
&dynamics 
 hybrid_opt                          = 2, 
 w_damping                           = 0, 
 damp_opt                            = 3, 
 zdamp                               = 5000.,  5000.,   
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 gwd_opt                             = 1, 
 / 
 &bdy_control 
 spec_bdy_width                      = 5, 
 specified                           = .true. 
spec_exp                              = 0 
 / 
 &namelist_quilt 
 nio_tasks_per_group  = 16, 
 nio_groups   = 4, 
 / 
 
A.4 Simulations for Alaska (Differences to CONUS Simulations Only): 
 &domains 
 e_we                                = 1889,     
 e_sn                                 = 1419,     
 smooth_option                = 2, 
/ 
&dynamics 
 epssm                               = 0.4, 
 / 
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