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Abstract—This work discusses methods for evaluating the
Power Transfer Distribution Factor (PTDF) and Line Outage
Distribution Factor (LODF) matrices by employing sparse linear
algebra for large-scale computing applications. These matrices
are critical in many power systems applications, such as the Unit
Commitment Problem (UC), pre- and post-contingency power
flow analysis, and transmission expansion. These matrices are
typically dense, which means they require a significant amount
of time and memory to be computed for large networks. However,
by analyzing the structure of the matrices and their computation
method, it is possible to use reduced memory methods based on
sparse matrix operations. This paper shows that sparse linear
algebra algorithms are faster and require less memory and time
than traditional dense approaches. Additionally, we explore the
effect of matrix sparsification by eliminating trailing digits on
power flow calculations.

Index Terms—Power Flow, Sparse Linear Algebra, Large Scale

I. INTRODUCTION

Evaluating power flows in bulk power systems is critical
for multiple power systems computational problems like the
Unit Commitment (UC) Problem and its Security Constrained
version (SCUC). This operational model must capture gener-
ation and transmission operational constraints while guaran-
teeing an optimal solution. Although many contributions try
to incorporate AC power flow into operational computational
problems (e.g., [1], [2], [3]), the difficulties of its non-linear
representation have lead to the use of the linearized (or ”DC”)
version using the so-called PTDF and LODF matrices. This
version does not guarantee a feasible solution of the non-
linear counterpart [4] (i.e., it does not constitute a relaxation
of the AC power flow problem), but it is commonly adopted
by Independent Systems Operators (ISOs) to reduce the
computational requirements of solving optimization models
(see ref. [5] for more). However, solving the DC SCUC
problem for large systems (e.g., more than 50,000 buses) is
still challenging and requires great computing power. This
is particularly demanding when forecast uncertainty related
to non-dispatchable generation and load demands require the
adoption of stochastic variants of the SCUC problem or
updating the generator’s schedule more often (e.g., every 10
minutes). As a result, there is significant value in decreasing
the overall computational effort involved in evaluating and
using the PTDF and LODF network matrices due to their

impact on the creation of the optimization model and its
solution (mainly when these tasks are performed on a single
HPC node with limited memory). A frequently used approach
to decrease the computational burden of incorporating network
flows in optimization problems is rounding to remove entries
with a relatively low impact on the overall flow calculations.
However, while this is a common practice in the industry, there
hasn’t been a systematic approach to evaluating the effects of
eliminating trailing zeros.

This paper focuses on improving the evaluation of large
network matrices and offers three main contributions:

• We present detailed algorithm descriptions and techniques
that employ computational sparse linear algebra for the
calculation of PTDF and LODF matrices with reduced
computational cost,

• An analysis of the performance that the choice of sparse
linear solver choices has in compute time and memory
usage and configuration alternatives that impact solve
performance,

• A computational study on the approximation error intro-
duced by removing trailing digits to “sparsify” the PTDF
matrix to reduce the memory footprint of large power
flow problems.

The techniques and analysis presented in this paper
have been implemented in the open-source Julia package
PowerNetworkMatrices.jl1.

II. LINEARIZED POWER FLOW AND NETWORK MATRICES

The linearized representation assumes that given an electri-
cal network with a set of nodes N of size n and a set of AC-
Branches L of size l, the steady state active power flow fi,j
through a line connecting nodes {i, j} ∈ N can be computed
by the equation

fi,j =
θi − θj
xi,j

(1)

where θ corresponds to the “voltage angle” at each bus and xi,j

to the reactance of the line connecting the buses. Furthermore,
by considering that active power must be balanced at each
node:

pi =
∑
j∈N

fi,j ∀i ∈ N (2)

1https://github.com/NREL-Sienna/PowerNetworkMatrices.jl
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Fig. 1. Evaluation and structure of the BA Matrix. Note that every row is
obtained by simply multiplying each diagonal element of B for the elements
of the respective row in A.

It is possible to relate the angle in each node with the power
injection as follows:

p = (ATBA)θ (3)

where A is the l× n Incidence Matrix, defining the start and
end points of each line using values 1 and -1, respectively. The
B Matrix is a l× l diagonal matrix containing the impedance
values of the system AC Branches. Then, the vector of the
power flows on each line f from the angle values vector can
be evaluated as follows:

f = (BA)θ (4)

By combining Eqs. (3) and (4), the PTDF matrix can be
evaluated as follows [6], [7]:

f = (BA)(ATBA)−1p = PTDF p (5)

This matrix relates the steady-state line flows f with the
power injections p such that each entry PTDF[k, i] represents
the increase in power flow on line fk as a consequence of a
change in power at node i under the assumption (2). Once the
PTDF is defined, the LODF matrix can be calculated. This
matrix is used to estimate the sensitivity factors related to the
network flows between branches in steady state. The common
use case is the calculation of the flows diverted on all the other
branches in L resulting from the trip of a specific like k. The
l × l LODF Matrix is calculated as follows [8]:

LODF = PTDFA ·M (6)

with PTDFA = PTDF·AT and M = (I−PTDFd
A)−1.

In particular, the PTDFd
A features only the diagonal elements

of PTDFA. Please note that as last step all diagonal elements
of LODF are set to -1.

III. IMPROVED EVALUATION OF THE NETWORK MATRICES

A. Evaluation of the PTDF matrix

To improve the computational efficiency of the PTDF
Matrix evaluation, a thorough analysis on each computational
steps must be performed. In particular, the use of sparse matrix
operations is maximized while trying to minimize memory
allocation. Starting from the the A Matrix, it can be noted how

it can be defined and stored in a sparse fashion, while the B
Matrix does not need to be explicitly evaluated. Thus, given A
and the vector b (containing the diagonal elements of B), the
product BA can be evaluated by a simple for loop, as shown
in Algorithm 1. In this way the evaluation can be performed
in way less operations than full matrix multiplication. At first,
the A Matrix and the structure non zero positions must be
evaluated and saved. This structure stores the column positions
of the two non-zero elements of A per each row.

Algorithm 1 Evaluation of the BAT Matrix.

Require: BA_I, BA_J and BA_V← empty list
for i := 1 : l do ▷ iterate over each line

(i, j)← non zero positions(A[i, :])
b← line impedence(l)
Append i to BA_I, l to BA_J, b to BA_V
Append j to BA_I, l to BA_J,−b to BA_V

end for
BAT ← sparse(BA_I, BA_J, BA_V) ▷ Save sparse
matrix

Then, the lists BA_I, BA_J and BA_V are initialized as
empty. They collect the row, column indices, and values
of the non-zero matrix elements respectively. Therefore, the
product BA can be defined as a sparse Matrix, significantly
reducing the memory requirements. Algorithm 1 represents in
a programmatic way the example shown in Figure 1, with
the only difference that the (BA)T is saved rather than the
original one. The reason of this choice derives by analyz-
ing (5). By transposing the entire equation, the evaluation
of PTDFT does not require the explicit computation of
(ATBA)−1 but simply to solve the resulting linear system
(ATBA is symmetric). To do so matrix factorization can
be considered, and among the different methods available LU
factorization was chosen since it consistently showed to be the
most effective. The overall algorithmic procedure is described
in Algorithm 2, which allows an efficient computation of
PTDFT.

Algorithm 2 Evaluation of the PTDFT Matrix.

Require: (BA)T , A
Require: iref bus ▷ column index of reference bus
ATBA← (BA)TA
(L,U)← lu(ATBA) ▷ get L, U factorization matrices
PTDFT ← solve(L,U, (BA)T )
PTDFT[iref bus, :] := 0 ▷ setting to zero the column
related to the reference bus

B. Evaluation of the LODF matrix

By analyzing (6) it can be seen how the evaluation of
the LODF Matrix requires to compute the PTDF one and
(I − PTDFd

A)−1. A more efficient approach is to compute
the LODFT matrix, by transposing Eq. (6). In this way,
direct inversion on I − PTDFd

A) can be avoided and the
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following linear system can be solved with matrix factorization
techniques.

LODFT = (I−PTDFd
A)−1PTDFT

A (7)

The whole procedure is described in Algorithm 3.

Algorithm 3 Evaluation of the LODFT Matrix.

Require: PTDFT, A ▷ use Algorithm 2 for PTDFT

Require: m I, m V← emptylist
PTDFT

A ← APTDFT

for i := 1 : l do ▷ iterate over each line
if 1-PTDFT[l, l] ≤ 0 then

Append l to m_I, Append 1 to m_V
else

Append l to m_I
Append (1−PTDFT

A[l, l]) to m_V
end if

end for
(I−PTDFd

A)← sparse(m I,m I,m V)
(L, U)← lu(I−PTDFd

A)
LODFT ← solve(L, U, PTDFT

A)
for i := 1 : l do

LODFT[l, l] := −1
end for

C. Matrix sparsification
With the aim of decreasing the memory required to store

the network matrices, they can be made more sparse by
dropping elements whose absolute values is below a certain
threshold. Despite good results are easily achievable by setting
to zero elements of the matrix, a careful assessment on
the error induced by the loss of information on the power
flows must be performed. This error can be evaluated as the
difference between f and fsp, both evaluated through Eq.
(5) by considering PTDF and PTDFsp (sparsified version)
respectively.

IV. TEST CASES AND LINEAR SOLVE LIBRARIES

The proposed methodology requires to solve linear systems
for the evaluation of the PTDFT and LODFT, and therefore
different libraries can be used. In this work four different open-
source linear system solvers were considered and compared:
KLU [9], OpenBLAS, MKLBLAS and MKLPardiso [10]. In
this work both MKLPardiso, MKLBLAS and OpenBLAS
are set to use the maximum number of threads available.
The proposed methodology was tested over 48 systems from
the PGLib library [11] and from Texas A&M synthetic li-
brary systems. These are all those systems with a number
of buses/branches between 500/686 and 82000/104121. Six
tolerances between 10e−6 and 10e−1 (10e1 increments) were
considered for the evaluation of the error induced by matrix
sparsification on power flows (10e−15 considered as refer-
ence). Computation of these was done by using the open-
source Julia package PowerFlows.jl2. Finally, all the

2https://github.com/NREL-Sienna/PowerFlows.jl

PTDF computational time

Fig. 2. Computational time required to evaluate the PTDF matrix for the
different test cases and solvers, given the number of system buses..

numerical tests were executed on a workstation featuring 18
cores (36 threads) 3.0 GHz CPU and 720 GB of RAM.

V. RESULTS

A. Computational performance for the evaluation of the PTDF
and LODF matrices

The PTDF and LODF matrices were evaluated for each
system considered in the library and for each method. Starting
from the PTDF matrix, the computational time required for
its evaluation can be found in Figure 2. By comparing the
different solvers it can be noted how MKLBLAS and KLU are
the fastest for those systems with a number of buses ranging
between 500 and 4619. In particular, MKLBLAS was the
fastest for systems with less than 1000 buses. When looking
at medium size systems (from 4661 to 10000 buses), KLU
showed to require the least amount of time for evaluating
the PTDF matrix. For these system sizes, MKLPariso was
up to +214% slower than KLU , while the dense solvers
showed to be slower up to a +117%. When considering large
systems with more than 10189 buses, MKLPardiso showed
to be the fastest solver. Here KLU is between +23% and
+40% slower, while MKLBLAS and OpensBLAS resulted
significantly slower (between +55% and +635%). The reasons
of the difference between KLU and MKLPardiso can be found
in how the solvers are designed. MKLPardiso requires the
Right Hand Side (RHS) of the linear system to be dense,
therefore increasing the computational burden, while KLU
accepts sparse matrices on both sides of the equation. This
explains the better performance on smaller instances. However,
the ability of MKLPardiso to run the calculations in parallel
allows it to be faster when larger systems are considered (KLU
has no parallel computation option as of today).

When looking at the memory used for the evaluation of
the PTDF matrix (Figure 3), it is evident how KLU is sig-
nificantly less demanding than all other solvers. In particular,
MKLPardiso needs between +37% and +50% more memory,
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PTDF memory usage

Fig. 3. Memory required during the evaluation of the PTDF matrix for the
different test cases and solvers, given the number of system buses..

while the BLAS-based solvers show an higher memory usage
in the range of +51% and +84%. The improved memory
performance is in part explained by the fact that KLU can
solve linear systems with sparse RHS preventing the allocation
of an additional large dense matrix.

When looking at the computation cost of building the
LODF, Figure 4 and 5 show the time and memory needed.
It is important to note that the figures shown are related to
the evaluation of the LODF matrix only (therefore related
to the solution of (7)). By looking at Figure 4, similar
calculation times are seen across the different solvers. This
can be understood by knowing that each method evaluates
PTDFT

A in the same way, and they differ just for how the
linear system in (7) is solved. However, solving this system in
(7) is a relatively easy task since in requires the factorization of
the diagonal matrix (I−PTDFd

A). Finally, KLU, MKLBLAS
and OpenBLAS are the equivalently better options for small
and large case systems, while for mid-size ones MKLPardiso
results to be fasts (although with a limited margin).

Regarding the memory needed for the evaluation of the
LODF matrix, Figure 5 shows how the BLAS-based solvers
required more memory than MKLPardiso and KLU, which
show very similar figures. However, KLU needed less mem-
ory for those test cases featuring more than 13659 buses,
with MKLPardiso requiring between +57% and +100% more
memory. Regarding both MKLBLAS and OpenBLAS, they
required between +42% and +50% more memory accross all
test cases. When compared with the PTDF matrix, it can be
noted how the evaluation of the LODF required less time but
more memory (e.g., the largest case - 82000 buses - required
283 seconds sand 136 GB for evaluating the PTDF with KLU,
192 seconds and 173 GB for the LODF). This is related
to the less operations needed for solving (4) and (5) (less
computational time), that however need to handle the PTDF
matrix for the evaluation of the PTDFT

A and (I−PTDFd
A)

terms (more memory).

LODF computational time

Fig. 4. Computational time required to evaluate the LODF matrix for the
different test cases and solvers, given the number of system branches..

LODF memory usage

Fig. 5. Memory required to evaluate the LODF matrix for the different test
cases and solvers, given the number of system branches..

B. Sparsification of the PTDF matrix

The effects of sparsifying the PTDF matrix are here re-
ported. Three different metrics are shown: the Root Mean
Square Error (RMSE) related to the power flows evaluation,
the matrix density and memory reduction. The matrix density
is defined as the ratio between the number of non-zero values
and the total number of elements of the matrix. The memory
reduction refers to the percentage drop in memory requirement
after sparsification. The relationship between RMSE, sparsity
and tolerance can be found in Figure 6. At first, a reference
tolerance of 1e-15 was considered as reference since it does
not produce any reduction in density and RMSE is practically
zero. As the tolerance increases to 1e-5, the density does
not change significantly (values keep on being in the 51%
and 95% range), while the RMSE increases of some orders
of magnitude. For a tolerance larger than 1e-5, the RMSE
increases significantly, up to values too high for practical use.
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Sparsification tolerance, sparsity and RMSE

Fig. 6. RMSE as a function of sparsity. The different colors refer to the
different sparsification tolerances considered..

Sparsification tolerance, memory reduction and RMSE

Fig. 7. Memory reduction as a function of RMSE. The different colors refer
to the different sparsification tolerances considered..

Finally, the relationship between RMSE and memory re-
duction can be found by looking at Figure 7. In order to
keep an acceptable RMSE, tolerances exceeding 1e-5 should
be avoided since the marginal memory reduction is very low
compared to the increase in error. Further, the results show the
achievable density of the resulting matrices is very variable
and system dependent at tolerances below 1e-5. Hence, it
is recommended to perform power flow studies to determine
the induced RMSE error prior to the implementation of this
technique.

VI. CONCLUSIONS

• Linear approximations of power flows require dense
matrices and for large real-scale system can generate
significant increases in the required compute power when
used within optimization problems. The time and memory
cost of computing these matrices can be reduced by em-

ploying linear solvers to perform the inversion operations
of the calculation procedures. Further improvements can
be achieved in the computation by employing appropriate
solvers that exploit sparsity and parallelism.

• The results show that linear solver choice greatly depends
on the system size and available memory for the com-
putation. However, for very large scale systems multi-
theated sparse libraries such as MKLPardiso provide the
best alternative in terms of speed for the computation
of the matrices but with a larger memory footprint. On
the other hand, although KLU showed slower compute
times, it provided significant memory savings which
could be relevant if matrix computation is done at the
same compute node as the optimization problem solution.

• Sparsification techniques to reduce the memory footprint
of network matrices has an exponential effect on the
increase of the RMSE. The results show diminishing
return in the memory savings with respect to the increased
RMSE resulting from larger tolerances, which reflects
that aggressive sparsification can hurt result quality re-
gardless of the improved memory footprint. In general,
for tolerances that make practical sense, power flow
studies should be conducted to determine appropriate
sparsification tolerances, this technique’s performance is
highly dependent on the system size.
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