
NREL is a national laboratory of the U.S. Department of Energy 
Office of Energy Efficiency & Renewable Energy 
Operated by the Alliance for Sustainable Energy, LLC 
This report is available at no cost from the National Renewable Energy 
Laboratory (NREL) at www.nrel.gov/publications. 

 

 
Contract No. DE-AC36-08GO28308 

  

Conference Paper  
NREL/CP-5400-89286  
April 2024 

Analyzing Residential Charging 
Demand for Light-Duty Electric 
Vehicles in Colorado 
Preprint 
Zhaocai Liu, Polina Alexeenko, Matthew Bruchon,  
Mingzhi Zhang, and Mithat John Kisacikoglu 

National Renewable Energy Laboratory 

Presented at the 2024 IEEE Transportation Electrification Conference & Expo 
Rosemont, Illinois 
June 19-21, 2024 



NREL is a national laboratory of the U.S. Department of Energy 
Office of Energy Efficiency & Renewable Energy 
Operated by the Alliance for Sustainable Energy, LLC 
This report is available at no cost from the National Renewable Energy 
Laboratory (NREL) at www.nrel.gov/publications. 

 

 
Contract No. DE-AC36-08GO28308 

 

National Renewable Energy Laboratory 
15013 Denver West Parkway 
Golden, CO 80401 
303-275-3000 • www.nrel.gov 

Conference Paper  
NREL/CP-5400-89286  
April 2024 

Analyzing Residential Charging 
Demand for Light-Duty Electric 
Vehicles in Colorado 
Preprint 
Zhaocai Liu, Polina Alexeenko, Matthew Bruchon,  
Mingzhi Zhang, and Mithat John Kisacikoglu 

National Renewable Energy Laboratory 

Suggested Citation 
Liu, Zhaocai, Polina Alexeenko, Matthew Bruchon, Mingzhi Zhang, and Mithat John 
Kisacikoglu. 2024. Analyzing Residential Charging Demand for Light-Duty Electric 
Vehicles in Colorado: Preprint. Golden, CO: National Renewable Energy Laboratory. 
NREL/CP-5400-89286. https://www.nrel.gov/docs/fy24osti/89286.pdf.  

© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in 
any current or future media, including reprinting/republishing this material for advertising or promotional purposes, 
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of 
this work in other works. 

https://www.nrel.gov/docs/fy24osti/89286.pdf


 

 

NOTICE 

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable 
Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding 
provided by Xcel Energy. The views expressed herein do not necessarily represent the views of the DOE or the 
U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, 
acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish 
or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes. 

This report is available at no cost from the National Renewable 
Energy Laboratory (NREL) at www.nrel.gov/publications. 

U.S. Department of Energy (DOE) reports produced after 1991 
and a growing number of pre-1991 documents are available  
free via www.OSTI.gov. 

Cover Photos by Dennis Schroeder: (clockwise, left to right) NREL 51934, NREL 45897, NREL 42160, NREL 45891, NREL 48097,  
NREL 46526. 

NREL prints on paper that contains recycled content. 

http://www.nrel.gov/publications
http://www.osti.gov/


Analyzing Residential Charging Demand for
Light-Duty Electric Vehicles in Colorado

Zhaocai Liu, Polina Alexeenko, Matthew Bruchon, Mingzhi Zhang, Mithat John Kisacikoglu
Center for Integrated Mobility Sciences, National Renewable Energy Laboratory, Golden, CO, 80401
Emails: {zhaocai.liu, polina.alexeenko, matthew.bruchon, mingzhi.zhang, john.kisacikoglu}@nrel.gov

Abstract—The past decade has witnessed a remarkable surge
in adoption of electric vehicles (EVs). The momentum is expected
to continue with strong support from governments and industry.
Rapid EV adoption will add significant electricity demand,
making it critical to plan for and manage EV charging to avoid
causing additional stress and non-negligible risks to the already-
aging power grid. To help power grid operators understand the
impacts of residential EV charging and identify risk factors,
this study presents a data-driven charging demand analysis for
light-duty vehicles. This study considers two real-world grid
service regions in Colorado and merges multiple data sources and
state-of-the-art tools that characterize EV adoption projections,
vehicle travel patterns, seasonal variations, residential charging
accessibility, ambient temperature impact, EV charging behav-
iors, grid utility customers, vehicle registration, and household-
level EV charging demand distribution. We characterize potential
residential charging demand in 2030 for two regions within the
state of Colorado: Boulder and Aurora regions. We project that
EVs will be 26% of the light-duty vehicle population in Boulder
and 16% in Aurora areas. Charging demand is characterized for
ten power grid feeders (five for each study region). Across the
ten feeders, peak total EV charging powers during wintertime
range from less than 1 MW to more than 4 MW.

Index Terms—light-duty electric vehicle, residential charging
demand, data-driven analysis

I. INTRODUCTION

Over the past decade, the automotive industry has un-
dergone a significant shift towards electrified transportation
solutions. Electric vehicles (EVs) have taken center stage as
a cutting-edge technology alternative to conventional internal
combustion engine vehicles. EVs offer environmental benefits
by reducing greenhouse gas emissions, lower operating costs
due to more efficient operation, and reduce reliance on fossil
fuels. Therefore, in 2021, an executive order from the U.S.
government set a goal of achieving 50% of U.S. new passenger
car and light truck sales as zero-emission vehicles (ZEVs) by
the year 2030 [1].

The foreseeable swift and widespread adoption of EVs will
result in a substantial increase in charging demand, especially
in residential areas as EV users tend to charge their EVs at resi-
dential outlets more often [2]. Using extensive real-world data
from EV charging, encompassing nearly 6 million charging
events from 8,300 EVs across 22 U.S. regions over three years,
the Idaho National Laboratory examined the charging habits of
American EV users. The analysis revealed that home charging
is the predominant charging method, accounting for near 90%
of all charges [3]. Thorough examination of EV charging de-
mand is crucial for gaining insights into energy need, assessing

the impact on the power grid, and identifying opportunities for
smart charging management. A holistic analysis of EV charg-
ing demand necessitates the incorporation of various factors,
such as the scenarios of EV adoption, travel patterns of EV
users, dwelling/charging duration, seasonal travel variations,
ambient temperature impacts, and the characteristics of the
charging infrastructure [2].

Researchers proposed different methods to address EV
charging demand analysis, including modeling based on dis-
crete event simulation [4], Markov process based simulation
[5], historical traffic and weather data based forecasting model
[6], travel survey data based analysis [7], fluid dynamic
traffic model and queuing theory based forecasting method
[8]. Recently, National Renewable Energy Laboratory (NREL)
researchers developed a data-driven trip-chaining-based mod-
eling framework for EV charging demand analysis [2]. The
authors use real-world connected vehicle trip data to construct
synthetic travel itineraries to represent the daily travel needs
of EV users. EV adoption and charging behaviors are then
modeled and simulated using existing tools developed at
NREL.

This study develops a data-driven modeling framework
for residential EV charging demand analysis, which aims at
helping power grid operators predict the impact of EV home
charging on the grid and identify risk factors. The modeling
framework is constructed based on previous endeavors in the
analysis of EV charging demand [2] and leveraging relevant
state-of-the-art tools developed at DOE national laboratories,
including Transportation Energy & Mobility Pathway Options
(TEMPO) model [9] for EV adoption and Electric Vehicle
Infrastructure–Projection Tool (EVI- Pro) [10] for EV charging
simulation. Two actual grid service regions in Colorado are
chosen for analysis. This study integrates diverse data sources
and advanced tools, encompassing EV adoption projections,
vehicle travel patterns, seasonal variations, residential charging
accessibility, the impact of ambient temperature, EV charging
behaviors, grid utility customers, vehicle registration, and the
distribution of household-level EV charging demand.

While many studies in the literature have modeled and
analyzed the charging demand of EVs, our research makes
distinct contributions to the literature in the following ways:

• We developed a region-based travel itinerary synthesis
method based on publicly available data. The method
allows researchers to consider region-specific trip charac-
teristics without relying on expensive connected vehicle
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data.
• We developed a high-resolution data-driven method to

assign EVs to individual utility customers. This method
enables high-resolution transformer and feeder level anal-
ysis of EV charging impact.

• We worked with our utility partner and conducted real-
world analysis for two regions in Colorado. The insights
derived from our study offer valuable contributions to
both research and practical applications.

II. METHODOLOGY

The data-driven modeling framework includes five key
steps: (1) collecting and preprocessing needed data for the
chosen study regions; (2) projecting EV adoption by vehicle
type for the modeling year; (3) generating synthetic travel
itineraries for EV users within the study regions; (4) simulating
EV charging demand; (5) generating spatially and temporally
resolved EV charging load profiles.

A. Data Acquisition & Preprocessing

Key data sources used in the modeling framework include
land use data, census data, temperature data, Federal High-
way Administration (FHWA) traffic volume trends data [11],
National Household Travel Survey (NHTS) data [12], Next-
Generation (NextGen) NHTS National Origin-Destination
(OD) data [13], EV technology characteristics data, residential
charging accessibility data, and utility customer data. We
use land use data to infer potential EV residential charging
locations. Fig 1 shows the collected land use data for Aurora in
Colorado [14]. Census data provides household and population
information that is useful for household-level EV assignment.
Fig. 2 shows the census data for Aurora [15]. Historical
temperature data was obtained from Typical Meteorological
Year 3 (TMY3) weather data [16] and used for estimating the
impact of ambient temperature on EV energy consumption.
FHWA traffic volume trends data can be used to estimate
seasonal adjustment factors for travel frequency. NHTS data
and NextGen NHTS OD data enables generation of region-
specific travel itineraries. Vehicle archetypes data provides
needed data for EV charging simulation, including the EV
battery size, energy consumption rate, and acceptable charging
power. Residential charging accessibility data is critical for
reasonable EV charging simulation and was derived from
previous modeling efforts supported by DOE [17].

This study considers three representative months: January,
July, and September. To consider the impact of ambient
temperature on EV energy consumption, this study uses TMY3
weather data and an ambient penalty factor lookup table
generated using a powertrain simulation model FASTSim Hot
[18] to estimate the month specific ambient penalty factors. For
January, July, and September, the estimated ambient penalty
factors are 1.602, 1.059, and 1.093, respectively. To consider
the seasonal variations of travel, this study uses FHWA traffic
volume data to estimate the month specific adjustment factors.
The historical monthly FHWA vehicle miles traveled (VMT)
data was extracted for year 2015 to 2019. The monthly

 

Fig. 1. Land use data for Aurora in Colorado.

 

Fig. 2. Census data for Aurora.

daily VMT can be estimated for each month by counting the
total number of weekdays and weekends for the month and
converting weekends to nominal weekdays using daily weight
factors. The month-based scaling factors can be estimated by
comparing the monthly average daily VMT with the annual
average daily VMT. The calculated scaling factors are 0.89 for
January, 1.06 for July, and 1.00 for September. Those scaling
factors are used to adjust travelers’ daily travel frequency.

B. EV Adoption Prediction

For EV adoption modeling, this study leveraged the Trans-
portation Energy & Mobility Pathway Options (TEMPO)
model developed by NREL [9]. TEMPO is a transportation
demand model that predicts the decisions of consumers regard-
ing vehicle ownership and technology choices at the household
level. An high-level introduction of TEMPO can be found in
[19], and the detailed modeling framework can be found in
[9]. The target analysis year for this study is 2030. TEMPO
projects that Colorado would have around 4.7 million light-
duty vehicles (LDVs) by 2030 and around 630k of them will
be EVs. Fig. 3 shows the census tract level EV distribution
in Colorado by 2030 based on TEMPO analysis. A majority
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Fig. 3. Expected EV distribution in Colorado in 2030.

of EVs are distributed in regions surrounding Boulder, Denver
metropolitan area, and Aurora.

C. Synthetic Travel Itinerary Generation

To capture the travel needs of EVs, this study devel-
oped a region-based sampling approach to randomly sam-
ple real-world travel itineraries from the NHTS data while
considering the region-specific trip features captured in the
NextGen NHTS National OD data. The 2017 NHTS data
covers about 130,000 households, representing about 0.1%
of U.S. households. The data consists of real-world daily
travel itineraries with trip times, distances, purposes, and
other details. The NextGen NHTS OD data was collected
from multiple telematics providers for each month in 2021.
The data covers 270 million monthly active users with more
than 80% coverage in Colorado. The data provides aggregate
information such as work and non-work trip volumes by
distance bin for each Core Based Statistical Area (CBSA) OD
pair. The travel itinerary sampling approach includes four key
steps: (1) using nation-level NextGen NHTS OD data to fit a
gamma distribution and then calculating deciles of estimated
distribution, (2) using Colorado county-level NHTS OD data
to estimate monthly travel distance distributions and compute
distributions of county data over national level deciles, (3)
determining the number of EVs for each county based on the
TEMPO projection, and (4) using county-level trip distance
distributions to sample from NHTS itineraries.

D. EV Travel and Charging Simulation

With EV adoption projection and synthetic travel itineraries,
this study then simulated EV charging using the Electric
Vehicle Infrastructure–Projection Tool (EVI- Pro) developed
by NREL [10]. EVI-Pro considers characteristics of EVs
and charging stations and simulates the travel and charging
behaviors of EVs based on the given travel itineraries and
the charging cost minimization assumption. In this study, it is
assumed that EV drivers give precedence to home charging,
followed by workplace and public slow charging, and finally
public direct current fast charging. Access to home charging

 

Boulder

Aurora

Fig. 4. Two study regions in Colorado.

is determined using information obtained from prior model-
ing endeavors [17]. This study generated one-week charging
demands for the months of January, July, and September in
the designated regions. NREL’s high-performance-computing
(HPC) system Eagle was used to enable parallel EVI-Pro
simulation. In total, 378 groups of simulation scenarios are
generated, with each scenario representing one vehicle type
and one month. For each scenario, separate configuration file
and batch scripts can be generated and run on one HPC
node with 36 cores. Each simulation job can be finished in
about half an hour. Simulation results from EVI-Pro report
the parking start and end times, parking duration, charging
energy, start and end EV battery state of charge, and charger
type information.

E. EV Charging Load Development

Last, to generate spatially and temporally resolved EV
charging load profiles, this study acquired power grid feeder
data from the utility collaborator and developed a household-
level EV assignment method to distribute EVs to individual
utility customers. The assignment is a three-step process:
(1) Total PEVs are first distributed based on number of
households; (2) Residential utility customers are extracted
based on the grid feeder data and land use data; (3) Lastly,
PEVs are randomly assigned to residential utility customers.
By aggregating EV charging loads, this study generated week-
long EV home charging power profiles at feeder level for the
months of January, July, and September. Total EV charging
energy needs can also be obtained at household level, census
tract level, and feeder level.

III. EV RESIDENTIAL CHARGING DEMAND ANALYSIS
RESULTS

This study considers two grid service regions in Colorado
(as shown in Fig. 4): (1) Boulder region (including 5 utility
feeders with 12335 residential customers), (2) Aurora region
(including 5 feeders with 16787 residential customers). These
regions were selected based on their high risks of increased
EV penetration. The blue zones in Fig. 4 represent utility
customers serviced by the 10 feeders. Census-tract-level EV
adoption projection was obtained from the TEMPO model
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TABLE I
REGION SPECIFIC EV ADOPTION RESULTS FOR 2030

Region Households LDVs EVs EV Share
Boulder 12,335 25,380 6,493 26%
Aurora 16,787 42,683 6,754 16%

Fig. 5. EV assignment for Boulder.

for a target analysis year 2030. The projection specifies
vehicle body type, battery range, and powertrain technology.
Colorado is projected to host around 630k EVs, constituting
approximately 13% of its total LDV population. Table I reports
the EV adoption results for the two study regions. Within
the study region in Boulder, EVs are anticipated to make up
26% of the total LDV population, while in the study region
in Aurora, the percentage of EVs is projected to be 16%.

EVs within each census tract are randomly assigned to
residential utility customers based on vehicle registration and
census data. Figs 5 and 6 show the household level EV
assignment results for Boulder and Aurora, respectively. The
following observations can be made: (1) majority of house-
holds have no EVs by 2030, (2) majority of households with
EVs only have one EV, (3) few houses have three EVs, (4)
only a handful of houses have four EVs.

Figs. 7a and 7b show the spatial distribution of one-
week EV residential charging energy needs during winter for
Boulder and Aurora, respectively. For the Boulder region, one
can see from Fig. 7a that the right region has denser residents
and relatively larger energy needs. For the Aurora region, one
can see the spatial variation is not as strong as that in the
Boulder area.

Table II reports the total weekly EV charging energy needs
for the two study regions in three representative months. In
the winter season, the five feeders in Boulder are projected
to experience a weekly EV charging demand of around 483
MWh, whereas for Aurora, the corresponding figure is around
463 MWh. It’s worth noting that the EV charging demand
is lower during the summertime. The higher charging needs
during wintertime are mainly attributed to the significantly
higher EV energy consumption due to heating needs. Aggre-
gated residential charging power profile during a wintertime
week for each power grid feeder is shown in Fig. 8. One

Fig. 6. EV assignment for Aurora.

TABLE II
WEEKLY EV CHARGING ENERGY NEEDS

Study EV Charging Needs (MWh)
Region January July September
Boulder 483 373 359
Aurora 463 377 356

can see from Fig. 8 that the peak charging power for the ten
feeders range from less than one megawatt to more than four
megawatts. Note that the EV charging simulation in this study
assumes uncontrolled charging. By further merging the EV
charging data with the existing baseload data, this study finds
that the uncontrolled charging could bring significantly high
peak power and lead to overloading risks. As an example,
Fig. 9 shows the real power profiles for one representative
feeder under base case and EV integrated case. One can see
that the EV charging load will significantly increase the base
power consumption during the weekly peak demand period
by almost 50%. In addition, we have observed 6 out of
10 feeders were loaded more than 1.3 pu within this 2030
scenario. Nevertheless, effective coordination and management
of EV charging has the potential to address these issues
while supporting the load growth. Controlled EV charging
can facilitate demand-side flexibility and support power system
planning and operations under normal and extreme conditions.

Besides the feeder data, our utility partner also provided
two real-world EV charging datasets. The first set of data was
collected from May 2022 to April 2023, with 439 EVs and
more than 11 thousands charging sessions. The second dataset
was collected from July 2021 to April 2022, with 278 Tesla
EVs and more than 39 thousands charging sessions. These two
charging datasets are controlled EV charging. Figs. 10 and 11
respectively show the plug start and unplug time distributions
for our simulation data and the two real-world EV charging
datasets. One can see our simulation results and the real-
world charging data have similar plug start time and unplug
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(a) Boulder (b) Aurora

Fig. 7. Spatial distribution of EV charging load for Boulder and Aurora.

Fig. 8. Residential aggregated EV charging power profile for each feeder
during Winter.

time distributions, verifying that the travel itineraries used in
the charging simulation might represent the real-world travel
patterns well in terms of home arrival and departure time. Note
that the real-world controlled EV charging might delay actual
EV charging start time to reduce charging cost for EVs, which
is not considered in our simulation.

IV. CONCLUSIONS

This study presents a data-driven residential charging de-
mand analysis framework for light-duty EVs. Multiple data
sources are merged to capture EV penetration, EV charging
simulation, household-level EV distribution, residential charg-
ing demand, and potential impact on power grid. NREL’s
TEMPO model is used to provide EV adoption prediction.
NREL’s EVI-Pro model is used to simulate EV travel and
charging behaviors. Working with the utility grid partner,
this study examined two real-world grid service regions in
Boulder and Aurora, CO, each with five power grid feeders.
The Boulder region is projected to have 26% of its light-
duty vehicles being EVs while the figure for Aurora is 16%
in 2030. Feeder data and land use data are combined to
enable household level assignment of EVs. Household-level
EV charging data are aggregated to generate feeder level EV
residential charging load profiles.

The ten feeders are estimated to have peak charging powers
ranging from less than 1 MW to more than 4 MW during

(a) Summer

(b) Winter

Fig. 9. Power profiles for one representative feeder during Summer and
Winter.

wintertime. The residential charging load values are highest
during wintertime due to large heating needs. In addition, we
have observed 6 out of 10 feeders were loaded more than
1.3 pu within the 2030 scenario. The analysis will help grid
operators better understand the potential risk factors brought
by rapid EV penetration and develop mitigation strategies such
as smart charging control, tailored time-of-use electricity rate
structure for EVs, grid infrastructure enhancement or upgrade.
Our future study will further refine and enhance the data-driven
EV charging load analysis framework, with the objective of
reducing the data acquisition burden and extending the study
to other regions.
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Fig. 10. Plug start time distributions.

Fig. 11. Unplug time distributions.
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