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Abstract 
Medium- and heavy-duty vehicles (MHDVs) are a major source of greenhouse gases and local 
criteria air pollutants. Electrifying MHDVs may reduce these harmful emissions, which 
disproportionately impact disadvantaged communities. Due to their relatively high per-vehicle 
energy needs, consistent fleet operations, and frequent colocation of multiple vehicles at depots, 
MHDVs may have more spatially and temporally concentrated charging demands than light-duty 
passenger electric vehicles. That charging concentration means their electrification may require 
careful advance planning and coordination to manage potential impacts to the electrical grid via 
charge management or infrastructure upgrades. However, MHDV duty cycles and parking 
schedules are highly variable across vocations of operation, and there is a shortage of nationally 
representative, vocationally diverse public data describing typical MHDV operations. This report 
summarizes the methodology—designed with national representativeness in mind—used to 
create a new set of data describing typical daily driving distances, dwell durations, and 
normalized electric vehicle depot charging load curves for MHDVs. The dataset reflects the 
subset of MHDV operating patterns that may originate from a consistent depot each day and rely 
on the same depot for charging. In addition to trucks with depot-centric vocational patterns, the 
data describes operations of transit buses and school buses, each with a depot-centric focus. The 
dataset is available to the public and suitable for national analysis. It can inform research, 
infrastructure planning, and policymaking regarding the electrification of MHDVs. 
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1 Introduction 
Medium- and heavy-duty trucks and buses are a major source of greenhouse gases and criteria 
air pollutants. The greenhouse gas emissions from these types of vehicles increased 76% from 
1990 to 2021 in absolute terms and rose as a share within the transportation sector (itself the 
highest-emitting sector of the economy) [1]. Decarbonization of medium- and heavy-duty 
vehicles (MHDVs) has been described as an essential component of sector-wide deep 
decarbonization strategies [2], and one decarbonization pathway holding promise is transitioning 
from on-board combustion powertrains to battery electric vehicles (BEVs). A transition to BEVs 
could potentially occur for financial reasons alone, but substantial uncertainty remains. One 
recent study projects BEVs could reach 40% of total MHDV sales in the United States by 2030 
and 83% of sales (66% of vehicle stock) in 2050 based solely on total cost of ownership 
considerations [3], but another projection suggests that all zero-emissions technologies combined 
(including non-BEV technologies) may be only 32% of global MHDV stock in 2050 without 
“strong additional measures” [4]. Public policy has begun to address these uncertainties, with 
California recently establishing a state-level requirement that zero-emissions technologies make 
up 100% of MHDV stock where feasible by 2045 [5]. 

Advance planning can ease potential challenges associated with a transition to electric MHDVs. 
Relative to light-duty passenger vehicles, MHDVs tend to consume more energy per distance 
traveled (due to their larger size and weight) and may be more highly utilized, increasing their 
daily charging demands. Also, MHDVs owned by fleets may operate from a shared business 
location (or depot) and may have consistent operations, resulting in battery charging demands of 
electric MHDVs that may be highly spatially and temporally concentrated. These concentrated 
charging demands may warrant additional care to manage the potential impacts to the electrical 
grid (whether by managing charge schedules or by upgrading infrastructure). Despite these 
challenges, MHDVs with relatively short-range daily operations, reliable depot charging, and 
reasonably long off-shift dwell periods could take advantage of overnight charging without the 
need for midday, en-route charging and may be relatively amenable to rapid electrification. 

However, there is scarce public data to inform which types of MHDVs may be amenable to 
depot-based charging or to characterize operating patterns of depot-centric MHDVs. Within the 
depot-centric subset of MHDVs, driving and dwell patterns vary widely across operational 
vocations, which include garbage trucks, delivery vans, buses, and many more. The National 
Renewable Energy Laboratory’s FleetREDI portal, which includes data from the Fleet DNA 
database, provides vehicle operating summaries collected from commercial vehicle fleets across 
a range of vocations, but it is difficult to know how representative of broad nationwide patterns 
these fleets’ operations may be [6,7]. The U.S. Department of Transportation’s Vehicle 
Inventory and Use Survey provides annual mileage and range of operation of the nation’s 
MHDV fleet, but this information is provided in censored form with usage buckets that are not 
granular enough to support detailed electrification analysis [8]. The Federal Highway 
Administration’s NextGen National Household Travel Survey National Origin-Destination Data 
provides geographically and temporally resolved MHDV usage information, but it aggregates 
data at the trip level rather than the vehicle level (complicating estimation of vehicle 
electrification needs) and aggregates across all body styles and vocations of MHDV [9].  



2 

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

This work addresses a gap in public MHDV data by providing a vocationally diverse dataset of 
typical driving and dwell patterns that is designed with national representativeness in mind and 
thus is suitable for national analyses. More specifically, it addresses the question: what is the 
distribution of daily driving distances and dwell durations for depot-centric MHDV vocations, 
and what shape may their average daily depot charging load curve take? In alignment with the 
data sources used in this analysis, the report is organized into three MHDV categories, all with 
depot-centric operation: transit buses, school buses, and trucks (the last of which includes all 
non-bus MHDV types). This work can inform research, planning, and policymaking to accelerate 
the electrification of MHDVs. 
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2 Methodology 
We consider three disparate types of MHDV in this report: trucks (which themselves have a 
great deal of underlying vocational diversity), transit buses, and school buses. Our models for 
these three vehicle types leverage different underlying datasets and methodologies, but all three 
produced similarly structured outputs for the relevant vehicle types: percentiles describing the 
national distribution of daily driving distance, percentiles describing the daily dwell time at the 
vehicle’s primary location of domicile, and normalized average daily depot load curves 
(assuming all charging occurs at that primary domicile location, spread across dwell durations). 
We describe the methods used to produce outputs for trucks in Section 2.1, transit buses in 
Section 2.2, and school buses in Section 2.3. 

2.1 Trucks 
To model the operating patterns of depot-centric MHDV trucks used for freight and other 
vocations, we estimated nationally representative behavior using data from a sample of seven 
regions. To identify which regions might be most nationally representative, all regions were 
clustered based on publicly available measures pertaining to MHDV operational characteristics 
with an exemplar region selected from each cluster (Section 2.1.1). Next, data from each 
exemplar region was analyzed using Geotab’s Altitude application programming interface (API) 
to quantify typical operations (Section 2.1.2). Finally, cluster summaries were aggregated to 
form national average summaries using data regarding each cluster’s population of active 
vehicles (Section 2.1.3). 

2.1.1 Regional Operating Pattern Clustering 
Substantial variation in MHDV operating patterns may exist across regions of the United States, 
but procuring and analyzing a telematics dataset covering the full nation is often cost-prohibitive. 
As an alternative to licensing a comprehensive nationwide dataset, we selected a set of publicly 
available regional variables that we anticipate affecting MHDV typical operating patterns, 
clustered regions of the country using these variables, and analyzed one representative 
subregion’s data for each cluster. 

2.1.1.1 Clustering Variable Selection 
The objective of our clustering approach is to ensure that the analyzed subregions, taken 
together, capture as much variation as is feasible across measures that affect operating patterns 
and potential BEV charging patterns. Given this objective, we considered two broad categories 
of clustering variables: those that capture variation in travel distance of typical MHDV trips, and 
those that capture variation in MHDV travel concentration within a region. These two categories 
were chosen because we anticipate that they are closely related to variation in operating patterns 
and that they capture qualitatively different dimensions of regional variation. Within these two 
categories, we prioritized variables that have a substantial range from region to region and that 
also have good complementarity (i.e., relatively orthogonal rather than very strongly correlated 
variables). 

To capture variation in driving distances, we estimated the average distance of short-haul trips 
(miles per trip) from the Federal Highway Administration’s NextGen National Household Travel 
Survey National Truck Origin-Destination dataset [9]. This dataset joins trip data from multiple 
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telematics providers and provides summary-level statistics for 583 Federal Highway 
Administration Travel Analysis Framework (TAF) zones: 447 zones based on Census-defined 
metropolitan statistical areas (MSAs) or micropolitan statistical areas (MiSAs)—with some 
MSAs and MiSAs further divided by state lines—and 136 additional zones based on the 
remaining rural areas of each state [10]. This dataset does not provide an average trip distance 
measure for a given region, but rather provides counts of trips per grouping of month, TAF zone 
origin-destination pair, and distance bin (e.g., 0–10 miles). To ensure each analyzed subregion 
reflected its full MHDV operations, Census-defined regions split into multiple TAF zones across 
state lines were recombined and treated as one unit, resulting in 526 total subregions. For each of 
those 526 regions, the dataset was filtered to origin-destination pairs starting or ending in the 
region and trips shorter than 150 miles to focus on local and regional operating characteristics 
rather than volume of interstate trips. The table of trip volumes by distance bin was reshaped into 
a list of repeated distance bins. For example, if 10% of all trips fell into the “0–10 miles” 
distance bin, then that distance bin would appear in 10% of the resulting list. Average short-haul 
trip distance was computed by fitting a distribution to this bin-censored data frame, using the 
SciPy scientific computing library in Python, and taking the average value of the fitted 
distribution [11]. A gamma distribution was chosen because it has support over positive values 
and is flexible to take on a wide range of shapes based on observed data.  

To capture variation in concentration of MHDV movement, the log of employment-weighted 
employment density (employees per square mile) was estimated using U.S. Census data. In 
contrast to the standard unweighted measure of average employment density (employment 
divided by land area), employment-weighted employment density is the average weighted by the 
count of employees located within each Census tract in the area [12]. This can be thought of as 
the average density as perceived by the average employee in the region. Unlike unweighted 
density, it is not affected by large areas of empty off-road land and thus is more reflective of 
operations in the areas where more on-road operations occur. Density of employment was chosen 
over density of population due to this analysis’s focus on MHDV fleets, whose domiciles may 
often be located at a place of business and whose operating patterns may often be business-to-
business or business-to-residence rather than residence-to-residence. Three tables were combined 
to compute employment density for each TAF zone, weighted by Census tract-level 
employment: ZIP-level employment counts from the Census Bureau’s County Business Patterns 
dataset (March 2020 release), Census tract-level land area from the Census Bureau’s 2021 
Planning Database, and a ZIP-to-Census tract crosswalk file produced by the U.S. Department of 
Housing and Urban Development preparation Office of Policy Development and Research [13–
15]. A log transformation was chosen for this variable to reduce skew and ensure clustering 
algorithms could produce relatively similarly sized clusters. Before clustering was conducted, the 
two clustering variables were standardized to have an average of 0 and standard deviation of 1. 

Because the final step of this approach aggregates operating and charging patterns using vehicle 
population information (Section 2.1.3), regional volume measures (e.g., total population or trip 
count) were not used for clustering. 

2.1.1.2 Clustering Method 
We partitioned the 526 modified TAF zones into clusters of similar regions along the dimensions 
of average short-haul trip distance and employment-weighted employment density. This step 
used the 𝑘𝑘-means clustering algorithm, which attempts to minimize within-cluster variance to 
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create coherent partitions of data [16]. 𝑘𝑘-means was applied separately for two groups of 
modified TAF zones: those defined by a MSA or MiSA, and more-rural zones. This was done to 
account for drastic differences in the chosen clustering variables between these two regions and 
to guarantee representation of rural, suburban, and urban regions in our clusters. 

 

Figure 1. Scatterplot matrix showing univariate and bivariate distributions of  
clustering variables for each TAF region’s truck operations 

Several additional unsupervised clustering algorithms were considered to build segments of 
similar TAF zones but were found less satisfactory: hierarchical clustering using Ward’s 
distance, 𝑘𝑘-medoids (similar to 𝑘𝑘-means but identifying specific representative medoid regions 
rather than average values) weighted by each zone’s employment count, and a custom algorithm 
that enforces same-sizing of each cluster (i.e., similar employment count within each cluster). 
Hierarchical clustering was not preferred due to its tendency to produce clusters with very 
imbalanced sizes. 𝑘𝑘-medoids and the custom same-sizing algorithm were eliminated as candidate 
methods due to their overemphasis on dividing very high-population TAF zones (e.g., New York 
City and Los Angeles) into separate clusters. 

A value of 𝑘𝑘 = 2 was chosen for rural TAF zones and a value of 𝑘𝑘 = 5 was chosen for the 
remainder of zones. These values were motivated primarily by budget considerations, because 
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one representative from each cluster is used for data acquisition and analysis. There was not a 
pronounced point of inflection seen when the “elbow” method to setting 𝑘𝑘 was considered, and 
silhouette scores did not differ drastically across values of 𝑘𝑘. 

Table 1 summarizes the seven clusters that were developed, and Figure 2 shows the assignment 
of each modified TAF zone to a cluster. Descriptive analysis of each cluster’s membership 
shows that the key difference between the two non-MSA/MiSA clusters was in their average 
short-haul trip distance. For zones associated with an MSA/MiSA, employment-weighted 
employment density serves as a primary differentiator between clusters; average short-haul trip 
distance divided the lowest-density (“Tier 3 density”) zones further into three clusters.  

Table 1. Descriptive Statistics for Clusters and Their Chosen Representative Zones 

Cluster 
description 

Approx. 
share of 

fleet-
owned 
MHDV 

# of  
TAF 

zones 

 Weighted 
employment density 
(employees/sq mi) 

Average short-
haul trip distance 

(mi/trip) 

Chosen zone 
Cluster 
average 

Chosen 
zone 

Cluster 
average 

Chosen 
zone 

Tier 1 density 20% 10 San Jose-Sunnyvale-
Santa Clara, CA 5,058 3,565 21 21 

Tier 2 density 30% 56 Pittsburgh, PA 1,649 1,811 24 23 

Tier 3 density, 
shorter trips 10% 89 Evansville, IN-KY 715 796 23 24 

Tier 3 density, 
medium trips 25% 146 Lafayette, LA 753 658 32 33 

Tier 3 density, 
longer trips 5% 91 Janesville-Beloit, WI 608 712 42 42 

Non-MSA,  
medium trips 5% 73 Southern ID non-MSA 

areas 213 340 35 33 

Non-MSA,  
longer trips 5% 61 Eastern GA non-MSA 

areas 163 123 44 45 
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Figure 2. Clustering assignments for each modified Federal Highway Administration TAF zone 

2.1.1.3 Representative Zone Selection 
For each of the seven clusters, modified TAF zones were ranked by distance from the cluster’s 
medoid zone within the Euclidean space of the chosen clustering variables. These medoids were 
determined using the R “cluster” library’s implementation of partitioning around 𝑘𝑘-medoids 
function (𝑘𝑘 = 1) [17]. These similarity rankings informed the choice of representative zones for 
each cluster, along with each zone’s anticipated cost of data acquisition (roughly proportional to 
the zone’s population) and anticipated data coverage level. A final criterion used in zone 
selection was for the full set of selected zones to not skew too heavily in favor of one region of 
the country. The selected zones are shown in Table 1. Each cluster’s selected representative is a 
relatively close match to the cluster medoid in terms of employment-weighted employment 
density and average short-haul trip distance. 

2.1.2 Data Preparation 
Access to Geotab’s Altitude platform was acquired for each of the seven selected zones. This 
platform consolidates passively collected Geotab fleet telematics data into various summary 
measures of operating patterns and makes them accessible via several types of API query. For 
this dataset, the Altitude API’s Regional Domicile Analytics query type was used to pull 
descriptive statistics for various categories of MHDV. The following filters were applied to API 
queries: 
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• Dates from September 7, 2022–September 30, 2022 
• Minimum of two stops at the same location in that date range 
• Body type of “Truck” (excludes buses, multi-purpose passenger vehicles, and 

“Other”/“Unknown” types). 
September was chosen as a relatively typical month that avoids larger seasonal variations (e.g., 
mid-summer vacation periods and potential changes in freight patterns before and after the 
winter holidays); the first week of the month was excluded due to Labor Day holiday variation. 
Based on these filters, a total of 13,629 medium- and heavy-duty trucks were analyzed across the 
seven selected zones. For each vehicle category, descriptive statistics corresponding to percentile 
values were pulled from the API. Notation used to label these vehicle categories is summarized 
in Table 2, and notation used to label these descriptive statistics is summarized in Table 3. We 
use vocational driving style category definitions from Geotab’s Altitude API, which are 
reproduced in Appendix Table A-1. 

Table 2. Set Notation Used for Trucks 

Description Label Values 

GVWR class ranges 𝑐𝑐 ∈ 𝐶𝐶 𝐶𝐶 = {2b − 3, 4 − 5, 6 − 7, 8 } 

Vocational driving style 
categories 𝑣𝑣 ∈ 𝑉𝑉 𝑉𝑉 = � Door to Door, Hub and Spoke,

Local, Regional, Long Distance � 

Analysis regions 𝑟𝑟 ∈ 𝑅𝑅 𝑅𝑅 =

⎩
⎪⎪
⎨

⎪⎪
⎧

 

San Jose − Sunnyvale − Santa Clara, CA,
Pittsburgh, PA,

Evansville, IN − KY,
Lafayette, LA,

Janesville − Beloit, WI,
Southern ID non − MSA areas,
Eastern GA non − MSA areas

 

⎭
⎪⎪
⎬

⎪⎪
⎫

 

Days of week 𝑤𝑤 within day-
of-week groupings 𝑔𝑔 𝑤𝑤 ∈ 𝑔𝑔 ∈ 𝐺𝐺 𝐺𝐺 = �

Monday − Friday,
 Saturday − Sunday,
Monday − Sunday 

� 

Percentiles 𝑝𝑝 ∈ 𝑃𝑃 𝑃𝑃 = �5, 10, 20, 25, 30, 40, 50,
60, 70, 75, 80, 90, 95 � 

Hour of day ℎ ∈ 𝐻𝐻 𝐻𝐻 = {0,1, … ,23 } 
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Table 3. Modeling Variables for Trucks 

Description Label Source 

Percentile range’s daily driving distances (miles/operating 
day/vehicle) 𝑑𝑑𝑐𝑐,𝑣𝑣,𝑟𝑟,𝑤𝑤,𝑝𝑝 Geotab 

Percentile range’s daily driving durations (hours/operating 
day/vehicle) 𝑡𝑡𝑐𝑐,𝑣𝑣,𝑟𝑟,𝑤𝑤,𝑝𝑝

DRIVE  Geotab 

Domicile dwell duration (hours/operating day/grouping) 𝑡𝑡𝑐𝑐,𝑣𝑣,𝑟𝑟,𝑤𝑤
DOMICILE Geotab 

Non-domicile dwell duration (hours/operating day/grouping) 𝑡𝑡𝑐𝑐,𝑣𝑣,𝑟𝑟,𝑤𝑤
NON_DOMICILE Geotab 

Domicile dwell duration (hours/grouping at time of day ℎ across 
the full date range, operational and non-operational vehicle days) 𝑡𝑡𝑐𝑐,𝑣𝑣,𝑟𝑟,𝑤𝑤,ℎ

DOMICILE_TOTAL Geotab 

Domicile dwell duration (hours/grouping across the full date  
range, operational vehicle days only) 𝑡𝑡𝑐𝑐,𝑣𝑣,𝑟𝑟,𝑤𝑤

DOMICILE_TOTAL_OP Geotab 

Domicile dwell duration (hours/grouping at time of day ℎ across 
the full date range, operational vehicle days only) 𝑡𝑡𝑐𝑐,𝑣𝑣,𝑟𝑟,𝑤𝑤,ℎ

DOMICILE_TOTAL Calculated 

Proportion (0–1 range) of dwell time spent at domicile 𝑡𝑡𝑐𝑐,𝑣𝑣,𝑟𝑟,𝑤𝑤
DOMICILE% Calculated 

Daily domicile dwell duration percentile, assuming fixed share  
of dwell time at domicile (hours/day/vehicle) 𝑡𝑡𝑐𝑐,𝑣𝑣,𝑟𝑟,𝑤𝑤,𝑝𝑝

DOMICILE_FIXED Calculated 

Percentile range’s daily domicile dwell durations, assuming  
fixed share of dwell time at domicile (hours/day/vehicle) 𝑡𝑡𝑐𝑐,𝑣𝑣,𝑟𝑟,𝑤𝑤,𝑝𝑝

DOMICILE_ADJUSTED Calculated 

Active vehicle-days within class bucket 𝑐𝑐,  
vocation 𝑣𝑣, region 𝑟𝑟, and day of week 𝑤𝑤 𝑛𝑛𝑐𝑐,𝑣𝑣,𝑟𝑟,𝑤𝑤

ACTIVE Geotab 

Registered vehicles within class bucket 𝑐𝑐 and region 𝑟𝑟 𝑛𝑛𝑐𝑐,𝑟𝑟
REGISTERED Experian 

Scaling parameter assigned to results for grouping (𝑐𝑐, 𝑣𝑣, 𝑟𝑟,𝑑𝑑,𝑝𝑝) 𝑠𝑠𝑐𝑐,𝑣𝑣,𝑟𝑟,𝑤𝑤,𝑝𝑝 Calculated 

For each specific combination (𝑐𝑐, 𝑣𝑣, 𝑟𝑟,𝑤𝑤) of gross vehicle weight rating (GVWR) class range 
group 𝑐𝑐, vocational driving style category grouping 𝑣𝑣, region grouping 𝑟𝑟, and day of week 
grouping 𝑤𝑤, percentile values were pulled for daily driving distances, 𝑑𝑑𝑐𝑐,𝑣𝑣,𝑟𝑟,𝑤𝑤,𝑝𝑝 
(miles/day/vehicle), and driving time duration, 𝑡𝑡𝑐𝑐,𝑣𝑣,𝑟𝑟,𝑤𝑤,𝑝𝑝

DRIVE  (hours/day/vehicle). For some groupings, 
too few vehicle fleets were active for the API to return percentiles (a privacy measure), or the 
number of operational vehicles was fewer than 25 (chosen for reasons of statistical robustness). 
In these cases, percentiles for the larger “parent” grouping (𝑣𝑣, 𝑟𝑟,𝑤𝑤), inclusive of all GVWR class 
ranges 𝑐𝑐, were used instead. When this “parent” grouping itself was smaller than 25 vehicles, 
percentiles were taken from the larger of that grouping and the second “parent” grouping: 
(𝑐𝑐, 𝑟𝑟,𝑤𝑤) inclusive of all vocational driving style categories. 

For each vehicle in Geotab’s data, the Regional Domicile Analytics query functionality 
determines the stop location having the longest cumulative dwell time over the analysis period 
and designates that location as the vehicle’s domicile.  

2.1.3 Operations Profile Creation 
For each grouping (𝑐𝑐, 𝑣𝑣, 𝑟𝑟,𝑤𝑤) of gross vehicle weight rating (GVWR) class range group 𝑐𝑐, 
vocational driving style category grouping 𝑣𝑣, region grouping 𝑟𝑟, and day of week grouping 𝑤𝑤, 



10 

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

daily driving distances and driving time durations were derived using Geotab data (Section 
2.1.2). Geotab does not currently provide domicile dwell duration percentiles at the vehicle level, 
so those metrics are computed as a post-processing step after queries are run. For each grouping 
in total, segment-wide total hours of domicile dwell, 𝑡𝑡𝑐𝑐,𝑣𝑣,𝑟𝑟,𝑤𝑤

DOMICILE, and non-domicile dwells, 
𝑡𝑡𝑐𝑐,𝑣𝑣,𝑟𝑟,𝑤𝑤
NON_DOMICILE, were pulled. From these two columns, each grouping’s domicile dwell time share 

(ranging from 0 to 1) was computed:  

𝑡𝑡𝑐𝑐,𝑣𝑣,𝑟𝑟,𝑤𝑤
DOMICILE% = 𝑡𝑡𝑐𝑐,𝑣𝑣,𝑟𝑟,𝑤𝑤

DOMICILE

𝑡𝑡𝑐𝑐,𝑣𝑣,𝑟𝑟,𝑤𝑤
DOMICILE+𝑡𝑡𝑐𝑐,𝑣𝑣,𝑟𝑟,𝑤𝑤

NON_DOMICILE      (1.1)  

Two alternative assumptions are used to compute two versions of dwell duration percentile: one 
assuming a fixed domicile dwell share, and one adjusting for potential variation within each 
grouping. In the former approach, for each grouping (e.g., all Class 3 local travel vehicles in 
Pittsburgh, PA on Wednesdays), it is assumed that domicile dwell time share is fixed across all 
vehicle operating days, such that for each percentile level 𝑝𝑝, the grouping’s daily domicile dwell 
time can be computed using the percentile level 100 − 𝑝𝑝 of the daily drive time distribution: 

𝑡𝑡𝑐𝑐,𝑣𝑣,𝑟𝑟,𝑤𝑤,𝑝𝑝
DOMICILE_FIXED = �24 − 𝑡𝑡𝑐𝑐,𝑣𝑣,𝑟𝑟,𝑤𝑤,100−𝑝𝑝

DRIVE � ∗ 𝑡𝑡𝑐𝑐,𝑣𝑣,𝑟𝑟,𝑤𝑤
DOMICILE%    (1.2) 

This version of the measure is computed prior to national scaling. 

In the latter approach, after the national scaling step, dwell duration percentiles are adjusted to 
incorporate observed variation within each vocational driving style category 𝑣𝑣. Because variation 
in dwell durations cannot be directly observed within each (𝑐𝑐, 𝑣𝑣, 𝑟𝑟,𝑤𝑤) grouping, within- 𝑣𝑣, 
across-(𝑐𝑐, 𝑟𝑟,𝑤𝑤, industry) variation was used as a proxy measure, with industry groupings 
defined as the primary two-digit North American Industry Classification System codes (e.g., 
Transportation and Warehousing) as determined by the fleet operating each vehicle and returned 
by Geotab’s Altitude API. Across all queries run for each vocational group 𝑣𝑣, all values pulled 
for 𝑡𝑡𝑐𝑐,𝑣𝑣,𝑟𝑟,𝑤𝑤

DOMICILE% across all weight classes 𝑐𝑐, regions 𝑟𝑟, days of week 𝑤𝑤—and, additionally, a set of 
queries for vocational group 𝑣𝑣 that were further filtered to each available industry grouping—
were combined into a single list. Across all those queries, the within- 𝑣𝑣 interquartile range (IQR) 
of domicile dwell time shares, IQR(𝑡𝑡𝑣𝑣DOMICILE%), is computed. This proxy measure for domicile 
dwell time share variation is used to adjust the first set of dwell duration percentiles by 
“extending” them out in each direction from the median, proportional to each percentile’s size 
relative to the interquartile (25–75) range: 

𝑡𝑡𝑐𝑐,𝑣𝑣,𝑟𝑟,𝑤𝑤,𝑝𝑝
DOMICILE_ADJUSTED = 𝑡𝑡𝑐𝑐,𝑣𝑣,𝑟𝑟,𝑤𝑤,𝑝𝑝

DOMICILE_FIXED + IQR(𝑡𝑡𝑣𝑣DOMICILE%) ∗ 𝑝𝑝−50
75−25

   (1.3) 

For a given grouping, the median value is the same across both estimates. The first set of 
estimates, 𝑡𝑡𝑐𝑐,𝑣𝑣,𝑟𝑟,𝑤𝑤,𝑝𝑝

DOMICILE, can be viewed as underestimating the variation in domicile dwell durations 
within each grouping. The second approach’s reliance on a proxy measure for variation requires 
an additional assumption be made, but it represents an attempt to model known variation within 
each group in a data-driven manner. It assumes that, all else equal, vehicle-days having longer 



11 

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

driving durations also have shorter domicile dwell durations, and thus errs on the side of 
overestimating the occurrence of relatively “challenging” charge sessions (shorter domicile 
dwells with higher energy needs). 

2.1.4 Charging Load Profile Creation 
We produced nationally averaged charging load profiles for all groupings (𝑐𝑐, 𝑣𝑣, 𝑟𝑟,𝑤𝑤) of GVWR 
class range grouping 𝑐𝑐, vocational driving style category grouping 𝑣𝑣, and day of week grouping 
𝑑𝑑. We excluded charging load profiles for the Long Distance vocational driving style category as 
defined by Geotab’s Altitude API, because that category is less likely to be primarily served by 
domicile charging. 

The Altitude API does not provide daily schedules including driving and dwell events at the 
vehicle level, but rather provides univariate distributions for summary metrics (e.g., vehicle-
miles traveled [VMT] and dwell duration) across each category of vehicle. Rather than model 
individual trucks’ daily drive cycles as random draws from univariate distributions assuming 
independence, we used a fleet-level set of summary metrics capturing the share of vehicles 
within each category parked at their primary domicile in each hour of the day.  

For each grouping, the API provides a variable, 𝑡𝑡𝑐𝑐,𝑣𝑣,𝑟𝑟,𝑤𝑤,ℎ
DOMICILE_TOTAL, describing the total domicile 

dwell hours (summed across all vehicles within the grouping and days in the analysis period) at 
hour of day ℎ. However, this variable includes both operational and non-operational vehicle 
days, so non-operational vehicle days must be removed from these totals. The API also provides 
a variable, 𝑡𝑡𝑐𝑐,𝑣𝑣,𝑟𝑟,𝑤𝑤

DOMICILE_TOTAL_OP, which measures each grouping’s total domicile dwell hours, 
across all hours of the day and the full analysis period, but for operational vehicle days only. 
These two variables can be used together to subtract non-operational vehicle days from 
𝑡𝑡𝑐𝑐,𝑣𝑣,𝑟𝑟,𝑤𝑤,ℎ
DOMICILE_TOTAL, thus estimating the total domicile dwell hours at hour of day ℎ on operational 

days only:  
 

𝑡𝑡𝑐𝑐,𝑣𝑣,𝑟𝑟,𝑤𝑤,ℎ
DOMICILE_TOTAL_OP = 𝑡𝑡𝑐𝑐,𝑣𝑣,𝑟𝑟,𝑤𝑤,ℎ

DOMICILE_TOTAL −      (1.4) 
∑ 𝑡𝑡𝑐𝑐,𝑣𝑣,𝑟𝑟,𝑤𝑤,ℎ

DOMICILE_TOTAL
ℎ′∈𝐻𝐻 − 𝑡𝑡𝑐𝑐,𝑣𝑣,𝑟𝑟,𝑤𝑤

DOMICILE_TOTAL_OP

24
 ∀ ℎ ∈ 𝐻𝐻 

 
As a final step, load curves are normalized such that each grouping’s sum across 24 hours equals 
one. This occurs after the national scaling step (Section 2.1.5). 

2.1.5 National Scaling 
To scale each percentile measure nationally, we considered its values for intervals of consecutive 
percentile values, [ 𝑝𝑝LOW,𝑝𝑝HIGH]. These intervals were taken for each grouping (𝑐𝑐, 𝑣𝑣, 𝑟𝑟,𝑔𝑔) of 
vehicle class bucket 𝑐𝑐, driving style vocation 𝑣𝑣, region 𝑟𝑟, and day of week 𝑤𝑤. For each grouping, 
the total scaling factor 𝑠𝑠𝑐𝑐,𝑣𝑣,𝑟𝑟,𝑤𝑤,� 𝑝𝑝LOW,𝑝𝑝HIGH� was the product of several components: 

𝑠𝑠𝑐𝑐,𝑣𝑣,𝑟𝑟,𝑤𝑤,� 𝑝𝑝LOW,𝑝𝑝HIGH� = 𝑠𝑠𝑐𝑐,𝑣𝑣,𝑟𝑟,𝑤𝑤
′ ∗ 𝑠𝑠𝑐𝑐,𝑟𝑟

′′ ∗ 𝑠𝑠� 𝑝𝑝LOW,𝑝𝑝HIGH�
′′′      (1.5) 

Within groupings of vehicle class bucket 𝑐𝑐, “vocation” (in Geotab terminology) 𝑣𝑣, and region 𝑟𝑟, 
𝑠𝑠𝑐𝑐,𝑣𝑣,𝑟𝑟,𝑑𝑑
′  represents the scaling of individual days of week 𝑑𝑑:  
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𝑠𝑠𝑐𝑐,𝑣𝑣,𝑟𝑟,𝑤𝑤
′ : = 𝑛𝑛𝑐𝑐,𝑣𝑣,𝑟𝑟,𝑤𝑤

ACTIVE

∑ 𝑛𝑛
𝑐𝑐,𝑣𝑣,𝑟𝑟,𝑤𝑤′
ACTIVE

𝑤𝑤′∈𝑔𝑔𝑤𝑤
          (1.6) 

Within each grouping of class bucket–vocation, vehicle registration counts per region type 
determine a scaling factor 𝑠𝑠𝑐𝑐,𝑟𝑟

′′  for each region: 
𝑠𝑠𝑐𝑐,𝑟𝑟
′′ : = 𝑛𝑛𝑐𝑐,𝑟𝑟REGISTERED

∑ 𝑛𝑛
𝑐𝑐′,𝑟𝑟
REGISTERED

𝑐𝑐′∈𝐶𝐶𝑐𝑐
          (1.7) 

Finally, for each interval [ 𝑝𝑝LOW,𝑝𝑝HIGH], a scaling factor 𝑠𝑠� 𝑝𝑝LOW,𝑝𝑝HIGH�
′′′  is assigned based on the 

size of the interval. For example, the interval from the 25th percentile to the 30th percentile is 
assigned 𝑠𝑠[25,30]

′′′ = 30−25
100

0.05: 

𝑠𝑠� 𝑝𝑝LOW,𝑝𝑝HIGH�
′′′ = 𝑝𝑝HIGH− 𝑝𝑝LOW

100
         (1.7) 

 
The combined scaling factors, 𝑠𝑠𝑐𝑐,𝑣𝑣,𝑟𝑟,𝑑𝑑,� 𝑝𝑝LOW,𝑝𝑝HIGH�, are rescaled such that the smallest value 
equals 1,000 (determined from computational constraints), and a stacked list of observations 
each repeated 𝑠𝑠𝑐𝑐,𝑣𝑣,𝑟𝑟,𝑑𝑑,� 𝑝𝑝LOW,𝑝𝑝HIGH� times is made. For each observation in the stacked list, a value 
is randomly sampled from a uniform distribution between the upper and lower values associated 
with the percentile range [ 𝑝𝑝LOW,𝑝𝑝HIGH]. Nationally scaled percentiles are directly computed 
from the stacked list’s sampled values. 

Load curves are scaled in this manner prior to being normalized (using a scaling factor of 
𝑠𝑠𝑐𝑐,𝑣𝑣,𝑟𝑟,𝑑𝑑
′ ∗ 𝑠𝑠𝑐𝑐,𝑟𝑟

′′ , because the percentile bin scaling factor 𝑠𝑠� 𝑝𝑝LOW,𝑝𝑝HIGH�
′′′  does not apply). 

2.2 Transit Buses 
At time of publication, there were over 106,000 transit buses across 1,591 U.S. counties (Figure 
3) [18]. The transit bus modeling primarily relies on two major data sources (Figure 4):  

• The National Transit Database (NTD), which serves as a centralized hub for financial, 
operating, and asset information of transit agencies in the United States [18]. The 2021 
Annual Database was used to calculate transit bus population, develop metrics for transit 
agency clustering, and support the generation of transit bus operating profiles.  

• The General Transit Feed Specification (GTFS), an open standard that transit agencies 
use to publish their service schedules (referred to here as “GTFS Schedule”) and real-
time operations (“GTFS Realtime”) for various software applications. GTFS Schedule 
and GTFS Realtime data were collected to support the generation of transit bus operating 
profiles. 

We considered active vehicles with a bus body type (i.e., “bus”, “articulated bus”, “over-the-road 
bus”, “double decker bus”, and “cutaway”) for developing the county-level inventory. According 
to the NTD 2021 Annual Database, 86% of cutaways (i.e., vehicles with a bus body and mounted 
on the chassis of a van or light-/medium-duty truck) are used for demand response, and GTFS 
data are only available for fixed-route services. For this reason, cutaways are only included in the 
fleet inventory and are not included in generating cluster bus shares for VMT/dwell time/load 
estimates. 
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Figure 3. County-level transit bus inventory in the United States 

Figure 4. Overview of transit bus modeling approach  

*Cutaways are only included in the fleet inventory and are not included in generating cluster bus shares for 
VMT/dwell time/load estimates. 
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2.2.1 NTD Transit Agency Clustering 
Not every transit agency publishes their schedules or real-time operations in the GTFS format, 
and collecting every agency’s real-time operations data would be highly labor-intensive and 
computationally expensive. Thus, we conducted a clustering analysis of transit agencies to 
extrapolate bus operations at a larger scale using the information from representative transit 
agencies with publicly available GTFS datasets.  

We used a two-step approach for the clustering analysis. To better understand vehicle operations 
(especially at the largest transit agencies), we first separated out agencies with a fleet size of at 
least 750 transit buses. For the remaining NTD agencies (i.e., with a fleet size smaller than 750 
transit buses), we conducted 𝑘𝑘-means clustering with four variables: (1) fleet size, defined as the 
number of active buses (NTD Revenue Vehicle Inventory table); (2) weighted daily vehicle-
miles traveled (dVMT) per operating bus per day, including revenue miles only (NTD Service 
table); (3) maximum bus utilization rate, defined as vehicles operated in maximum service 
divided by the number of active buses (NTD Revenue Vehicle Inventory table); (4) within-week 
seasonality index, defined as the minimum value among an agency’s weekday vehicles operated 
in maximum service, Saturday vehicles operated in maximum service, and Sunday vehicles 
operated in maximum service divided by the maximum value among the three metrics (NTD 
Service table). We applied log transformation to all four variables to reduce skewness and 
standardize the data to make variables comparable (Figure 5).  

To determine an appropriate number of clusters, we used direct methods (i.e., elbow and average 
silhouette methods) and statistical testing methods (i.e., the gap statistic and 30 other indices) to 
compare results from two to six clusters. The results show that most of these methods suggest 
two and five as the optimal number of clusters. Given our goal of having a larger number of 
groups to represent various transit agency operating characteristics, we performed the final 
analysis and extracted the results using five clusters for agencies with a fleet size of less than 750 
transit buses. Thus, we categorized the NTD agencies into six clusters (Table 4).  
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Figure 5. Scatterplot matrix showing univariate and bivariate distributions of clustering variables 

for transit bus operations. Variables are log-transformed and standardized. 
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Table 4. Overview of Transit Agency Clusters 

Cluster 
Cluster 

size 

Cluster 
bus 

share 

Average 
number 

of active 
buses 

Average 
daily 

revenue 
miles/bus 

Average 
vehicle 

utilization 
rate 

Average 
within-week 
seasonality 

Large agency  
(>= 750 buses) 13 37% 1719 116 71% 0.47 

Mid-sized agency 84 39% 283 152 80% 0.47 
Small agency, high dVMT, 
weekend service, high 
vehicle utilization 

122 9% 43 152 84% 0.39 

Small agency, high dVMT, 
weekend service, low 
vehicle utilization 

60 8% 82 153 50% 0.42 

Small agency, high dVMT, 
no Sunday service 110 5% 30 130 83% 0 

Small agency, low dVMT 28 2% 46 59 73% 0.24 

2.2.2 Data Preparation 
In this section, we will describe the collection and processing of both GTFS Schedule and GTFS 
Realtime for transit bus modeling. GTFS Schedule data describes transit bus operations using 
several key concepts, including shapes, trips, stops, stop times, routes, and service blocks (Figure 
6): 

• A trip consists of one or many shapes that define vehicle movement along the trip. A trip 
may be the same length as an entire route or a portion of a route, depending on where the 
first and/or last stops are along the route.  

• Stops and stop times define where and when buses make a stop along each trip.  
• A service block consists of a sequence of trips assigned to a single bus. Service blocks 

may consist of services on the same route or different routes. 

 
Figure 6. Key GTFS concepts 

GTFS Realtime provides trip updates, vehicle positions, and service alerts. GTFS Realtime data 
contain mapping between vehicles and trips, and would be ideal sources for estimating vehicle-
level travel distance. However, the availability of GTFS Realtime data is more limited, and the 
collection of real-time data requires additional processing time and resources. Liu (2020) 
developed a method to estimate daily transit bus VMT by extracting service block-level 

Vehicles Blocks Trips

Shapes

Stops

Stop times
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information from GTFS Schedule (Eq. 2.1–2.2), sequencing service blocks with a fixed time 
interval, and applying an agency-level deadheading-to-revenue-mile ratio to the vehicle level 
(where deadheading is defined as miles traveled out of revenue service, e.g., travel from the 
depot to the first bus stop of a route) [19]. We built on this method and improved it by collecting 
GTFS Realtime data to tune the time interval parameter for block sequencing and disaggregating 
agency-level deadheading miles to block sequence level (Eq. 2.3).  

For the large agency cluster, we collected GTFS Schedule data and GTFS Realtime data (when 
available) for all agencies to tune between-block time intervals for sequencing service blocks and 
estimating vehicle-level operations. For the other five clusters, we ranked transit agencies by 
their distance to the cluster centroids to determine the most-representative agencies within each 
cluster. We used the top three agencies with both GTFS Schedule and Realtime data available to 
tune the between-block time interval at the cluster level, and then used the top three agencies 
with GTFS Schedule availability along with the cluster-level optimal between-block time 
interval to estimate vehicle-level operations at the agency-level within each cluster.  In total, we 
analyzed GTFS data for 21,675 transit buses. 

Larger transit agencies maintain their GTFS Realtime repositories and publish the repositories 
periodically. In most cases, three feeds are published and updated approximately every 10 
seconds: trip updates, service alerts, and vehicle positions. Somes agencies host their own feeds 
and others use a third-party host such as Swiftly. The vehicle position feed of each agency was 
collected at the same frequency through agency and/or Swiftly API requests from August 11–14, 
2023. These requests represented operations information of a typical workday (Monday/Friday), 
Saturday, and Sunday; we expect that agency service provisions change little enough from 
season to season that this date range should represent operations of other seasons well. Realtime 
data collection was programed to be queried every 5 minutes, a frequency believed to provide 
sufficient data for the analysis and keep API calls under the host-imposed request limit. After the 
initial data collection, duplicate records are removed to avoid redundancy in the data. The 
vehicle ID information, as revealed in GTFS Realtime, was essential for the purpose of this 
study. The total number of unique vehicle IDs was used for tuning the parameter for service 
block sequencing. Given the data availability during the period of data collection, we collected 
GTFS Realtime vehicle position information for 17 transit agencies across all 6 clusters. 

To tune the between-block time interval parameter, we also collected GTFS Schedule data for 
the same 17 transit agencies during August 11–14, 2023, via the Mobility Database catalogs 
[20]. We used a previously developed algorithm for service block sequencing [19]. The 
sequencing consisted of two steps: (1) matching end stop of a block and start stop of another 
block and following time sequence, which generated the first round of block sequences; (2) the 
remaining blocks were sequenced by the following time sequence with a fixed time interval 
without matching the stop locations. This time interval can be perceived as the time for breaks in 
between blocks or traveling between the first/last stop of a block and the depot. Given that this 
time interval may vary by transit agency, we ran the sequencing algorithm for 18 parameter 
values: 10 minutes, 15 minutes, 30 minutes, 45 minutes, and 1 to 14 hours (with hourly steps). 
Thus, we generated 18 sets of block sequences (using each of the 18 time interval values) for 
each agency on a weekday, Saturday, and Sunday. We then compared the total number of block 
sequences against the total number of unique vehicle IDs from the Realtime datasets. For the 
large transit agency cluster, we calculated the percentage of differences for each agency. For the 
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other five clusters, we calculated the average percentage of differences. The time interval value 
that yields the smallest average percentage of difference was considered the optimal parameter 
value. When the average percentage of difference stays the same for a few time interval values, 
the maximum time interval value was selected as the optimal to allow for as much time as 
possible in between service blocks. When the error stays the same for a few time interval values, 
the maximum value was selected as the optimal.  

2.2.3 Operations Profile Creation 
We relied on GTFS Schedule datasets, the estimated optimal time intervals, and the reported 
agency-level deadheading miles in the NTD to generate the operations profiles. We obtained 
GTFS Schedule data (October 14–16, 2023) for 37 transit agencies across all 6 clusters. The 
VMT estimates were calculated using Eq. 2.1-2.3, using the variables shown in Table 5. The 
deadheading time was estimated using the deadheading distance divided by the agency-level 
average deadheading speed, based on NTD reported total deadheading miles and hours at the 
agency level. The deadheading time was added to the beginning and the end of each block with 
associated deadheading trips. When the operating time of a bus was longer than 24 hours (around 
one percent or less of buses), we assumed that the bus would not be operated the next day and 
extend the dwell to the beginning of its next service day. 
 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠𝑣𝑣,𝑏𝑏 = ∑ ∑ 𝑚𝑚𝑚𝑚𝑛𝑛𝑔𝑔𝑡𝑡ℎ𝑠𝑠,𝑡𝑡𝑠𝑠∈𝑡𝑡𝑡𝑡∈𝑏𝑏                                                               (2.1) 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠𝑣𝑣REVENUE = ∑ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠𝑣𝑣,𝑏𝑏𝑏𝑏∈𝐵𝐵                                                  (2.2) 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠𝑣𝑣TOTAL =  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠𝑣𝑣REVENUE + � 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑣𝑣DEADHEAD

∑ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑣𝑣DEADHEAD𝑣𝑣∈𝑉𝑉𝑎𝑎
� ∗ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠𝑎𝑎DEADHEAD     (2.3) 

Table 5. Modeling Variables for Transit Buses 

Description Label Source 

Length in miles of shape 𝑠𝑠 within trip 𝑡𝑡 𝑚𝑚𝑚𝑚𝑛𝑛𝑔𝑔𝑡𝑡ℎ𝑠𝑠,𝑡𝑡 GTFS Schedule 

Reported daily deadheading miles at agency 𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠𝑎𝑎DEADHEAD NTD 

Set of vehicles 𝑣𝑣 belonging to agency 𝑎𝑎 𝑉𝑉𝑎𝑎 NTD 

Miles traveled by vehicle 𝑣𝑣 within block 𝑏𝑏 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠𝑣𝑣,𝑏𝑏 Calculated 

Revenue miles traveled by vehicle 𝑣𝑣 at agency 𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠𝑣𝑣REVENUE Calculated 

Total dVMT by vehicle 𝑣𝑣 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠𝑣𝑣TOTAL Calculated 

Number of deadheading trips ran by vehicle 𝑣𝑣 𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝑡𝑡𝑣𝑣DEADHEAD  Calculated 

Total daily depot dwell time (hours) for vehicle 𝑣𝑣 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑣𝑣DEPOT Calculated 

Charging power used for vehicle 𝑣𝑣 𝑝𝑝𝑐𝑐𝑤𝑤𝑚𝑚𝑟𝑟𝑣𝑣  Calculated 

2.2.4 Charging Load Profile Creation 
As with other vocations, we assumed managed charging is spread evenly across each bus’s depot 
dwell; however, unlike other vocations, we limited this charging to overnight dwell periods. As 



19 

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

for dwell durations, when the operating time of a bus was longer than 24 hours (around one 
percent or less of buses), we assumed that the bus would not be operated the next day and that 
charging spanned from the end of the current service day to the beginning of its next service day. 
Each bus’s charging power level was determined by its dVMT (𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠𝑣𝑣TOTAL) and overnight 
dwell time (𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑣𝑣DEPOT) (Eq. 2.5).  

           𝑝𝑝𝑐𝑐𝑤𝑤𝑚𝑚𝑟𝑟𝑣𝑣 =
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠𝑣𝑣TOTAL ∗2.28 𝑘𝑘𝑤𝑤ℎ/𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 

91.4%
𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑣𝑣DEPOT

                                     (2.5) 

The bus-level load profiles were aggregated to the cluster level for each hour during a 24-hour 
period. The cluster bus shares found in Table 4 were used for generating the nationally weighted 
load profiles. As a final step, the nationally weighted curves were normalized to get the per-
vehicle hourly load profiles. The precise values assumed for energy consumption rate (2.28 
kWh/mile [21]) and charging efficiency (91.4% [22]) did not affect the produced load profiles, 
because the assumptions were identical for all transit buses and the final load curves were 
normalized. 

2.3 School Buses 
The World Resources Institute estimates around 480,000 school buses are operating in the 
United States today, the vast majority of which are diesel-powered [23]. Diesel exhaust is a 
known carcinogen and exposes children to nitrogen oxides and fine particulates that impact lung 
function, exacerbate asthma, and lead to respiratory illness [24,25]. In a 2001 study, diesel 
exhaust levels inside school buses were found to be up to four times higher than inside passenger 
cars, and over eight times above the average outdoor concentration [21]. The health impacts on 
children are disproportionately distributed, with 60% of low-income students reportedly taking 
the bus, in contrast to just 45% for non-low-income students [26]. As a result, there is a strong 
push to decarbonize the U.S. school bus fleet through zero- and low-emission options. One 
recent example, the U.S. Environmental Protection Agency’s Clean School Bus Program, 
allocates $5 billion from 2022–2026 to replace existing diesel buses with new cleaner 
alternatives [27].  

BEVs are an option for zero-emissions school buses that have seen growth recently due to their 
growing model availability, reduced costs, and their aptness for the school bus duty cycle, which 
is characterized by limited mileage and substantial downtime in normal operations (excluding 
non-routine operations such as field trips, sporting events, and other extracurricular activities). 
As of June 2023, there were 2,277 electric school buses that were either on order, delivered, or 
operating in the United States with a total of 5,982 committed (including buses awarded but not 
yet ordered), a greater than 100% increase from June 2022 [23]. While the market for BEV 
school buses is nascent, it will likely mature rapidly if state and local decarbonization targets are 
to be achieved. For example, New York State has committed to all new school bus purchases 
being zero-emission vehicles by 2027 and 100% of buses in operation being zero-emission 
vehicles by 2035 [28], and many other jurisdictions are targeting similar trajectories.  

Still, there are large uncertainties regarding the driving and charging patterns for electric school 
buses that may dictate their future growth and infrastructure needs. This section describes the 
approach taken to clarify those uncertain patterns through analysis and modeling of real-world 
operating data. First, we introduce the Fleet DNA school bus data sample used to characterize 
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and represent school bus operations in this study (Section 2.3.1). Next, we describe how school 
bus depot dwells are assigned for subsequent analysis (Section 2.3.2). Finally, we introduce the 
EVI-Pro model, used to simulate electric school (and transit) bus charging at depots (Section 
2.3.3). 

2.3.1 Data Preparation 

The National Renewable Energy Laboratory maintains a database of real-world commercial 
vehicle operating data called Fleet DNA, hosted on the FleetREDI platform [6,7]. FleetREDI 
offers statistical summaries derived from 1-hertz (or greater) drive cycle data captured using on-
board data loggers for commercial fleets across diverse vocations and geographical regions 
spanning all 50 U.S. states. To produce the datasets described in this report, we deduced from the 
1-Hz speed and location data the daily driving (i.e., trip) patterns of school buses, including their 
driving distance and durations. We also determined when and for how long they parked at their 
depot, presenting potential charging opportunities for BEVs. Fleet DNA is updated regularly 
with data for additional fleets. Table 6 summarizes the sample of conventional school bus 
operating data that were included at the time of this study. In total, we analyzed 7 fleets, 279 
buses, and over 1,700 operating days with over 106,000 miles driven from 2009 to 2017.   

Table 6. Fleet DNA School Bus Operating Data Summary 

Location Year Bus count GVWR Operating days VMT 

Austin, TX 2009 2 6 10 429 

Thornton, CO 2010 99 6 428 29,371 

Schenectady, NY 2010 3 6 22 565 

Redmond, WA 2011 108 6 468 14,712 

Torrance, CA 2015 33 2,3,8 231 11,454 

Napa, CA 2015 8 8 88 4,830 

Rialto, CA 2017 26 8 492 45,381 

Total 2009–2017 279 2,3,6,8 1,739 106,742 

The representation of GVWR classes in the sample aligned closely with the distribution of 
classes observed in the United States. According to vehicle registration data curated by Experian, 
school buses falling under Classes 2–5 represent less than 2% of the national total, while 25% 
are classified as Class 6, 41% as Class 7, and 32% as Class 8.  

Two versions of the school bus operating dataset were developed for this work. The first is an 
“unfiltered” sample containing all school buses, operating days, and trips reported in Table 6. 
The second is a “filtered” sample excluding trips shorter than 2 miles, often attributed to 
repositioning at the depot and not transporting students, and only considering depot dwells over 
1 hour as realistic charging opportunities. As a result, the filtered sample contains 1,541 
operating days (11% reduction) and 93,865 miles driven (12% reduction). Operating 
distributions for both the filtered and unfiltered sample were included in our dataset. As for 
interpretation, the unfiltered distributions are reflective of all school bus driving days, whereas 
the filtered distributions are more representative of typical operations (i.e., transporting students).  
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For the remainder of the report, all results and discussion pertain to the filtered sample. Both 
versions are reflective only of operations during times of the year that school is in session. 

2.3.2 Operations Profile Creation 
Chronological schedules of daily driving and dwell patterns are derived directly from the filtered 
sample (Section 2.3.1), but a remaining challenge is to accurately identify which dwells occurred 
at each vehicle’s domicile location (and represent charging opportunities). To achieve this, a 
systematic approach was developed to precisely define, recognize, and confirm depots for school 
bus fleets in the Fleet DNA school bus data. First, we identified dwells in the dataset that were 
characteristic of depot dwells (i.e., lasting more than 6 hours and occurring overnight). The count 
of overnight dwells was calculated for each prospective depot site, using the latitude and 
longitude coordinates of these "depot-like" dwells, rounded to three decimal points (accuracy 
approximately within 40 feet).  

This process yielded a lookup table containing all potential depot sites and the number of depot-
like dwells (across all buses in the fleet) occurring at each. In most cases, buses in the same fleet 
shared the same depot-like dwell locations, simplifying the identification process. However, in 
cases where multiple depot-like dwell locations were detected for a single fleet, the actual depot 
sites were verified using aerial imagery (Figure 7). With the depot locations identified, the start 
and end points of each school bus trip were recognized as originating or culminating at a fleet 
depot, provided they were within 500 meters of a designated depot location. 

 

Figure 7. Heatmap of dwell locations and approximate depot locations for school bus fleets 
located in Torrance and Rialto, CA 
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2.3.3 Charging Load Profile Creation 
EVI-Pro is a tool for projecting demand for plug-in electric vehicle (PEV) charging 
infrastructure under typical daily conditions [29]. EVI-Pro uses detailed data on vehicle 
operating patterns, vehicle attributes, and charging station characteristics in bottom-up 
simulations to model the charging behaviors, plug-in electric vehicle load profiles, and quantity 
and types of charging infrastructure necessary to support regional adoption of plug-in electric 
vehicles. A diagram of data flows within EVI-Pro is shown in Figure 8. EVI-Pro has been used 
in multiple detailed planning studies, including Wood et al. (2017, 2018, 2023), Moniot et al. 
(2019), and Alexander et al. (2021) [30–34].  

For this study, EVI-Pro was used to simulate depot charging for battery electric school buses, 
mirroring the operations of diesel school buses detailed in the Fleet DNA data from Section 
2.2.1. As with other vocations, we assumed that school bus charging is managed with the 
distribution of charging activities evenly spread across the hours when the buses are parked at 
the depot (and that all charging occurs at the depot), including the midday hours between 
morning and afternoon routes. This assumes BEV battery capacity and charging rates are 
adequately sized to support this managed charging scenario. As with transit buses, precise values 
for school bus energy consumption rate and charging efficiency did not affect the produced load 
profiles, because the assumptions were identical for all school buses and the final load curves 
were normalized. 

 

Figure 8. EVI-Pro block diagram for charging behavior simulations and network design 

  



23 

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

3 Summary of Produced Datasets 
For each vocation, three sets of data were produced to characterize national average typical 
operations: 

• Daily driving distance in miles per day per vehicle (excluding days the vehicle is not 
operated), expressed as vehicle-day percentiles ranging from 10 to 90. 

• Daily dwell time spent per day at the vehicle’s “domicile,” or primary dwell location, in 
hours per day per vehicle (excluding days the vehicle is not operated), expressed as 
vehicle-day percentiles ranging from 10 to 90. For trucks and school buses, this measure 
includes all time spent at the vehicle’s domicile location regardless of whether the hours 
of domicile dwell are in one continuous period or split across multiple shorter dwells. For 
transit buses, it includes the overnight domicile dwell only. Each vehicle’s domicile is 
defined as the location where the vehicle spent the most time parked during the analysis 
period. 

• A load curve for nationally aggregated daily depot-centric charging (excluding days the 
vehicle is not operated), normalized such that the sum of hourly values equals one for 
each category of vehicle. For trucks and school buses, these load curves assume that 
vehicle charging energy demand is spread evenly over the full duration of domicile dwell 
time. For transit buses, it is spread over the overnight domicile dwell only. They provide 
a comprehensive view of time spent at domicile and a stylized view of potential load 
curves (optimistic, but not a “best case” lower bound, in terms of avoiding peaks from 
coincident load across vehicles).  

Each of these outputs is a nationally descriptive measure developed by aggregating across 
smaller subgroups of vehicles. Each one describes only operational days for a given category of 
vehicle, excluding days in which vehicles were not operated; for each category of vehicle, we 
include a separate variable for weekdays and weekends describing what share of the included 
vehicles are active on an average day (“Pct_Of_Included_Active”). Separate weekday and 
weekend estimates are provided for each variable’s distribution and for load curves; for transit 
buses, due to substantial variation between Saturdays and Sundays, those days are provided 
separately. Load curves are not provided for the Long Distance vocational driving style category 
of trucks as defined by Geotab’s Altitude API. 

3.1 Trucks 
Figure 9 shows a synthetic distribution of dVMT for each combination of GVWR class and 
vocational driving style category, as listed in Table 2 and defined by Geotab’s Altitude API. 
These density plots and all subsequent ones are constructed using uniform random sample draws 
from each percentile bin (excluding the “tails” below the 10th and above the 90th percentile) and 
thus may look more “flat” within each percentile bin than the true distributions. Across weight 
classes, vehicle operating days from the Door to Door and Local vocations tend to have 
relatively similar distributions, with a median value (marked as a vertical line) between 60 and 
80 miles. Hub and Spoke vehicles have a similar range of values, but within Classes 6–8, the 
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median ranges from 95–115 miles per day, and there are relatively more vehicles toward the 
upper side of the distribution than Local or Door to Door.  

As expected, Regional vehicles have substantially higher daily distances and Long Distance is 
higher still (except for Class 6–7; this may be related to Geotab’s vocational definitions not 
relying entirely on distance, but rather a combination of typical radius of operation and whether 
the vehicle operates from a consistent domicile each day). It is worth noting that, while 
differences across vocations tend to be larger than across GVWR classes, larger vehicles tend to 
have longer daily distances, at least for Regional and Long Distance. 

 

Figure 9. Distribution of dVMT for truck vocations. Vertical lines mark each group’s median 
(weekdays, 10th–90th percentile range only). 

There is no directly comparable dataset in the public domain, but as a “back-of-envelope”-style 
comparison to existing estimates, we considered similar segments in two public datasets: The 
2021 Vehicle Inventory and Use Survey (VIUS) dataset, published through the U.S. Census 
Bureau, and the Fleet DNA database [6,35]. While definitions for GVWR class and for vocation 
are not perfectly aligned across datasets, several groups have relatively similar comparison 
points. In general, VIUS seems mutually compatible with the statistics produced for this dataset; 
a more detailed analysis is presented in the Appendix. 

Figures 10 and 11 show distributions for domicile dwell durations with and without an 
adjustment made to consider variations in dwell locations, respectively. The adjustment increases 
the spread of each regional cluster’s distribution prior to the national aggregation step, so it alters 
both the spread and shape of the aggregated distributions.  
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Figure 10. Distribution of domicile dwell duration for truck vocations, adjusted to account for 
variability in dwell locations. Vertical lines mark each group’s median (weekdays, 10th–90th 

percentile range only). 
 

 
Figure 11. Distribution of domicile dwell duration for truck vocations, not adjusted to account for 

variability in dwell locations. Vertical lines mark each group’s median (weekdays, 10th–90th 
percentile range only). 
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The adjusted version (Figure 10) shows that Long Distance and Regional vehicles spend less 
time each operational day at their primary domicile; this can be explained both by longer drive 
distances and by a lower propensity to park at the same place each day. Aggregated nationally, 
Hub and Spoke vehicle days tend to have the longest median domicile dwell; this could be due to 
having an extremely consistent “hub” home base of operation or could be because these vehicles 
are more likely to only operate during the 9-to-5 business day. Door to Door and Local vehicles 
tend to have very similar dwell patterns (with the exception of Class 2b-3), and very rarely do 
they have a full 16-hour (e.g., 5 p.m. to 9 a.m.) overnight domicile dwell between business days. 
One potential explanation for this trend is that some vehicles, such as package delivery vans, 
either have daily operating shifts much longer than 8 hours or could operate for multiple daily 
shifts. Differences across GVWR class are relatively minor for dwell durations. 

Figure 12 shows average normalized curves for daily charging load at each vehicle’s domicile 
(excluding trucks of the long-distance vocation, for which we did not produce load curves). 
Because these load curves were developed from an assumption that load is spread evenly across 
a vehicle’s dwell time at its domicile, the load curves derived directly from the hours at which 
more vehicles are, on average, at their domicile. Across all GVWR classes and vocations, there 
tends to be a “trough” in the middle of the day when the average vehicle is less likely to be 
domiciled and higher levels of load in the evening. This trough is most pronounced on weekdays, 
when operational schedules are more consistent and thus the percentage of vehicles that could 
charge at their domicile in midday is lower. On weekends, operating schedules across vehicles 
are less similar and more variable, which has an effect of smoothing the average load curve. 
Local and Door to Door vehicles show more consistent schedules with shorter away-from-
domicile periods. Door to Door vehicles, particularly, have a very consistent drop-off in 
availability to charge in the mid-morning (whereas Local, more of a catch-all category, shows 
more variation in morning departure time). 

 

Figure 12. Normalized depot charging load curves for the national average truck operational day 
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3.2 Transit Buses 
Figure 13 illustrates the distribution of nationally scaled weighted average dVMT for transit 
buses on a typical weekday. On average, the dVMT of transit buses ranges from 57 (10th 
percentile) to 230 (90th percentile) miles, with the median weekday operating day traveling 141 
(50th percentile) miles. Figure 14 illustrates the distribution of weighted average daily domicile 
dwell duration in hours per vehicle on a typical weekday. Half of bus operating days have a 
dwell time of at least 10.5 hours per day at the domicile, which exhibits the potential for 
nighttime depot charging with lower charger power requirements. For transit buses with shorter 
domicile duration, chargers with higher power levels can potentially support service provision 
without changing current schedules. 

Consistent with the relatively long domicile dwell duration during nighttime, transit bus charging 
load typically occurs between 6 p.m. and 5 a.m. of the next day and peaks between 8 p.m. and 2 
a.m. of the next day (Figures 15 and 16). As with other vocations, these curves assume that 
charging begins immediately when buses arrive at their depot and is spread evenly across their 
dwell. The variation in when peak load occurs across clusters is due to the average duration of 
service provision. For instance, large agencies would observe a substantial increase in charging 
load from 8 p.m. to 1 a.m. because there are many buses returning to the depot during this 
period. The variation between weekdays and weekends is similarly due to the varying 
operational needs and how vehicles are assigned to fulfill needs.  
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Figure 13. Distribution of dVMT for transit bus data. Vertical line marks the median (weekdays, 
10th–90th percentile range). 

 

Figure 14. Distribution of domicile dwell duration for transit bus data. Vertical line marks the 
median (weekdays, 10th–90th percentile range). 

 

 

Figure 15. Normalized depot charging load curves for the national average transit bus operational 
day, by transit agency cluster 
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Figure 16. Normalized depot charging load curves for the national average transit bus operational 
day 

3.3 School Buses 
Figure 17 illustrates dVMT for vehicle operating days—including only times of year that school 
is in session—comparing unfiltered and filtered school bus data. Both datasets show similar 
distributions, with the median vehicle covering around 50 miles per operating day and few buses 
exceeding 100 miles driven in a single day (though we do not model or visualize the upper and 
lower 10th percentile tails of the distributions).  

Findings regarding route distances were reported in Duran et al. (2013), which analyzed over 
1,700 route shifts from the school buses available in Fleet DNA that were available at its time of 
publication [36]. This study found those route shifts averaged 32 miles and had a large spread, 
from 1 to 128 miles; this result was similar to a 2011 study considering 861 route shifts in Fleet 
DNA finding an average length of 35 miles [37]. Assuming a two-shift day, Duran et al.’s 
reported average VMT aligns relatively closely with our own findings, suggesting that more 
recent additions to Fleet DNA have not drastically altered operating patterns. However, other 
regions not currently represented in Fleet DNA may have different operating patterns.  
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Figure 17. Distribution of dVMT for unfiltered and filtered school bus data. Vertical lines mark each 
group’s median (weekdays, 10th–90th percentile range). 

Figure 18 illustrates the distribution of domicile dwell durations across all school buses and 
operating days for both the filtered and unfiltered datasets. Within the Fleet DNA sample, school 
buses typically spend more than half of their operating day parked at the depot (median value of 
16 hours per day). Domicile dwell times below 10 hours per day are rare within the sample and 
could represent non-routine travel such as field trips or sporting events. 

Figure 19 presents the school bus load profiles derived from the filtered data for weekdays and 
weekends, as obtained from the EVI-Pro simulation results. As anticipated, the dominant 
charging opportunity occurs during nighttime hours, spanning from 8 p.m. to 4 a.m. Reflecting a 
standard bimodal operating schedule involving routes in the morning and afternoon, the charging 
opportunity is decreased in the morning during typical pickup hours and reaches its minimum 
around 8 a.m. This decline is more pronounced on weekdays, suggesting a less-predictable 
schedule when buses are operated on weekends. After the morning shift, there is an increase in 
depot charging opportunity, peaking at noon while most school buses are parked between shifts, 
before receding again in the afternoon.  

 

Figure 18. Distribution of domicile dwell duration for unfiltered and filtered school bus data. 
Vertical lines mark each group’s median (weekdays, 10th–90th percentile range). 
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Figure 19. Normalized depot charging load curves for the national average school bus operational 

day (using filtered school bus data) 
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4 Conclusion 
The datasets for daily distance, dwell time, and depot charging load summarized in this report 
are publicly available online. They provide insight into depot-based MHDV operational patterns, 
energy needs, and one potential shape the resulting depot-based charging load curves could take. 
These insights may be useful to researchers simulating MHDV operations, infrastructure 
planners preparing for the projected rapid electrification of MHDVs, and policymakers 
responding to the potential of BEVs to reduce greenhouse gas and criteria air pollutant 
emissions. 

4.1 Context and Interpretation 
The distributions and load curves are intended to describe operational days only. This means the 
distributions for each vocation must be taken in context: if the provided distribution suggests that 
the median driving distance is 10 miles on operational weekdays, but only half the fleet is 
operational on a given weekday, then the fleetwide median (including non-operational vehicles) 
is much lower. Similarly, the domicile dwell duration percentiles only reflect days on which each 
vehicle operated, and thus are considerably lower than if they were to include non-operational 
vehicles. For school buses, which have highly seasonal operations correlated with when school is 
in session, all operating distributions and EV load curves are reflective of the school year. For 
each category of vehicle, we provide as additional context a variable describing what share of the 
included vehicles are active on an average day (“Pct_Of_Included_Active”). 

The data is intended to describe the 10th–90th percentile range of operations, and we did not 
attempt to model the upper or lower tails of the distributions for driving distance or dwell 
duration (Vehicles with driving distances or dwell durations outside of those bounds are included 
in our normalized load curves, which represent the fleetwide average operational day across each 
vehicle category.). 

Each vehicle type is summarized with a goal of present-day national representativeness, but their 
interpretations differ somewhat. For trucks, we incorporate as much variation as feasible from 
known sources of differences in operations to capture regional diversity and prioritize 
representativeness. Similarly, for transit buses, we cluster transit agencies using known sources 
of variation and merge cluster-level representatives with deadheading information from 
individual agencies. For school buses, the sample of available data is relatively limited and is 
randomly sampled to generate a national aggregation; representativeness is not easily optimized 
(though there is no a priori expectation of bias in a particular direction). Furthermore, for school 
buses, the operations data we analyze was collected from 2009 to 2017, and thus may be less 
representative of present-day operations than the data used for trucks (collected in 2022) or 
transit buses (collected in 2023). 

We do not provide distributions for individual regions in this dataset. While the data represents 
nationwide operational trends, it is worth bearing in mind that the nationwide 90th percentile 
driving distance for a given vocation may differ substantially from the 90th percentile value 
observed within a specific region.  

These load curves are intended to represent status quo vehicle movements. For each vocation, 
there likely are strategies that could improve operations of an all-electric fleet, but those 
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strategies are not considered here. As one example, assigning different service blocks to each 
transit bus could help optimize load management across a transit system.  

The load curves included in this data reflect one possible future scenario—one in which charge is 
managed to spread load out as evenly as possible when parked at the depot, thus reducing spikes 
in demand. This can be viewed not as a forecast, but rather as a relatively optimistic scenario in 
terms of reducing impacts to the electricity distribution system, relative to one in which each 
vehicle charges as quickly as possible upon arrival at the depot. However, it is not a lower bound 
on reducing facility-level load peaks, which would involve not only spreading out of individual 
vehicle load, but also coordinating across the fleet (and with other site-and system-level loads) 
such that vehicles parked during demand troughs charge more aggressively during those hours.   

4.2 Limitations 
For these datasets to be used as intended, their limitations and potential biases should be 
considered.  

The analysis period of September 7, 2022 to September 30, 2022 for the Geotab data (trucks) 
was chosen to represent a relatively typical time period that occurred after the peak COVID-19 
pandemic period and avoided extreme seasonal operating patterns (e.g., potentially atypical 
summer vacation periods or a pre-winter holiday uptick in local delivery traffic). However, even 
if it does capture typical operations in terms of seasonality, it cannot describe seasonal variation 
in operations. 

Some categories of MHDV are excluded from these datasets. The truck analysis used an explicit 
filter for trucks, thus excluding multipurpose passenger vehicles and vehicles with an “unknown” 
or “other” body type (and deliberately excluding buses, as they were modeled separately). The 
Geotab Altitude API used to model trucks is likely to lack full vocational coverage in other 
regards, but it is impractical to ascertain fully what subcategories of body type and vocation may 
have robust or limited coverage beyond the GVWR class and vocational driving style fields 
included in these datasets.  

These data are intended only to describe the subset of MHDV that are likely to rely primarily on 
depot-based charging at a relatively stable primary domicile location. This is why the Long 
Distance vocation was excluded from our depot charging load curves. While some Long 
Distance vehicles may charge at a primary domicile location from time to time, they are 
generally less likely to depend on it for the majority of charging needs, and are nearly certain to 
require en-route charging away from their depot.[38] Daily distance and domicile dwell duration 
data for the Long Distance vocation is provided alongside a variable capturing the percentage of 
the vocation that does not meet the chosen Geotab filters for domicile-centric operations; the 
excluded percentage is generally high. On the other hand, we assumed that each included 
vehicle’s primary domicile location could support BEV charging and that batteries were sized to 
last throughout the daily drive cycle. Actual battery sizes may depend on design factors 
including climate, vehicle age expectations, anticipated duty cycle, and degree of desired 
“oversizing” for robustness to variability, but we did not judge the feasibility of the implied 
battery sizes, battery energy density, or charging power levels. This may overestimate the 
potential of domicile-based charging to satisfy MHDV charging needs, but it is not evident that 
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including these vehicles introduces bias into the estimated distributions or load curves in any 
specific manner. 

More broadly, while our methodology for trucks selected a sample of regions capturing as much 
variation as feasible across two known sources of regional variation—and thus built national 
averages, including substantial diversity in operations—we did not assess whether the national 
averages were representative in a statistical sense. Doing so would have required a “ground 
truth” that was unavailable. 

In scaling region- or agency-level results nationally, we averaged over all operating vehicles 
equally. This makes a simplifying assumption that each category of vehicle has a similar energy 
consumption rate per mile, whereas a true national average would weight higher-energy vehicle 
charging load curve shapes more heavily. One instance of this simplification is that we did not 
consider differences in subcategories across regions or agencies; for example, if Class 4 local 
operations-centric trucks make more stops per mile in one region than another, then the total 
energy consumption for that vehicle category may be different in reality across those two 
regions. Another instance of this simplification pertains to local factors such as weather and road 
grade: a true national average would not assume these factors affect all vehicles equally, but 
rather would estimate differences in total energy demand from region to region and weight a 
national average accordingly. 

4.3 Future Work 
This dataset provides a nationally aggregated view of daily distance, dwell duration, and 
potential load curves, but it does not assess regional variations in those distributions. Additional 
research is warranted to investigate what regional factors are strongly linked to variations in 
observed operating patterns and whether any of those linkages are causal in nature. 
Understanding these linkages better would assist in regional planning for MHDV electrification. 

While this dataset characterizes a diverse set of depot-centric MHDV vocations, it does not fully 
capture the range of MHDVs that may electrify in the future or the full range of MHDV charging 
needs. Different modeling approaches are required to ascertain the operating patterns, charging 
demands, and infrastructure needs of MHDV that may lack a consistent depot, operate very far 
from it for multiple days, or simply have longer daily drive cycles than their battery size would 
permit. 

The load curves described here provide one potential scenario for future load curves, but a more 
robust analysis of different load control strategies, charger configurations, and vehicle archetypes 
may reveal a diverse set of future load curves. These variations may impact future infrastructure 
needs and the nature of optimal charge management strategies. 
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Appendix 
Table A- 1 reproduces definitions from the Geotab Altitude Data Dictionary for each of the 
vocational driving style categories of truck included in the analysis. 

Table A- 1. Geotab vocational driving style category definitions 
(Geotab Altitude Data Dictionary) [39]  

Vocation Definition 

Local The vehicle's range of activity is below 150-air-miles (regardless of miles traveled), thus 
qualifies for the short-haul exemption under Hours of Service Regulations. This is 
measured over a given 3 month period. In addition, the vehicle does not exhibit behavior 
in line with other vocations, such as hub-and-spoke and door-to-door. 

Door to Door The vehicle makes significantly more stops than most per workday, but also tends to 
spend very little time per stop. 

Hub and Spoke The vehicle spends many of its workdays making multiple round trips from a singular 
location (a centralized hub). Typically, the vehicle would average over one round trip per 
working day, with these round trips accounting for the majority of its total mileage. 

Regional The vehicle has a wide range of activity, over the 150-mile threshold for short-haul 
exemption, but tends to rest in the same location often. The vehicle is also neither hub-
and-spoke nor door-to-door. 

Long Distance The vehicle has a very large range of activity and typically does not rest in the same 
location. The vehicle is also neither hub-and-spoke nor door-to-door. 

 
Table A- 2 and Table A- 3 compare this dataset and 2021 VIUS data for Class 8 (the only 
grouping of classes aligned across datasets). VIUS Table 213C buckets vehicles by primary 
range of operation, which is one of several factors used to define Geotab Altitude vocations. The 
Local vocation included in Geotab’s Altitude API explicitly has a typical range of operation 
radius below 150 miles, while Regional and Long Distance are above 150 miles; the Door to 
Door and Hub and Spoke vocations typically have daily driving distances most similar to the 
Local vocation. For this dataset’s three locally oriented vocations, median VMT per day ranges 
from 75–110 miles per day. If scaled based on the percentage of vehicles operating each day (as 
a back-of-envelope measure of fleetwide central tendency), the range is from 52–75 miles per 
day. VIUS averages range from 59 miles per day for the “50 Miles or Less” operational range 
bucket to 162 miles per day for the “101 to 200 miles” bucket. Primary range of operation is 
correlated with average dVMT, but does not deterministically predict it, as, given an operational 
range, vehicles may still be used more or less heavily. Accounting for the tendency of the 
average to be skewed upward relative to the median, these sets of numbers appear to be mutually 
compatible. It is worth noting these numbers are still not directly comparable because VIUS 
results are the average from reported range of operation; include all vehicles, not only those with 
domicile-centric operations; and are survey responses rather than measured data and thus may 
have response biases.  



40 

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

Table A- 2. Class 8 Daily VMT From VIUS 2021 Dataset [35] 

Primary Range  
of Operation 

Share of  
Class 8 trucks 

VMT per day  
(average across operational and 

non-operational days) 

50 Miles or Less 41.3% 59 

51 to 100 Miles 15.6% 106 

101 to 200 Miles 8.0% 162 

201 to 500 Miles 8.2% 211 

501 Miles or More 11.6% 264 

Not Reported 15.4% 149 

Total 100.0%  

Table A- 3. Daily VMT of Domicile-Centric Class 8 Trucks By Vocation From This Dataset 

Vocation 
Share of domicile-

centric class 8 trucks 

% of vocation’s 
vehicles excluded 

from domicile-
centric dataset 

% of domicile-
centric vehicles that 

operate each day 

Daily VMT  
(median across 

operational days only) 

Local 30.6% 21.5% 62.0% 83 

Door to Door 4.7% 1.5% 74.9% 75 

Hub and Spoke 18.8% 3.6% 68.8% 110 

Regional 26.6% 13.8% 67.5% 295 

Long Distance 19.3% 47.1% 68.0% 334 

Total 100.0%    

Table A- 4 compares this dataset’s locally oriented vocations to Fleet DNA’s “Freight–Local” 
vocation. For class groups 2 and 3, 4 and 5, and 6 and 7, this dataset’s estimated median daily 
distance traveled is substantially higher than in Fleet DNA (58–70 miles per day versus 14 for 
Classes 2 and 3, 55–84 miles versus 43 miles for Classes 4 and 5, and 65–93 miles versus 46 
miles for Classes 6 and 7, respectively.) Daily distance values for Class 8 are more similar (74–
110 miles per day in this dataset’s locally-oriented vocations versus 80 in Fleet DNA). These 
numbers are not directly comparable, as Fleet DNA is not intended to portray a national average 
but rather a diverse set of fleets. Furthermore, this dataset’s vocational categories are not well-
aligned with Fleet DNA (Fleet DNA has various other vocational definitions for local operations 
outside of Freight–Local, and this dataset’s Local vocation is a catch-all for all local operations 
that do not typically follow a Door to Door or Hub and Spoke style of operations.). 
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Table A- 4. Comparison of Local Vocations in This Dataset and Fleet DNA [6]  
(approximate 25th-50th-75th percentile values) 

 Vocation in this dataset Fleet DNA  
Freight–Local Class Group Door to Door Other Local Hub and Spoke 

2 and 3* 33-59-94 34-70-119 24-58-124 7-14-25 

4 and 5 47-84-123 25-55-102 28-64-127 16-43-70 

6 and 7 41-77-116 27-65-125 39-93-172 19-46-77 

8 38-74-124 27-83-178 44-110-196 35-80-194 

*This dataset includes Class 2b and above, while Fleet DNA does not specify subclasses within Class 2. 
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