

Pipeline Blending CRADA techno-economic analysis

BlendPATH Webinar

Kevin Topolski and Jamie Kee

National Renewable Energy Laboratory (NREL)

January 16, 2024

This webinar is recorded and will be posted on NREL's website at <u>https://www.nrel.gov/hydrogen/systems-analysis.html</u>

Questions and Answers

Please type your questions into the **Q&A Box.**

BlendPATH Webinar and Agenda

Introduction

BlendPATH methodology

Installing and running BlendPATH

Live demonstration

What is the Blending Pipeline Analysis Tool for Hydrogen (BlendPATH)?

- BlendPATH is an NREL-developed Python tool that allows users to answer the following for blending hydrogen to X% in pipeline gas:
 - What modifications to a natural gas transmission pipeline network are required?
 - What incremental capital investment and operating expense are required?
- This model targets application at the initial project assessment stage for transmission pipelines
- Intent is to provide the user with an understanding of the <u>most promising</u> <u>opportunities</u> before proceeding with more detailed pipeline inspections based on "probable" economic outcome

Figure 1: Blending Pipeline Analysis Tool for Hydrogen framework.

This webinar focuses on the initial release of BlendPATH and its current capabilities as a research tool; given this, BlendPATH is subject to limitations

- BlendPATH analysis is currently limited to linear pipelines
- Depending on the pipeline network analyzed, BlendPATH might not currently be capable of analyzing blends up to 100 vol.% hydrogen
- The initial release of BlendPATH requires SAInt⁺, a commercial integrated energy system modeling platform with capabilities in gas pipeline hydraulics and Python API access
- BlendPATH does **NOT** qualify pipeline networks nor modifications thereof for hydrogen blending, despite applying ASME B31.12* in an assessment
 - Pipeline network qualification will require additional evaluation, independent of BlendPATH application, as specified in ASME B31.12*
 - It is the sole responsibility of the pipeline owner and operator to ensure that their pipeline qualifies for ASME B31.12* and other relevant regulations and that any present defects in the pipeline network are acceptable at the operating pressure chosen for blending hydrogen

⁺ A version of BlendPATH with an open-source gas pipeline hydraulic model is in development

^{*} Or any industry standard succeeding ASME B31.12 for hydrogen pipelines

Introduction

BlendPATH methodology

Installing and running BlendPATH

Live demonstration

BlendPATH apportions the modeled pipeline network into segments for design pressure rating and pipeline network modification

- BlendPATH application requires a converged simulation instance of natural gas pipeline network operation without hydrogen blending as an analysis starting point
- Within the pipeline design assessment module, BlendPATH divides the modeled pipeline network into separate pipe segments
- A pipe segment is defined here as groups of consecutive pipes that can withstand the same design pressure throughout for line packing purposes
- Pipe segments are delimited within BlendPATH by the following network structure elements:
 - Compressor or pressure reduction stations
 - Changes in nominal pipe diameter

The Pipeline Design Assessment module identifies design pressure violations according to the user-specified ASME B31.12 design option for blending

- BlendPATH simulates operating conditions to meet end use energy demands in the existing network via the . gas network hydraulic model (e.g., SAInt) while accounting for a user-specified X % vol. of H₂ in pipeline gas
- The Pipeline Design Assessment module assesses and updates pipeline segment design pressures (aka ٠ maximum allowable operating pressure) based on the user-specific ASME B31.12 design option
 - ASME B31.12 allows three design options to qualify and rate pipelines for blending (see Table 1)
 - Design options require varying extents of pipeline material characterization for qualification
- BlendPATH identifies which segments' operating pressures exceed (and therefore violate) their updated ٠ ASME B31.12 design pressures and earmarks these segments for modification

fracture control"

BlendPATH modifies pipe segments with design pressure violations to accommodate hydrogen blending and meet pipeline network end use energy demand

- BlendPATH offers three methods (see right) used in industry to modify pipeline segments
- The direct replacement method maintains segment operating pressures by replacing extant pipe with new pipe of same diameter but of the appropriate grade and thickness
- Both parallel looping and additional compressors methods reduce segment operating pressure, but increase volumetric capacity by adding parallel piping or compression stations, respectively

BlendPATH, by default, costs pipe segment modification with publicly available resources and applies ProFAST for economic analysis

- BlendPATH applies pipe material costs in terms of price per weight from Savoy Piping Inc.* for commonly-used line pipe steel grades
- Natural gas transmission pipeline labor, miscellaneous and right-of-way (ROW) cost equations from Brown, Reddi, and Elgowainy (2022) are the default method in costing pipeline segment modifications
- Natural gas compressor station material, labor, ROW, and miscellaneous cost equations from Rui (2011) are the default method in costing compressor station capacity additions
- All costs can be overridden with user input
- ProFAST, a pythonic version of H2FAST, compiles capital, operating and financing costs into a levelized cost of transport and provides a cost breakdown
- H2FAST is freely accessible via NREL's website at <u>https://www.nrel.gov/hydrogen/h2fast.html</u>

Introduction

BlendPATH methodology

Installing and running BlendPATH

Live demonstration

BlendPATH is installable as a Python package using pip

- BlendPATH installation requires the user to have Anaconda and Git installed on their server or PC; SAInt is required to run BlendPATH
- BlendPATH code is to be hosted at github.com/NREL/BlendPATH and is downloadable by entering the following command in a git bash terminal:

git clone https://github.com/NREL/BlendPATH.git

- We recommend users to set up a virtual environment for BlendPATH installation and use with the following commands in the Anaconda prompt: conda create -n MY_ENV_NAME python=3.10 conda activate MY_ENV_NAME cd ~/Documents/GitHub/BlendPATH pip install .
- We recommend that BlendPATH is used though Visual Studio Code with MY_ENV_NAME

BlendPATH input files require a specific file structure within the user's accessed directory

MY DIRECTORY

CASE STUDY NAME

CASE_STUDY_NAME_Event.xlsx

CASE STUDY NAME Network.xlsx

CASE STUDY NAME pipe mech props.xlsx

- CASE_STUDY_NAME.json
- MY RESULTS DIRECTORY

- CASE STUDY NAME must be the same in all file names
- Event and Network files must follow SAInt input file formatting
- pipe mech props specifies • the SMYS and SMTS for each pipe
- .json file is optional, and holds • **ProFAST** economic parameters
- An example is provided in the • **BlendPATH file directory**

Hydrogen blending analyses are set up as a BlendPATH scenarios in the Python script below

<pre>import BlendPATH import numpy as np</pre>	Import BlendPATH Python package
<pre>casestudy_name = 'Wangetal2018' design_option_choice = 'no fracture control' save_dir = casestudy_name + '/out/D0 - ' + design_option_choice + '/' blendpath = BlendPATH.BlendPATH_scenario(casestudy_name = casestudy_name ,</pre>	 Case study name, matches with directory name ASME B31.12 design option to assess modeled existing pipeline
save_directory = save_dir,	 Directory to save results
<pre>location_class = 1, joint_factor = 1, compression_ratio = 1.55, blending = 0.2, natural_gas_cost = 7.39, hydrogen_cost = 4.41,</pre>	 ASME B31.12 location class (1-4) ASME B31.12 joint factor Design compression ratio for new compressors Mol fraction of hydrogen in blended pipeline gas Natural gas cost (\$/MMBTU) Hydrogen cost (\$/kg)
<pre>final_outlet_pressure=3325000, region = 'GP', PL_num_diams = 12, original_CS_rating={'CS1':12.5,'CS2':12.5,'CS3':12.5}-)</pre>	 Minimum pressure at modeled pipeline terminus (Pa) Design rating of existing compression stations (MW)

run_mod and run_financial conduct the design modification and economic analyses within BlendPATH, respectively

Table 2: run_mod parameter options

Detailed BlendPATH solutions are located under MY_RESULTS_DIRECTORY in the CASE_STUDY_NAME folder

MY_DIRECTORY

- CASE_STUDY_NAME
 - MY_RESULTS_DIRECTORY
 - NetworkFiles
 - SAInt network and event files
 - ResultFiles
 - BlendPATH summary files

SAInt network and event files

- The network file after applying the pipeline modification
- Updated inlet pressure to MAOP
- Updated compressor outlet
 pressure or compression ratio

BlendPATH summary file

- Read out of input variables
- Financial inputs and outputs
- CAPEX and OPEX breakdown
- New pipe and compressor design
- Demand errors*

*Percent unsatisfied energy end use demand with new network design

BlendPATH summary files provide finer detail on achieved solutions regarding network modifications and economic results

			1				-					
Parameter	Value	Units										
Levelized Cost of Transport	0.255628718	\$/MMBTU										
LCOT: Original network	0	\$/MMBTU										
LCOT: New pipe	0.102719757	\$/MMBTU										
LCOT: New compressor stations	0	\$/MMBTU										
LCOT: Compressor station refurbishmen	0.014989512	\$/MMBTU										
LCOT: Compressor fuel	0.110810313	\$/MMBTU										
LCOT: Fixed O&M	0.005184954	\$/MMBTU										
LCOT: Taxes	0.021671537	\$/MMBTU										
LCOT: Financial	0.000252645	\$/MMBTU										
Hydrogen Injection Price	4.40756292	\$/kg										Summanyvalues
Natural Gas Price	7.39	\$/MMBTU										
Blended Gas Price	13.34242734	\$/MMBTU										· · · · · · · · · · · · · · · · · · ·
Pipeline Capacity (daily)	527619.2587	MMBTU/day										
Pipeline Capacity (hourly)	21984.13578	MMBTU/hr										
Added pipeline	248,5490947	mi										
Added compressor stations	0											
Added compressor capacity	0	hp										
Compressor fuel usage	182,5806427	MMBTU/hr										
New pipe	314657767.6	2020\$										
New compressor stations	0	20205										
Compressor station refurbishment	45916837 55	20205										
Original network residual value	0	2020\$										
												· · · · · · · · · · · · · · · · · · ·
Cost breakdown of new pipe												
Pipe Diameter [in]	Length [mi]	Grade	Schedule	Material Cost [\$]	Labor [\$]	Misc [\$]	ROW [\$]	I unit cost [\$/	unit cost [\$/in	nit cost [\$/ir	nit cost [\$/in-mile	Pine cost breakdown
26	248.5490947	X60	S Std	195451269.8	82695449.5	36511048.3	0	30244.9564	12796.64373	3 5649.8741	. 0	
Breakdown of original pipe												
Pipe Diameter [in]	Length [mi]	Grade	Schedule									Original pipe info
26	248,5490947	X60	S Std									
Cost breakdown of compressors												Comprossor info
Shaft Power (MW)	Rated Capacity (MW)	d Additional Capa	er of Compressor S	ompressor Station Ca	Cost (2020\$)	usage (MMBT	U/hr)					
5.901907444	12.5	0	0	0	0	59.229599						
7.616342545	12.5	0	0	0	0	76.435112						
4.674917221	12.5	0	0	0	0	46.9159317						
Disclaimer Inputs	Results Ne	w nine design	Demand err	ors (I Navigation Hyblend 1/
Discumer inputs	The surface in the	in pipe design	Demand ent									

Introduction

BlendPATH methodology

Running BlendPATH

Live demonstration

This live demonstration showcases BlendPATH application to a published transmission pipeline case study

- We use a modified version of a Wang et al. (2018) case study for demonstration
- This case study details a 250-mile pipeline over negligible elevation change that consists of a single diameter, grade, and schedule
- This modified case study is distributed as part of BlendPATH under BlendPATH/examples/Wangetal2018

Pipeline Segment ID	0	1	2	3
Diameter (DN)	650	650	650	650
Schedule	S Std	S Std	S Std	S Std
Grade	X60	X60	X60	X60
Length (mi)	43.5	80.8	62.2	62.2
Design Pressure (MPa-g)	8.7	8.7	8.7	8.7

Table 3: Modified Wang et al. (2018) pipeline design

Table 4: Modified Wang et al. (2018) pipelineboundary conditions

Boundary Condition	Value	Unit
Gas Supply Pressure	8.7	MPa-g
CS1 Outlet Pressure	8.7	MPa-g
CS2 Outlet Pressure	8.7	MPa-g
CS3 Outlet Pressure	8.7	MPa-g
Off-take 1 Demand	1150	MW
Off-take 2 Demand	2991	MW
Off-take 3 Demand	2301	MW

Wang, B., Y. Liang, J. Zheng, R. Qiu, M. Yuan, and H. Zhang. 2018. "An MILP model for the reformation of natural gas pipeline networks with hydrogen injection" [in en]. Int. J. of Hydrogen Energy 43, 16141–16153.

Additional documentation on BlendPATH is forthcoming; further development for BlendPATH is planned within HyBlend[™]

- The BlendPATH source code is to be hosted on github.com/NREL via <u>https://github.com/NREL/BlendPATH</u>
- The BlendPATH user manual and technical documentation will be published as an NREL technical report
 - User manual and technical documentation to be added with the BlendPATH source code in the above linked GitHub repository
 - Please direct any questions on BlendPATH and/or this webinar to <u>kevin.topolski@nrel.gov</u>
- Phase II of HyBlend[™] is currently being planned
 - Planned Phase II scope includes developments to BlendPATH, in addition to materials and analysis research on blending hydrogen into the natural gas pipeline system
 - Partners to this Phase II will gain access to pre-published research and can provide input on scope
 - If you interested in learning more, contact <u>HyBlend CRADA@nrel.gov</u> for details

Thank You + Q&A

Kevin Topolski kevin.topolski@nrel.gov

Mark Chung mark.chung@nrel.gov

Evan Reznicek evan.reznicek@nrel.gov

Jamie Kee jamie.kee@nrel.gov Additional NREL TEA contributors: Omar Guerra Zainul Abdin

Additional resources:

https://www.nrel.gov/hydrogen/systems-analysis.html https://www.nrel.gov/docs/fy23osti/81704.pdf

NREL/PR-5400-88484

This work was authored in part by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Hydrogen and Fuel Cell Technologies Office. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

Back Up

New pipe capital cost includes material, labor, right-of-way, and miscellaneous components

Region Cost Component a b Labor 10406 0.20953 - Great Plains, Rocky Mountain Miscellaneous 4944 0.17351 - Right-of-way 2751 -0.28294 - </th <th>on 122)</th>	on 122)
Labor 10406 0.20953 - Great Plains, Rocky Mountain Miscellaneous 4944 0.17351 - Right-of-way 2751 -0.28294 - - - - - - 0.17351 - New England Labor 249131 -0.33162 - 0.33162 - - - - - - 0.33162 - - - - - - - - - - 0.29673 - - - - - - - - - - 0.66357 - - - - - - - - - - - - - - </td <td>С</td>	С
Great Plains, Rocky Mountain Miscellaneous Right-of-way 4944 0.17351 - Right-of-way 2751 -0.28294 -0.28294 - - - - - - - - - - - - - 0.28294 -	0.08419
Right-of-way 2751 -0.28294 Labor 249131 -0.33162 - New England Miscellaneous 65990 -0.29673 - Right-of-way 83124 -0.66357 - Labor 43692 0.05683 - Mid-Atlantic Miscellaneous 14616 0.16354 - Right-of-way 1942 0.17394 - - Great Lakes Miscellaneous 41238 -0.34751 - Right-of-way 14259 -0.65318 -	0.07621
Labor 249131 -0.33162 - New England Miscellaneous 65990 -0.29673 - Right-of-way 83124 -0.66357 - Labor 43692 0.05683 - Mid-Atlantic Miscellaneous 14616 0.16354 - Right-of-way 1942 0.17394 - - Great Lakes Miscellaneous 41238 -0.34751 - Right-of-way 14259 -0.65318 - -	0.00731
New England Miscellaneous 65990 -0.29673 - Right-of-way 83124 -0.66357 - Labor 43692 0.05683 - Mid-Atlantic Miscellaneous 14616 0.16354 - Right-of-way 1942 0.17394 - - Great Lakes Miscellaneous 41238 -0.34751 - Right-of-way 14259 -0.65318 -	0.17892
Right-of-way 83124 -0.66357 - Labor 43692 0.05683 - Mid-Atlantic Miscellaneous 14616 0.16354 - Right-of-way 1942 0.17394 - - Labor 58154 -0.14821 - Great Lakes Miscellaneous 41238 -0.34751 - Right-of-way 14259 -0.65318 - -	0.06856
Labor 43692 0.05683 - Mid-Atlantic Miscellaneous 14616 0.16354 - Right-of-way 1942 0.17394 - Labor 58154 -0.14821 - Great Lakes Miscellaneous 41238 -0.34751 Right-of-way 14259 -0.65318	0.07544
Mid-Atlantic Miscellaneous 14616 0.16354 - Right-of-way 1942 0.17394 - Labor 58154 -0.14821 - Great Lakes Miscellaneous 41238 -0.34751 Right-of-way 14259 -0.65318 -	0.10108
Right-of-way 1942 0.17394 - Labor 58154 -0.14821 - Great Lakes Miscellaneous 41238 -0.34751 - Right-of-way 14259 -0.65318 - -	0.16186
Labor 58154 -0.14821 - Great Lakes Miscellaneous 41238 -0.34751 - Right-of-way 14259 -0.65318 -	0.01555
Great Lakes Miscellaneous 41238 -0.34751 - Right-of-way 14259 -0.65318	0.10596
Right-of-way 14259 -0.65318	0.11104
	0.06865
Labor 32094 0.06110 -	0.14828
Southeast, Pacific Northwest Miscellaneous 11270 0.19077 -	0.13669
Right-of-way 9531 -0.37284	0.02616
Labor 95295 -0.53848	0.03070
Southwest, California Miscellaneous 19211 -0.14178 -	0.04697
Right-of-way 72634 -1.07566	0.05284

 $C_{\mathrm{p},r,t}$ (2018\$/inch-mile) = aD^bL^c

- Cost correlation are provided by default
- New pipe capital costs can be overridden by user input

Table 6: Steel pipe material costs based on weight (Savoy Piping Inc.,)

Grade	Price (\$/kg)
В	1.8
X42	2.2
X46	2.4
X52	2.8
X56	2.9
X60	3.2
X65	4.3
X70	6.5

HyBlend | 23

Compressor station capital cost includes material, labor, miscellaneous, and land components

Table 7: Compressor station cost coefficients adapted from Rui (2011)

Component	a	b	С
Material	3175286	532.7853	0.0010416
Labor	1581740	299.2887	0.001142
Miscellaneous	1696686	184.1443	0.0018417
Land	66216.72	0	0.0001799

 $C_{\text{CS},t}$ (2008\$) = $a + bS + cS^2$

- Compressors operating at more than 10% H2 blend and at similar operating pressure are replaced at 60% cost
- Compressor cost is based on cost correlation with compressor capacity in horsepower
- Max compressor capacity is assumed to be 30,000 hp
- Upgrades for compressors are based on average horsepower

Levelized cost of transport is calculated using ProFAST using generally accepted accounting principles

Table 8: Default economic parameters in ProFAST in the absence of user-supplied parameters

Parameter	Value
Analysis start year	2020
Operating life	50 years
Installation months	36 months
Long term utilization	100%
Property tax and insurance	0.9%
Administrative expense	0.5%
Total income tax rate	25.74%
Capital gains tax rate	15%
General inflation rate	1.9%
Nominal discount rate	10%
Debt to equity ratio	1.5
Debt type	Revolving debt
Debt interest rate	3.7%
Cash on hand	1 month

- 30 yr straight line depr
- NPV = 0
- Provides cashflow tables etc