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Overview

• Project start date: October 1, 2018
• Project end date: September 30, 

2024
• Percent complete: 85%

Budget
• Total project funding: $850,000

o DOE share: $850,000
• Funding for FY 2022: $175,000
• Funding for FY 2023: $150,000

• Cost
• Size and weight
• Reliability and lifetime

Timeline Barriers

• Georgia Institute of Technology
• Institute of Innovative Mobility (IIMo), 

Germany

Partners
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Relevance – Materials for High-Temperature Power Electronics

• Wide-bandgap devices such as silicon carbide and gallium nitride enable low-
cost, lightweight, and power-dense automotive power electronics; however, 
these technologies are currently limited by power electronics packaging.

• It is critical that the packaging design and materials withstand the high-
temperature operational environment introduced by the wide-bandgap devices; 
bonded interfaces must be reliable under extreme thermal stress conditions.

• The main objective of this project is to evaluate the reliability and study the 
failure mechanisms of bonded interface materials for high-temperature power 
electronics applications.

High-Temperature 
Bonded Materials

Thermomechanical Performance

Reliability and Failure Mechanisms

Lifetime Prediction
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Milestones

• Conduct the reliability evaluation of polymeric bonded materials 
and sintered copper under high-temperature thermal cycling (due 
6/30/2023).
o Both polymeric materials (HM-3 and HM-4) and sintered copper are 

currently undergoing thermal cycling experiments at NREL.
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Approach – Bonded Interfaces

• Reliability evaluation of bonded interfaces:
o Synthesize coefficient of thermal expansion (CTE)-mismatched prototype 

samples with bonded interfaces and subject them to accelerated 
experiments.

o Monitor the bond performance through periodic scanning acoustic 
microscope (SAM) imaging.

o Cross-section the samples and obtain scanning electron microscope (SEM) 
images to investigate the failure mechanisms within the bond.

Copper

Ceramic/substrate
Bond

Thermal 
shock

Power 
cycling

Thermal 
cycling

Copper

Ceramic/substrate
Bond

• Crack growth behavior
• Cycles to failure
• Failure mechanisms
• Lifetime prediction 
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Approach –Time-Series Forecasting

• Lifetime prediction model based on time-series forecasting:
o Conduct a time-series analysis of the crack growth rate of the bonded 

interfaces under thermal cycling
o Compare the performance of statistical and machine-learning models in 

predicting the crack growth trend at later stages of thermal cycling.

0 cycles 100 cycles N cycles

Training Data Forecasting/Prediction
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Technical Accomplishments and Progress – Synthesis of 
Bonded Interfaces With Polymeric Materials

• Fabricated a total of 28 samples at NREL with HM-3 and HM-4 as the bonded 
interface.
o Sample configuration consists of 1 x 1-inch Cu blocks attached to AlN ceramic 

layers
o HM-3 and HM-4 consist of carbon microfibers embedded in a thermoplastic and 

thermoset polymer, respectively.
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Technical Accomplishments and Progress – Reliability of 
Polymeric Materials

• Under thermal cycling (-40°C – 175°C, 5°C/min ramp, 10-min dwell), both HM-3 and HM-4 
displayed patterns in the C-SAM images, which likely indicate delamination in the first 100 
cycles.

• HM-4 passed the failure criterion (20%)* within the first 100 cycles.
• Additional accelerated experiments on these materials with different thermal profiles will be 

conducted.
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• *The defect percentages estimated from C-SAM images are highly sensitive to the pixel threshold value.
• C-SAM -  C-mode scanning acoustic microscope
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Technical Accomplishments and Progress – Synthesis of 
Sintered Copper Samples

• 24 sintered copper samples were fabricated at IIMo and sent to NREL for accelerated 
experiments.
o Out of the 24 samples, 12 were bonded using a grid stencil, and the remaining in a stripe pattern.
o The sample configuration consists of Cu baseplates (50 x 50 mm; 3–5 mm thick) bonded to AMB substrates with 

Si3N4 as the ceramic.

• Synthesis profile:
o Pre-drying stage – 15 min at 100°C (N2 atmosphere)
o Sintering – 5 min at 275°C and 20 MPa bonding pressure (N2 atmosphere).
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• AMB – active metal bonding/brazing
• Si3N4 – silicon nitridde
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Technical Accomplishments and Progress – Reliability of 
Sintered Copper

• Initial defect percentages* were estimated to be in the range of 10%–15% and 5%–8% for the 
grid-patterned and stripe-patterned samples, respectively. 

• No discernible signs of cracking were observed under a thermal shock profile of −40°C to 
200°C.

• However, samples reached failure under a thermal cycling profile of −65°C to 175°C (30-min 
dwell). This thermal cycling experiment was conducted at IIMo.

−40°–200°C

500 cycles0 cycles

−65°–175°C; 
30-min dwell

0 cycles 575 cycles
* The defect percentages estimated from C-SAM images are highly sensitive to the pixel threshold value. 
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Technical Accomplishments and Progress – Time-Series 
Forecasting Framework

• A few different statistical and machine-learning models were compared to investigate their accuracy in predicting 
the crack growth rate of bonded interfaces (eutectic lead solder in this case).

• Among the statistical models, Holt linear resulted in the highest accuracy (RMS error = 0.15), while multilayer 
perceptron (neural network)-based approach (RMS error ≈ 2) slightly outperformed the supervised machine-
learning models.

• Both random forest and XGBoost captured the trend in the training data well but were found to be unsuitable for 
predictions.

• These results confirm the superior time-series prediction capability of statistical models over machine-learning 
techniques.

MLP – multilayer perceptron



NREL    |    12

Technical Accomplishments and Progress – Time-Series 
Forecasting of Crack Growth in Sintered Silver

• The time-series forecasting framework was also applied to sintered silver thermal cycling data. This 
sintered silver from Semikron comprises a micron-sized particle formulation.

• Holt linear performs better than machine-learning techniques in the case of sintered silver as well.
• Even with a relatively low training data size (55%), the Holt linear model predicts the crack growth rate 

with >95% accuracy.
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Responses to Previous Year Reviewers’ Comments

• This project was not reviewed in FY 2022.
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Collaboration and Coordination

• Institute of Innovative Mobility: technical partner in the research of sintered 
copper

• Georgia Tech: technical partner on the synthesis of transient liquid phase 
Cu/Al bonds, Cu–graphene metallization

• Oak Ridge National Laboratory, Ames National Laboratory, and Sandia 
National Laboratories: technical guidance.
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Remaining Challenges and Barriers

• The reliability of sintered copper as a die-attach needs to be investigated at 
junction temperatures exceeding 175°C.

• Additional synthesis process optimization is required to reduce the initial void 
fraction of sintered copper to acceptable levels (<5%).

• Thermomechanical modeling of sintered copper and polymeric materials is a 
challenge due to the nonexistence of constitutive models.



NREL    |    16

Proposed Future Research

• Conduct accelerated thermal cycling of polymeric materials under different 
temperature profiles: −40° to 200°C, −40° to 150°C.

• Cross-section sintered copper, HM-3, and HM-4 samples and investigate the 
failure mechanisms using SEM imaging.

• Conduct power cycling experiments on sintered copper samples with silicon 
carbide devices.

Any proposed future work is subject to change based on funding levels.
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Summary

• DOE mission support
o Reliability evaluation of bonded materials is a critical research area for enabling low-cost, lightweight, and reliable 

power electronics packages that can operate at high temperatures.
• Approach

o Synthesis of high-temperature bond materials, mechanical characterization, reliability evaluation, 
thermomechanical modeling, and lifetime prediction models.

• Accomplishments
o Initiated the reliability evaluation study on sintered copper and polymeric material-based bonded interfaces. 

Additional experiments will reveal insights into the degradation mechanisms in these materials.
o Compared the performance of different statistical and machine-learning models in predicting the crack growth rate 

of bonded interfaces. This framework uses only experimental cycling data and serves as a lifetime prediction 
model.

• Collaborations
o Institute of Innovative Mobility, Germany
o Georgia Tech
o Oak Ridge National Laboratory
o Ames National Laboratory
o Sandia National Laboratory.
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Publications and Presentations

• Publications
o P. Paret, J. Major, D. DeVoto, S. Narumanchi, C. Ding and G. -Q. Lu. 2022. “Reliability and Lifetime 

Prediction Model of Sintered Silver Under High-Temperature Cycling.” IEEE Journal of Emerging and 
Selected Topics in Power Electronics 10 (5): 5181–5191.

o C. Imediegwu, S. Graham, D. G. Pahinkar, S. Narumanchi, P. Paret, and J. Major. 2022. 
“Interdiffusion and formation of intermetallic compounds in high-temperature power electronics 
substrate joints fabricated by transient liquid phase bonding.” Microelectronics Reliability 137: 
114788.

o P. Paret. 2022. “Power Electronic Materials and Bonded Interfaces – Reliability and Lifetime.” In 
FY22 EDT Annual Progress Report.

• Presentations
o P. Paret. 2022. “Bonded Interfaces for High-Temperature Power Electronics Packages.” 2022 IEEE 

ITHERM, San Diego, CA.
o P. Paret. 2022. “Power Electronic Materials and Bonded Interfaces – Reliability and Lifetime.” 2022 

DOE VTO Annual Merit Review, Washington, D.C.
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Critical Assumptions and Issues

• Achieving a high-quality initial bond (defect fraction <5%) is challenging with high-
temperature bonded interface materials.
o Synthesis trials should cover a lot of variations to identify the most promising solution.

• Ascertaining accurate defect information through nondestructive bond evaluation 
techniques is difficult.
o C-SAM images of certain samples can be noisy (low signal-to-noise ratio).
o In situ characterization techniques need to be investigated; however, these techniques 

should be able to withstand the high-temperature operating conditions.

• Constitutive models of sintered copper and polymeric materials do not exist; 
deformation kinetics of these materials cannot be captured through simulations.
o Generating stress-strain data of materials through experiments can address this 

knowledge gap.
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