

Annual Technology Baseline: The 2022 Transportation Update

atb.nrel.gov/transportation/2022/index

Presented by: Laura Vimmerstedt (NREL)

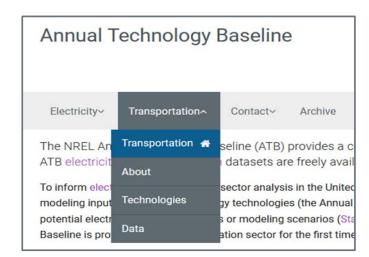
Co-Authors:

Ranjit Desai, Matthew Heine, Paige Jadun, Ling Tao, Arthur Yip (NREL)

Adarsh Bafana, Hao Cai, Amgad Elgowainy, Ehsan Islam, Uisung Lee, Aymeric Rousseau, Ram Vijayogopal (Argonne National Laboratory) Webinar logistics slides are not included in this published version.

Webinar logistics slides are not included in this published version.

Acknowledgments


- **Biofuels:** Ling Tao, NREL
- Biofuels and GREET* Analysis: Hao Cai and Uisung Lee, Argonne National Laboratory
- Hydrogen and GREET* Analysis: Adarsh Bafana, Argonne National Laboratory
- Vehicles: Paige Jadun and Arthur Yip, NREL; Amgad Elgowainy, Ehsan Islam, Aymeric Rousseau, Ram Vijayogopal, Argonne National Laboratory
- Aviation: Ranjit Desai, NREL
- Project coordination: Laura Vimmerstedt, NREL
- Data and documentation development: Ranjit Desai, Matthew Heine, Paige Jadun, Dana Stright, Arthur Yip, NREL
- Website production: Mike Bannister and Jeremy Jenkins, NREL
- Editing: Amy Brice, NREL
- **QC Review:** Bo Liu, Dan Mazzone, NREL
- DOE Project Leads: Paul Spitsen, Neha Rustagi

Agenda

- Why the ATB?
- ATB Project Overview
- Website Demonstration
- Questions and Comments

Why the ATB?

- The rapid pace of technology development results in reports of technology progress quickly becoming outdated, making it difficult for researchers to find current, credible, and consistent information in one place.
- By enabling understanding of technology cost and performance across energy sectors, the ATB informs transportation sector analysis nationwide.

atb.nrel.gov

The ATB Targets Analytic Transparency and Consistency

Objective: develop and publish energy technology cost and performance scenarios that are credible, comparable, transparent, and reflect potential technology advancement.

EERE* Analysis Consistency

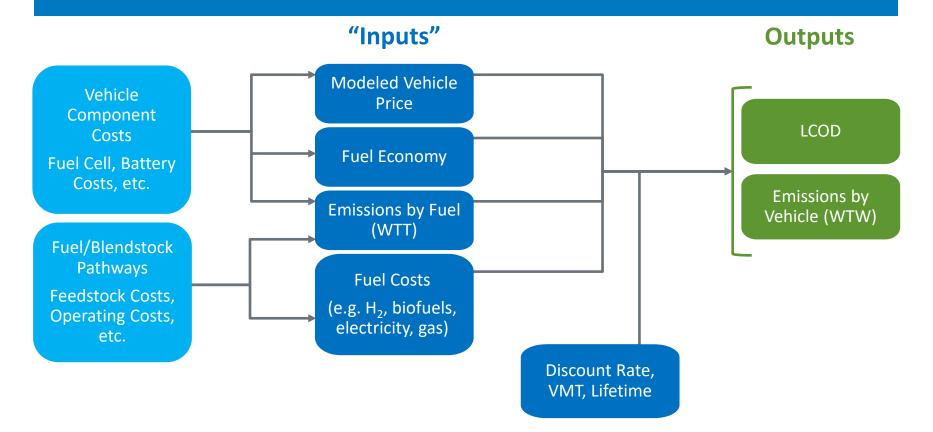
- Ensure consistent assumptions across technologies
- Provide comparability across EERE/national laboratory projects and publications

Third-Party Analysis

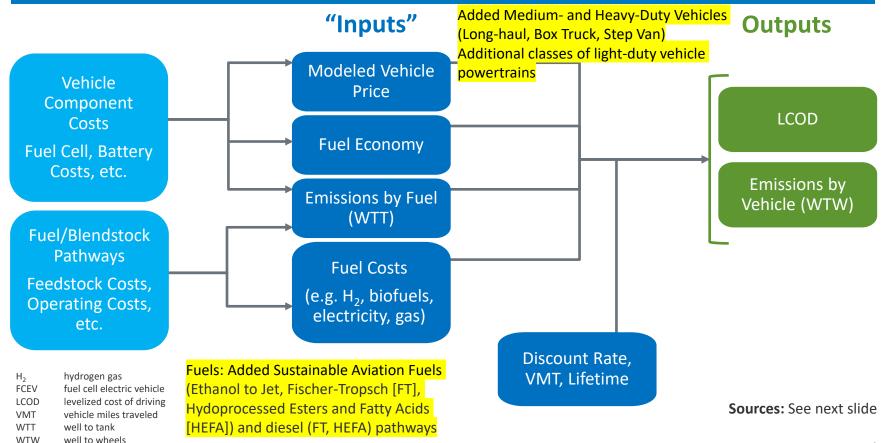
- Provide access to assumptions
- Leverage national laboratory expertise

ATB Project Overview

What Are the Content and Purpose of the ATB?


The ATB is a ...

- Website and summary dataset of cost and performance estimates for selected vehicles and fuels
- Link to publicly available resources
- Set of scenarios that highlight potential technological improvements
- Platform for interactive exploration, selection, and download of specific data.


The ATB is not a ...

- Primary analysis
- Model
- Set of all-encompassing future scenarios.

The Transportation ATB Highlights Key Data

Transportation ATB Highlights Key Data – Changes in 2022

Summary of Transportation ATB 2022 Data Sources

Key Inputs	Primary Sources
Modeled Vehicle Price and Fuel Economy	Argonne's annual Autonomie modeling (Islam et al. 2022) Low-volume multipliers used for fuel cell electric vehicles based on James et al. (2018), and in alignment with TEMPO-based market penetrations (Ledna et al. 2022)
Fuel Costs	 Biofuels: Published U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy techno-economic analysis reports Hydrogen: Liftoff report, California Energy Commission (Baronas and Chen 2021), and NREL data on fuel cell bus station costs. Gasoline, diesel, and ethanol: U.S. Energy Information Administration (EIA) and EIA Annual Energy Outlook (AEO) (various updated years, not 2023) Electricity: EIA, AEO, and NREL Standard Scenarios (Cole et al. 2021) Recharging and refueling: Borlaug et al. (2020); Bennett et al. (2022)
Fuel Emissions (WTT)	Argonne's GREET model (Wang et al. 2022)
Other LCOD calculation assumptions (Discount Rate, VMT, Lifetime)	Elgowainy et al. (2016); Burnham et al. (2021); Brooker et al. (2021); Hunter et al. (2021)

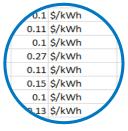
Transportation ATB: Assumptions for Energy Systems Analysis

Core Data

Base Year and Projected Data for...

- Fuel Economy •
- Vehicle Price
- Fuel Cost
- Financing Assumptions
- Levelized Cost of Driving
- WTW Emissions
- WTT Emissions

WTT = well to tank; WTW = well to wheels


atb.nrel.gov

- User guidance
- Additional analyses
- Methodologies
- Comparison to other projections (e.g., EIA)

Product Suite

Tableau Workbook

- Summary of selected data (no calculations)
- Cost and performance projections, 2020–2050
- Interactive charts
- Visual exploration

Formatted Data

- Database-friendly summaries
- Cost and performance projections, 2020– 2050
- Structured format

Presentation Slides

- Webinar presentation
- Summary presentation

What Is the Value of the ATB?

Transparency, Consistency, Credibility, and Accessibility

- Consolidates data from—and for use within— DOE's Sustainable Transportation analysis
- **Summarizes** data to high level needed for systemwide analysis
- **Organizes** data in highly structured format, enabling:
 - Display of data in interactive charts
 - Exploration, selection, and download of specific data.

Data are free, publicly available, and easily accessible.

Electricity ATB Has a 9-Year Record of Success

Model Inputs

Resource Planning Model Regional Energy Deployment System System Advisor Model

Important Scenario Analyses Used ATB Projections

External Users

Federal Agencies Bureau of Land Management, U.S. Department of Energy and labs, U.S. Environmental Protection Agency	Grid Operators North American Electric Reliability Corporation, Midcontinent Independent System Operator, Pennsylvania-New Jersey-Maryland Interconnection, New York Independent System Operator	Utilities Hawaii Electric Company, Dominion Energy, Xcel Energy
Consultants Rhodium Group, Navigant, M.J. Bradley & Associates, Analysis Group	Nonprofits Resources for the Future, Environmental Defense Fund, Union of Concerned Scientists	Academia Stanford University, University of Maryland, University of Texas, Duke University, University of Colorado, Colorado School of Mines
State Officials Hawaii, Michigan, California	International Chilean Ministry of Energy, Global Carbon Capture and Storage Institute, Institute, Canadian Institute for Integrated Energy Systems	Media Utility Dive

Technology Specifics: Web Demo

- Fuels
- Vehicles

	Electricity~	Transportation~	Contact~	Archive
	About Technologies		The 2022 T	nologies
	Light-Duty V	ehicles	estimates, a	and assumptions fo
NEV	V Medium- and Vehicles	d Heavy-Duty	heavy-duty	ortation ATB includ on-road vehicle tec
NEV	V Aviation		used to calculate those cos At this time, the ATB does n	
	Fuels		road vehicle	es such as aircraft,
	Data			eractive charts of ve
			Transportat	tion ATB document

The 2022 Transportation Annual Technology Baseline (ATB) provides detailed cost and performance data, estimates, and assumptions for vehicle and fuel technologies in the United States.

The Transportation ATB includes current and projected estimates: time-series through 2050 for light, medium, and neavy-duty on-road vehicle technologies; scenarios for conventional and alternative fuels. It details the assumptions used to calculate those costs, such as natural gas and electricity prices, discount rates, and vehicle miles traveled. At this time, the ATB does not include other vehicles such as buses, 2- and 3-wheeled motorized vehicles, or nonroad vehicles such as aircraft, vessels, locomotives, and those for industry and agriculture.

Explore interactive charts of vehicle and fuels data using the technology menu to the left, or explore the 2022 Transportation ATB documentation below.

Electricity~	Transportation~	Contact~	Archive	
About		Tech	nolog	
Technologies		The 2022 T		
Light-Duty V	'ehicles	estimates, and assun		
Medium- an Vehicles	d Heavy-Duty	The Transportation heavy-duty on-road used to calculate the		
 Aviation	_	At this time		
Fuels		road vehicl	es such as	
Data		Explore inte	eractive cha	

gies

tation Annual Technology Baseline (ATB) provides detailed cost and performance data, umptions for vehicle and fuel technologies in the United States.

ATB includes current and projected estimates: time-series through 2050 for light, medium, and vehicle technologies; scenarios for conventional and alternative fuels. It details the assumptions ose costs, such as natural gas and electricity prices, discount rates, and vehicle miles traveled. B does not include other vehicles such as buses, 2- and 3-wheeled motorized vehicles, or nonas aircraft, vessels, locomotives, and those for industry and agriculture.

charts of vehicle and fuels data using the technology menu to the left, or explore the 2022 Transportation ATB documentation below.

Contact~ Archive	Logi
Fuels The Transportation Annual Technology Baseline (ATB) provides price or cost, production, and emissions estim for selected fuels in four categories:	mate
 On-Road Fuels, including ethanol and petro- and bio-based diesel fuel Blendstocks, including ethanol and diesel bio-based blendstock Aviation Fuels, including conventional jet fuel and sustainable aviation fuel Marine Fuels, including conventional heavy fuel oil and bio-based marine fuel. 	
fuels from blendstocks and ATB. The supply curve costs and quantities of thes	point e
	 Fuels The Transportation Annual Technology Baseline (ATB) provides price or cost, production, and emissions estin for selected fuels in four categories: On-Road Fuels, including ethanol and petro- and bio-based diesel fuel Blendstocks, including ethanol and diesel bio-based blendstock Aviation Fuels, including conventional jet fuel and sustainable aviation fuel Marine Fuels, including conventional heavy fuel oil and bio-based marine fuel. The update separates on-road fuels from blendstocks and

Electricity~ Transportation~	Contact~ Archive Login
About	On-Road Fuels
Technologies	The Transportation Annual Technology Baseline (ATB) provides fuel price or cost and emissions for select on-road
Light-Duty Vehicles	vehicle fuels, including gasoline and ethanol, diesel fuel, natural gas, electricity, and hydrogen.
Medium- and Heavy-Duty Vehicles	Finished fuel prices are meant to represent retail prices, and they include estimated taxes (for fuels that are currently taxed) and distribution costs. Blendstock data do not include taxes or distribution costs.
Aviation	We use the U.S. Energy Information Administration Annual Energy Outlook 2021 for current and projected petroleum
Fuels	fuel prices. Projected fuel prices are associated with particular years; however, because ATB does not provide a time-series trajectory, we present fuel price at a frozen level for all years, offering different scenarios for a range of
On-Road Fuels	fuel price values.
Gasoline and Ethanol	Fuel Scenarios
Petro- and Bio-Based Diesel Fuel	For non-petroleum fuels, the Transportation ATB presents five fuel scenarios, which include current market, current modeled, or future modeled conditions at low or high production volume scales, based on techno-economic
Natural Gas Fuel	modeling of potential technology advancement.
Electricity	The Current Market scenario represents fuel price and emissions data for fuels that are commercially
Hydrogen	available, with the exact source, timing, averaging, and other details described in the references. Current

Fuels Scenarios (from ATB Definitions Page)

- Current Market: In the Current Market scenario, <u>fuel price</u> and emissions data are shown for fuels that are commercially available; the exact source, timing, averaging, and other details are described in the <u>references</u>. Current Market fuel prices are primarily based on data from the U.S. Energy Information Administration. Current Market fuel prices include taxes, but may differ from observed retail prices because of market volatility and local market conditions. See specific notes and references on the <u>fuels pages</u> for specific dates and averaging methods.
- Current Modeled, Current Volume: In this scenario, fuel metrics are based on techno-economic modeling
 of the current technology at current market <u>production volume</u> of the specific fuel pathway as specified in
 the notes and <u>references</u> on the <u>fuels pages</u>.
- Current Modeled, High Volume: In this scenario, fuel metrics are based on techno-economic modeling of the current technology at high market <u>production volume</u> of the specific fuel pathway. Timing of this scenario depends on when high <u>production volume</u> is achieved.
- **Future Modeled, Low Volume:** In this scenario, fuel metrics are based on a future technological state modeled at low market <u>production volume</u> of the specific fuel pathway, as might be the case for a pioneer plant.
- Future Modeled, High Volume: In this scenario, fuel metrics are based on a future technological state, based on engineering-economic modeling at high market <u>production volume</u> of the specific fuel pathway, often called "nth plant." Timing of this scenario depends on when high <u>production volume</u> of the specific fuel pathway is achieved.

Explore Fuels Data via Interactive Tables

Gasoline and Ethanol

Petro- and Bio-Based Diesel Fuel

Electricity

Hydrogen

	d-Use Fuel Ethano		e values) 🔻	irid Mix N/A ▼		
Price OLight						
Finished Fuel:	Ultra-Low Sulfur Diesel	Renewable Diesel				
	ium/Heavy Duty PEV Charging F		PEV Charging ttricity, CA Grid Mix	PEV Charging Electricity High Cost, National Grid Mix		
Metric Type Price Emissions 	Weight Category ● Light Duty → Medium/Heavy Duty Grid Scenario	Fuel Pathway (All) Delivery Method				
All Classes •		N/A				
Fuel Pathway:	Current	Future				

22

NREL

Update Includes Selected SAF Pathways

Annual Technology Baseline

About

Vehicles Aviation

Fuels

Data

Electricity~ Transportation~ Contact~ Archive Login **Aviation Fuels** Explore the fuel price and emissions intensity of aviation fuel. Technologies Light-Duty Vehicles Emissions estimates use the Argonne National Laboratory's GREET model (Wang et al., 2022). The underlying source for a value in the table can be seen by placing your mouse cursor over that value. The data sources are also Medium- and Heavy-Duty cited-with hyperlinked linked references-in the Key Assumptions section below. Fuel Pathway Metric Type Grid Mix N/A Price (AII) . C Emissions **On-Road Fuels** Conventional Jet Sustainable Aviation Fuel Fuel Blendstocks Biofuel ETJ (Jet) from Biofuel FT (Jet) from Biofuel HEFA (Jet) Aviation Fuels Fuel Pathway: **Conventional Jet Fue** Corn Forest Residue from used cooking oil Marine Fuels Fuel Scenario: Current Market Future Modeled, Hig., Future Modeled, Hig., Future Modeled, Hig. Fuel Price (\$/gge) 1.62 471 4 66 5.51

NREL 23

Electricity Example

Metric Type Price

Weight Category () Light Duty Medium/Heavy Duty Emissions

Class Grid Mix All Classes

Multiple values

Grid Mix:	PEV Charging Electricity, National Grid Mix	PEV Charging Electricity, IN Grid Mix	PEV Charging Electricity, CA Grid Mix	PEV Charging Electricity High Cost, National Grid Mix
Class:	All Classes	All Classes	All Classes	All Classes
Select Pathway:	Baseline	Lowest Cost	All Classes	All Classes
CO ₂ e WTT (g/mmBtu)	129000	235000	79500	129000
CO ₂ e WTW (g/mmBtu)	129000	235000	79500	129000
NO× WTT (g/mmBtu)	96.1	167	57.4	96.1
NO× WTW (g/mmBtu)	96.1	167	57.4	96.1
PM ₁₀ WTT (g/mmBtu)	13.2	29.4	4.35	13.2
PM ₁₀ WTW (g/mmBtu)	37.2	53.4	28.3	37.2
SO× WTT (g/mmBtu)	76.9	178	19.5	76.9
SO× WTW (g/mmBtu)	76.9	178	19.5	76.9

Metric Type Price

Weight Category Light Duty Emissions Medium/Heavy Duty

Grid Mix All Classes Multiple values

Class

Grid Mix:	PEV Charging Electricity, National Grid Mix	PEV Charging Electricity, IN Grid Mix	PEV Charging Electricity, CA Grid Mix	PEV Charging Electricity High Cost National Grid Mix
Fuel Scenario:	Current Market	Current Market	Current Market	Current Market
Class:	All Classes	All Classes	All Classes	All Classes
Select Pathway:	Baseline	Lowest Cost		
Fuel Price (\$/gge)	3.29	3.24	3.82	4.53
Fuel Price (\$/kWh)	0.100	0.0985	0.116	0.138

In this table, you can explore the fuel prices and emissions data for all of the electricity fuel pathways in the ATB. Use the filters on the top to choose a me..

In this table, you can explore the fuel prices and emissions data for all of the electricity fuel pathways in the ATB. Use the filters on the top to choose a me..

For documentation, see website https://atb.nrel.gov

For documentation, see website https://atb.nrel.gov

Electricity~	Transportation~	Contact~	Archive
About		Tech	nolog
Technologies		The 2022 T	
Light-Duty V	/ehicles	estimates,	and assum
Medium- an Vehicles	d Heavy-Duty	The Transp heavy-duty used to cal	on-road ve
Aviation		At this time	
Fuels		road vehicl	es such as
Data		Explore inte	eractive cha
		Transporta	tion ATR do

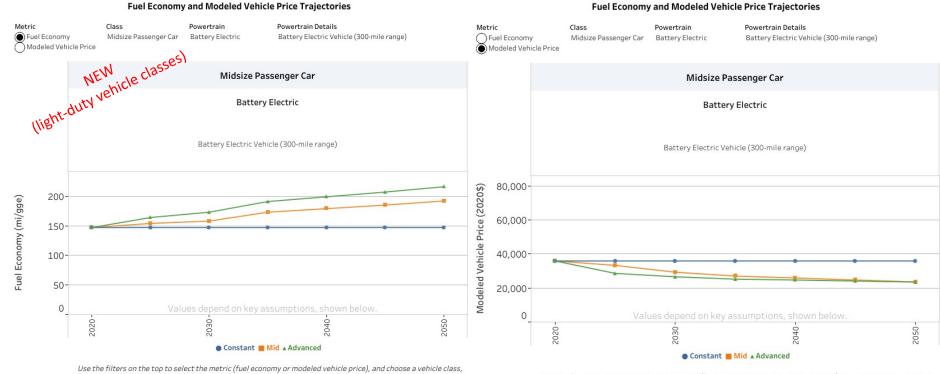
ogies

ortation Annual Technology Baseline (ATB) provides detailed cost and performance data, ssumptions for vehicle and fuel technologies in the United States.

on ATB includes current and projected estimates: time-series through 2050 for light, medium, and ad vehicle technologies; scenarios for conventional and alternative fuels. It details the assumptions those costs, such as natural gas and electricity prices, discount rates, and vehicle miles traveled. TB does not include other vehicles such as buses, 2- and 3-wheeled motorized vehicles, or nonh as aircraft, vessels, locomotives, and those for industry and agriculture.

e charts of vehicle and fuels data using the technology menu to the left, or explore the 2022 Transportation ATB documentation below.

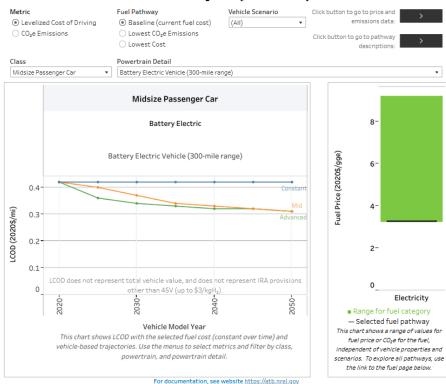
Login


Vehicles Scenarios (from ATB Definitions page)

- Advanced Trajectory: In the Advanced trajectory, technology advances occur with breakthroughs, increased public and private R&D investment, and other market conditions that lead to significantly improved cost and performance levels, but the technologies do not necessarily reach their full technical potential. Vehicle technologies advance substantially and achieve high performance, low cost, or both. Attaining this level of cost improvement is assumed to be very uncertain.
- **Mid Trajectory:** In the Mid trajectory, technology cost and performance improve at moderate levels, with continued industry growth and R&D investment (both public and private). Vehicles include moderate technology advancements (in between the currently manufactured technology and the Advanced trajectory) to achieve higher performance, lower costs, or both, and attaining this level of cost improvement is assumed to be moderately uncertain.
- Constant Trajectory: In the ATB Constant trajectory, technology cost and performance from the base year are shown through 2050, without further advancement in R&D or markets. This cost level is extended through 2050 for reference only; it does not imply frozen costs and performance are anticipated.

Electricity~ Transportation~	Contact~ Archive Login
About	Light-Duty Vehicles
Technologies	The 2022 Transportation Annual Technology Baseline (ATB) provides current and future projections of cost and
Light-Duty Vehicles	performance for select light-duty vehicles and fuels (and for select Medium- and Heavy-Duty Vehicles).
Gasoline	The Transportation ATB provides data in a series of interactive charts for either a single year or a trajectory out to 2050 showing:
Diesel	- Fuel economy which is reported in miles per cellen coopline equivalent and represents how efficiently a
Natural Gas	 Fuel economy, which is reported in miles per gallon gasoline equivalent and represents how efficiently a vehicle converts fuel during operation
Gasoline Hybrid	• Modeled Vehicle Price, which represents an estimated cost, including manufacturing costs and profit, to the
Plug-In Hybrid	 consumer purchasing a new vehicle Levelized cost of driving, which is an indicator of the cost of operation over the vehicle lifetime on a per-mile
Battery Electric	basis
Fuel Cell	 Emissions, which represent the well-to-wheels emissions (including emissions from fuel production to vehicle operation).
Comparison of LD Vehicles	
Medium- and Heavy-Duty Vehicles	The Transportation ATB presents these metrics for individual powertrains and in comparison with other powertrains.
Aviation	

Vehicle Metrics – Battery Electric Vehicle Example

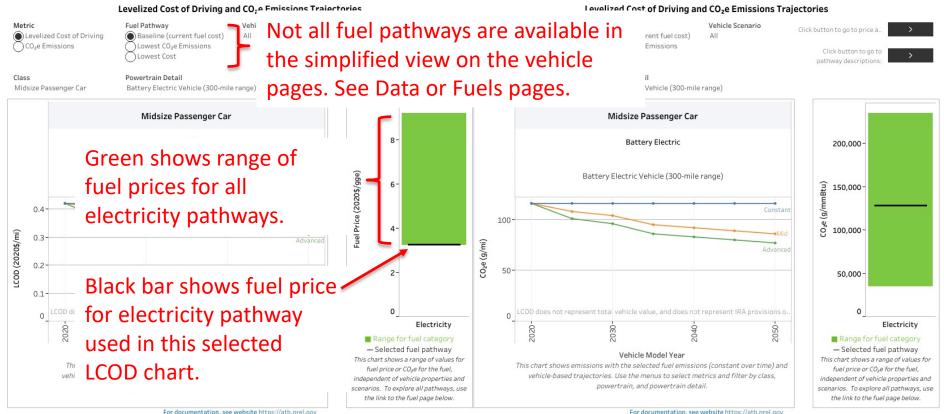

powertrain and detail.

Use the filters on the top to select the metric (fuel economy or modeled vehicle price), and choose a vehicle class, powertrain and detail.

For documentation, see website https://atb.nrel.gov

For documentation, see website https://atb.nrel.gov

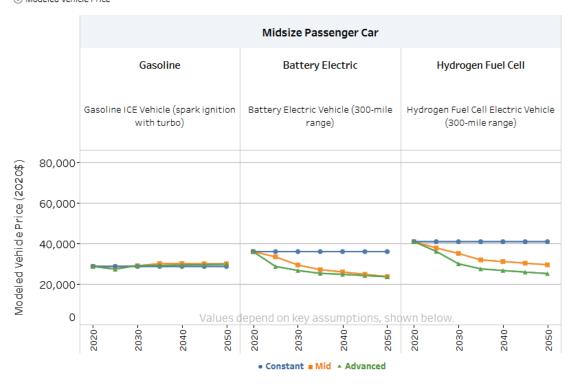
Vehicle and Fuel Metrics – Battery Electric Vehicle Example


Levelized Cost of Driving and CO₂e Emissions Trajectories

Levelized Cost of Driving and CO₂e Emissions Trajectories

For documentation, see website https://atb.nrel.gov

Vehicle and Fuel Metrics – **Battery Electric Vehicle Example**



Light-Duty Vehicle Comparison Example

Modeled Vehicle Price

Fuel Economy and Modeled Vehicle Price Trajectories

Metric	Class	Powertrain	Powertrain Details	
Fuel Economy	Midsize Passenger C 🔹	(Multiple values)	(Multiple values)	•
 Modeled Vehicle Price 				

Use the filters on the top to select the metric (fuel economy or modeled vehicle price), and choose a vehicle class, powertrain and detail.

For documentation, see website https://atb.nrel.gov

Electricity~

Transportation~ Contact~ Archive

Login

About

Technologies

Light-Duty Vehicles

Medium- and Heavy-Duty Vehicles

Diesel MDHD

Diesel Hybrid MDHD

Plug-In Hybrid MDHD

Battery Electric MDHD

Fuel Cell MDHD

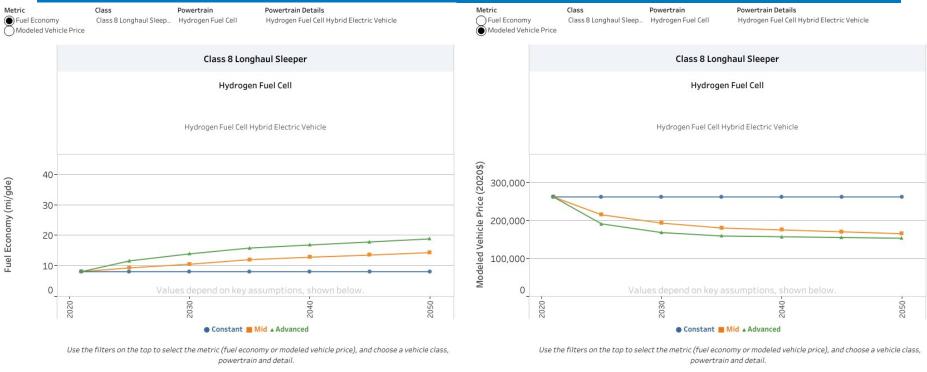
Comparison of MDHD Vehicles

Aviation

Fuels

NEW Medium- and Heavy-Duty Vehicles

The 2022 Transportation Annual Technology Baseline (ATB) provides current and future projections of cost and performance for select medium- and heavy-duty vehicles and fuels (and for select Light-Duty Vehicles).

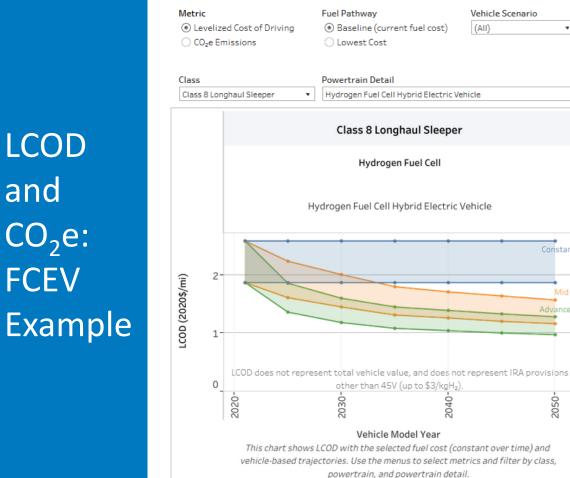

The Transportation ATB provides data in a series of interactive charts for either a single year or a trajectory out to 2050 showing:

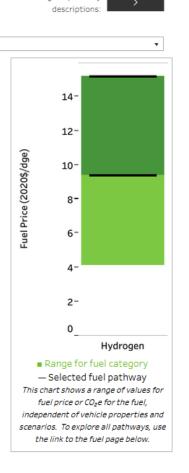
- Fuel Economy, which is reported in miles per diesel gallon equivalent and represents how efficiently a vehicle converts fuel during operation.
- Modeled Vehicle Price, which represents an estimated cost, including manufacturing costs and profit, to the consumer purchasing a new vehicle
- · Levelized Cost of Driving, which is an indicator of the cost of operation over the vehicle lifetime on a per-mile basis
- · Emissions, which represent the well-to-wheels emissions (including emissions from fuel production to vehicle operation).

The Transportation ATB presents these metrics for individual powertrains and in comparison with other powertrains.

Data

Fuel Economy, Modeled Vehicle Price: FCEV Example


For documentation, see website https://atb.nrel.gov



ATB Constant: Technologies do not advance from 2020 levels.

ATB Mid: Technologies improve at moderate levels, with continued industry growth and R&D investment.

ATB Advanced: Technology advances occur with breakthroughs, increased public and private R&D investment, and other market conditions that lead to significantly improved cost and performance levels but do not necessarily reach the full technical potential.

Click button to go to price and

Click button to go to pathway

.

Constant

2050

emissions data:

Levelized Cost of Driving and CO2e Emissions Trajectories

Simplified Fuel Options on Vehicle Pages Pathways

Selected Fuel Pathways by Fuel Category

Weight Category

Light Duty

O Medium/Heavy Duty

Fuel Category	Metric Type	Baseline (current fuel cost)	Lowest CO ₂ e Emissions	Lowest Cost
Gasoline	Both	Conventional BOB Starch Ethanol	Conventional BOB Cellulosic Thermochemical Ethanol from Forest Residue	Conventional E10 Gasoline 2050 Low Price <i>Starch Ethanol</i>
Diesel	Both	Ultra-Low Sulfur Diesel	Biofuel FT (Diesel) from Forest Residue	Ultra-Low Sulfur Diesel 2050 Low Price
Natural Gas	Both	Natural Gas	Natural Gas	Natural Gas
Electricity	Both	PEV Charging Electricity, National Grid Mix PEV Charging Electricity, Future High RE Penetratio Grid Mix		PEV Charging Electricity, IN Grid Mix
Hydrogen	Emissions	Steam Methane Reforming Tube-Trailers	Low temperature electrolysis <i>On-Site Production</i>	
	Price	Current		Future

See Fuels pages or Data page (Tableau Workbook) for all fuel options.

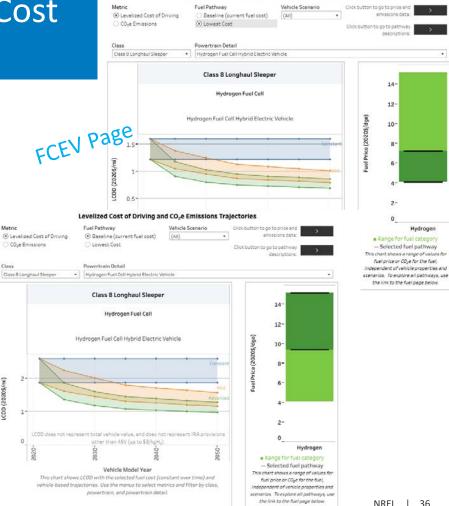
FCEV: Baseline and Lowest Cost Fuel Example

Powertrain

Hydrogen Fuel Cell

Powertrain Details

Hydrogen Fuel Cell Hybrid Electric Vehicle


.

.

Constar

COD (20205)

Levelized Cost of Driving and CO.,e Emissions Trajectories

For documentation, see website https://atb.nrel.gov

Tableau Workbook on Data Page Hydrogen Fuel Cell Hybrid Electric Vehicle Hydrogen: Current (Current Modeled, Current Volume) Hydrogen: Future (Future Modeled, High Volume) 2.5-2-LCOD (2020\$/mi) 1.5-1-0.5-

All Pathways Data Explorer

Metric

LCOD

(AII)

Vehicle Scenario

Weight Category

Light Duty

Class

•

Medium/Heavy Duty

Class 8 Longhaul Sleeper

0 LCOD does not represent total vehicle value, and does not represent IRA provisions other than 45V (up to \$3/kgH₂) 2020-2050-For documentation, see website https://atb.nrel.gov

36

Multi-powertrain view available on "Comparison" vehicles pages or on "Data" page in embedded Tableau workbook.

Example shows comparison of Modeled Vehicle Price on "Comparison of MDHD Vehicles" page.

Fuel Economy and Modeled Vehicle Price Trajectories

For documentation, see website https://atb.nrel.gov

Electricity~ Transportation~	Contact~ Archive	Login		
About	Definitions			
Definitions	Definitions of common terms in the 2022 Transportation ATB are presented below.			
Acronyms	Vehicles			
References	Battery Electric Vehicles			
Technologies	Battery electric vehicles (BEVs) use a battery pack to store the electrical energy that powers the m are charged by plugging the vehicle into an electric power source (DOE, 2019). For additional back			
Data	Alternative Fuels Data Center's All-Electric Vehicles webpage.			
	The battery cost assumptions used in the Annual Technology Baseline modeled vehicle price trajectories an	e shown		

Definitions cover vehicles, fuels, scenarios, and metrics.

Fuels

Alternative Jet Fuel

Sustainable aviation fuel (SAF), also called alternative jet fuel, alternative aviation fuel, "biojet" or aviation biofuel, is derived from biomass. Up to specified blending limits that vary by pathway, it can be used directly in airplanes that use regular, petroleum-based aviation fuel (DOE, 2019).

Scenarios

Vehicle Scenarios

Vehicle scenarios in the Transportation ATB incorporate assumptions on both the level of technology advancement achieved in each powertrain (e.g., lightweighting, engine efficiency) and the projected costs for the assumed technologies through 2050. Assumptions for assigning values in the Advanced and Mid trajectories reflect lab

Metrics

All costs are converted to 2020 dollars using the gross domestic product implicit price deflator (FRED, 2022).

Fuel Economy

For the purposes of the Transportation ATB, fuel economy is tank-to-wheels fuel economy, reported in miles per

Key assumptions and references detailed at the bottom of each fuel or vehicle webpage.

Example of Web Page Sections

Definitions

For detailed definitions, see:

Key Assumptions

The data and estimates presented here are based on the following key assumptions:

References

The following references are specific to this page; for all references in this ATB, see References.

Data Downloads Include Excel, Tableau, and Slides

2022 Transportation ATB Data

Download the 2022 Transportation ATB Data

For convenience, the transportation data used on this website is provided as an Excel workbook which contains tabs for fuel-only data, vehicle-only data, fuels merged with vehicles data (including LCOD and other calculated values) as well as a tab for marine fuel data:

2022_atb_vehfuels_download_v1.xlsx

We also provide Tableau workbooks that are used for all of the visualizations on the site:

2022_atb_tableau_download_v1.zip

A major source of the 2022 Transportation ATB vehicles and emissions data is Argonne National Laboratory, which develops and applies the Autonomie simulation tool and GREET model (Wang et al., 2022). Links to data from the Argonne National Laboratory report (Islam et al., 2022) on modeled vehicle price and fuel economy are available here.

Tableau Workbook

2022 Transportation ATB Webinar

Explore All Data via Interactive or Downloadable Workbook

Tableau Workbook

View a Tableau workbook to further explore the data, including levelized cost of driving and emissions estimates with additional fuel pathways.

All Pathways Data Explorer

Metric	Weight Category	Powertrain	
Fuel Economy	 Light Duty 	(Multiple values)	•
	Medium/Heavy Duty		
Vehicle Scenario	Class	Powertrain Details	
(AII)	 Midsize Passenger Car 	 (Multiple values) 	•
Primary Fuel Pathway			
(Metric is fuel independen	it)		•
Secondary Fuel Pathway	(PHEV only)		
None			•

Conclusion

The ATB Vision

The Vision

The ATB—a flagship analytic product—facilitates access to credible, consistent, transparent, timely, relevant, and public data about current and future energy technologies and systems from a lab/DOE perspective for a large and diverse audience.

Please let us know your comments on what additional datasets or data metrics would be useful.

Sign up for updates!

To receive email announcements about changes and updates the Annual Technology Baseline, sign up at <u>atb.nrel.gov/contact/register</u>.

Acknowledgements

This work was funded by the U.S. Department of Energy's Strategic Analysis Team, Hydrogen and Fuel Cell Technologies Office, Vehicle Technologies Office, and Bioenergy Technologies Office, all within the Office of Energy Efficiency and Renewable Energy.

Thank You!

Questions? Please let us know at https://atb.nrel.gov/contact/.

www.nrel.gov

NREL/PR-6A20-87895

This project is led by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy's Strategic Analysis Team, Bioenergy Technologies Office, Hydrogen and Fuel Cell Technologies Office, and Vehicle Technologies Office. The views expressed in this presentation do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

References

Baronas, Jean, and Belinda Chen. "Joint Agency Staff Report on Assembly Bill 8: 2021 Annual Assessment of Time and Cost Needed to Attain 100 Hydrogen Refueling Stations in California." CEC, December 2021. https://www.energy.ca.gov/sites/default/files/2021-12/CEC-600-2021-040.pdf?trk=public_post_comment-text.

Bennett, Jesse, Partha Mishra, Eric Miller, Brennan Borlaug, Andrew Meintz, and Alicia Birky. "Estimating the Breakeven Cost of Delivered Electricity to Charge Class 8 Electric Tractors." National Renewable Energy Lab. (NREL), Golden, CO (United States), October 19, 2022. <u>https://doi.org/10.2172/1894645</u>.

Borlaug, Brennan, Shawn Salisbury, Mindy Gerdes, and Matteo Muratori. "Levelized Cost of Charging Electric Vehicles in the United States." *Joule* 4, no. 7 (July 15, 2020): 1470–85. <u>https://doi.org/10.1016/j.joule.2020.05.013</u>.

Brooker, Aaron, Alicia Birky, Evan Reznicek, Jeff Gonder, Chad Hunter, Jason Lustbader, Chen Zhang, et al. "Vehicle Technologies and Hydrogen and Fuel Cell Technologies Research and Development Programs Benefits Assessment Report for 2020." National Renewable Energy Lab. (NREL), Golden, CO (United States), August 27, 2021. https://doi.org/10.2172/1818458.

Burnham, Andrew, David Gohlke, Luke Rush, Thomas Stephens, Yan Zhou, Mark A. Delucchi, Alicia Birky, et al. "Comprehensive Total Cost of Ownership Quantification for Vehicles with Different Size Classes and Powertrains." Argonne National Lab. (ANL), Argonne, IL (United States), April 1, 2021. <u>https://doi.org/10.2172/1780970</u>.

Cole, Wesley, J. Vincent Carag, Maxwell Brown, Patrick Brown, Stuart Cohen, Kelly Eurek, Will Frazier, et al. "2021 Standard Scenarios Report: A U.S. Electricity Sector Outlook." National Renewable Energy Lab. (NREL), Golden, CO (United States), November 29, 2021. <u>https://doi.org/10.2172/1834042</u>.

Elgowainy, Amgad, Jeongwoo Han, Jacob Ward, Fred Joseck, David Gohlke, Alicia Lindauer, Todd Ramsden, et al. 2016. *Cradle-to-Grave Lifecycle Analysis of U.S. Light-Duty Vehicle-Fuel Pathways: A Greenhouse Gas Emissions and Economic Assessment of Current (2015) and Future (2025–2030) Technologies*. Argonne National Laboratory. ANL/ESD-16/7. Rev. 1. <u>https://doi.org/10.2172/1324467</u>.

EIA. "Annual Energy Outlook 2021." Washington, D.C.: U.S. Energy Information Administration, February 2021. https://www.eia.gov/outlooks/aeo/.

Hunter, Chad, Michael Penev, Evan Reznicek, Jason Lustbader, Alicia Birky, and Chen Zhang. "Spatial and Temporal Analysis of the Total Cost of Ownership for Class 8 Tractors and Class 4 Parcel Delivery Trucks." National Renewable Energy Lab. (NREL), Golden, CO (United States), September 16, 2021. <u>https://doi.org/10.2172/1821615</u>.

Islam, Ehsan Sabri, Ram Vijayagopal, Benjamin Dupont, Namdoo Kim, Ayman Moawad, Daniela Nieto Prada, and Aymeric Rousseau. "A Comprehensive Simulation Study to Evaluate Future Vehicle Energy and Cost Reduction Potential." Report to the US Department of Energy. Argonne National Laboratory, June 2022. https://vms.taps.anl.gov/research-highlights/u-s-doe-vto-hfto-r-d-benefits/.

James, Brian D, Jennie M Huya-Kouadio, Cassidy Houchins, Daniel A DeSantis, and Strategic Analysis. "Mass Production Cost Estimation of Direct H2 PEM Fuel Cell Systems for Transportation Applications: 2018 Update," 2018, 355.

Ledna, Catherine, Matteo Muratori, Arthur Yip, Paige Jadun, and Chris Hoehne. "Decarbonizing Medium- & Heavy-Duty On-Road Vehicles: Zero-Emission Vehicles Cost Analysis." United States: National Renewable Energy Laboratory, March 2022. <u>https://doi.org/10.2172/1854583</u>.

Wang, Michael, Amgad Elgowainy, Uisung Lee, Kwang Hoon Baek, Adarsh Bafana, Pahola Thathiana Benavides, Andrew Burnham, et al. "Summary of Expansions and Updates in GREET® 2022." Argonne National Lab. (ANL), Argonne, IL (United States), October 1, 2022. <u>https://doi.org/10.2172/1891644</u>.

46

Acronyms and Abbreviations

ATB	Annual Technology Baseline
ANL	Argonne National Laboratory
BOB	blendstock for oxygenate blending
DOE	U.S. Department of Energy
EERE	Office of Energy Efficiency and Renewable Energy
EIA	U.S. Energy Information Administration
ETJ	ethanol to jet
FT	Fischer-Tropsch
FCEV	fuel cell electric vehicle
GREET	Greenhouse gases, Regulated Emissions, and Energy use in Transportation
H ₂	hydrogen gas
H2A	Hydrogen Analyses Production Models
HDSAM	Hydrogen Delivery Scenario Analysis Model
HEFA	hydroprocessed esters and fatty acids
LCOD	levelized cost of driving
MDHD	medium- and heavy-duty vehicles
NREL	National Renewable Energy Laboratory
PEV	plug-in electric vehicle (includes both battery-electric and plug-in hybrid electric)
SAF	sustainable aviation fuel
TEMPO	Transportation Energy and Mobility Pathway Options Model
VMT	vehicle miles traveled
WTT	well to tank
WTW	well to wheels