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Multi-lab team formed to examine marine biofuel potential opportunities

OAK
RIDGE Pacific Northwest

* [nitial motivation driven by potential of bio-intermediates to S =
reduce sulfur emissions from 2-stroke marine engines meg

e DOE Bioenergy Technologies Office (BETO) initiated a project to S —
evaluate the viability of biofuels in the maritime sector ICHE E A ontn Gy

 Lab Roles:
- ORNL: project lead & engine/emissions expertise

- NREL: bio-oil production & technoeconomic analysis energy-fuels -

— PNNL: bio-crude production & technoeconomic analysis ??.O,I,mewm 22;1 cr,o.rg,l,a:::,gigg; g iscosty Hemy

— ANL: life-cycle, scale-up analysis & engine expertise “ s heon o, Coi Vo y‘ St o i
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 Multiple publications describing the opportunities for biofuels for

Biofuel Options for Marine Applications: Technoeconomic and Life-
Cycle Analyses

m a ri n e S h i p p i n g :I:.ri‘l.' ( D'....[‘.‘“": Troy R. Hawkins,” Uisung Lee, Ling Tao, Pimphan A, Meyer, Michael Wang,
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Techno-economic Analysis of Sustainable Biofuels for Marine

Transportation

Shuyun Li," Eric €. D, Tan, ™" Abhijit Dutta, Lesley |. Snowden-Swan, Michael R Thorson,
Karthikeyan K. Ramasamy,® Andrew W. Bartling, Robert Brasington, Michael D. Kass,
George G, Zaimes, and Troy R Hawkins
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Bio-intermediates as marine fuels

Marine fuels derived from waste and low-cost feedstocks
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Bio-intermediates as marine fuels

Wet Waste Hydrothermal Liquefaction (HTL) Catalytic Fast Pyrolysis (CFP)
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Techno-economic analysis (TEA) shows that bio-intermediate fuel costs can approach

those of VLSFO
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Comparative TEA result summary (the dash feedstock costs for
HTL cases represent the sensitivity cases with the potential wet

waste avoided disposal fee, while the blue error bars indicate

the potential decrease of MFSP for HTL pathways.
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VLSFO - Global 20 ports average (3/6/2023)
https://shipandbunker.com/prices/am/nampac/us-lax-la-long-beach#VLSFO

@ SHTL: HTL wet waste, sewage sludge
MHTL: HTL wet waste, manure
@CFP: catalytic fast pyrolysis, woody biomass
LGFT: landfill gas FT
LEO: lignin-ethanol oil

https://doi.org/10.1021/acs.est.2c03960
Environ. Sci. Technol. 2022, 56, 17206—17214
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Maritime fuels via biomass pyrolysis

Goal: Determine minimum upgrading of bio-oils

required to enable blending with VLSFO Opportunity to Co-Produce with SAF

* Need to fully utilize bio-oil barrel

, * Expensive to produce marine fuel only
. _ ’ * Recently completed campaign for upgrading of CFP oil to

SAF via hydroprocessing

Catalytlo Mild Hydro- Distillation of Hydrotreated CFP Oils

Fast  processing

Pyrolysis
\_ y,
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: N |
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Ash, wt% <0.15% conditions 385°C 300°C 350°C 385°C 300°C 385°C 300°C
Water, vol% <0.5 _ . )
— S 991 Diesel and Residue could be used for marine
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Potential future production capacity projection
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Tan et al. (2022) Biofuels, Bioprod. Bioref, https://doi.org/10.1002/bbb.2350
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Blend stability is a key factor for introduction of bio-oils and bio-intermediates

e ™
Asphaltenes in marine fuel oils

* Colloidal dispersion of large
polyaromatic molecules in chemical
equilibrium with the surrounding
fuel oil

Biodiesel + VLSFO
Slight ring appearance

No filter plugging

* Asphaltene dispersion is highly sensitive
to changes in fuel chemistry: will readily
precipitate (fall out of solution) if solubility is altered

* ASTM 4740 spot tests are used to evaluate blend stability

to avoid asphaltene precipitation when new fuel is - J
bunkered
\_ J
Diesel + VLSFO
Heavy dark center spot
Filter plugging
Solid asphaltene sludge
(i.e. asphalt) in fuel tanks
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Additives, hydrotreating, and/or catalytic stabilization may enable blend stability

Bio-intermediates are not inherently
miscible with VLSFO

TINREL %QaKRIDGE

ional Laboratory



Additives, hydrotreating, and/or catalytic stabilization may enable blend stability

/Hydrothermal Liquefaction (HTL) Bio-crudes A

10% HTL
90% VLSFO
20% HTL

80% VLSFO . . .
40% HTL

e Additives used to improve
blend stability

— Blend stability up to
~40% HTL oil addition

= HTL oils have % HTL

inherently less water

and acidity than CFP oils [ sxasio| 1 sesi
— Hot water wash used to remove inorganics to

improve mild hydrotreating process and meet ISO
8217 specifications

30% HTL
70% VLSFO

* Prior efforts have demonstrated that HTL oils:

— Are compatible with fuel system infrastructure
metals

— Exhibit suitable combustion quality results for
blend levels up to at least 10%

-
TINREL $0AKRIDGE

National Laboratory

( o
Pyrolysis Bio-oils

Catalytic Fast Pyrolysis (CFP) showed better
miscibility than non catalytic oils

Hydrotreating screening studies led to CFP oils
meeting many key ISO 8217 criteria
— ldentified hydrotreatment process 1500 psi and 300°C

— Flash point was below spec; blending with VLSFO may
mitigate

— TEA updated to reflect hydrotreatment process

Blend stability studies suggested that stabilized
CFP oils less prone to asphaltene precipitation

Asphaltene
precipitant

Non-stabilized Stabilized

commercial bio-oil




Also important to meet non-GHG emissions standards

Platform for evaluation: ExxonMobil “Enterprise” research engine at ORNL

p
Enterprise Research Engine Specifications

1/10 scale: Intermediate scale between bench tests and field deployment
— 108 mm bore x 432 mm stroke (4:1 s/b ratio)
— 565 rpm rated speed (linear mean piston speed matches full-scale engines)

Compression ignition, 2-stroke, uniflow scavenged combustion system
Crosshead configuration

High-swirl combustion system with dual HEUI fuel injectors

e ~12 feet tall ~16,000 pounds
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Initial simulation results are favorable, but emissions modeling is limited

4 N\
Results are directionally promising
* NO, emissions similar when combustion
duration is maintained | | | | | |
- Bio-diesel typically increases NO, e e
emissions; not clear whether this effect
will be the same for bio-oils
* Increase in CO and HC emissions
e Significant reduction in pyrene and 7
naphthalene, which are important soot , | | | | | | .
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Combustion simulations require complex
chemical kinetics mechanisms; an existing
pyrolysis bio-oil mechanism for oil heating
was used here, but may not fully capture
engine combustion chemistry for these oils <

rene [ppm]

Naphthalene [ppm]

4 N\ 0 | | | i i i
Need data from engine operations to really ' soormcon o B ' sormcon o B
quantify emissions impacts, particularly
with bio-intermediates where well-
characterized models are lacking

. y Chuahy et al. (2022) Fuel. https://doi.org/10.1016/].fuel.2022.123977
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Experimental evaluation of bio-fuels will determine impact on combustion
and emissions of NO, and black carbon (soot)

Enterprise Engine Instrumentation
In-cylinder pressure sampled every 0.2 ° CA for combustion diagnostics

CO,, CO (NDIR) NO, (HCLD)
O, (Paramagnetic) HC (HFID)
Other gaseous emissions (FTIR)
Particulate Mass (AVL MicroSoot Sensor)

Fuel Quantity Requirements
Fuel consumption is on the order of 10-20 gallons over a 6-hour operating
shift, allowing evaluation of relatively small batches of fuel: recently
implemented small-batch heated fuel system to allow operation from drum
quantities of heavy fuel oils

Planning to begin evaluations of bio-fuel performance & emissions
impacts later this year

<4 V| iy 2

55-gallon heavy fuel roiI supply system
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