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Thermomechanical Challenges

* Thermal challenges:
o Higher operating temperatures
o Higher heat fluxes/power densities
o Hot spots.
 Reliability challenges
o Attach layer fatigue
o Interconnect fatigue.

* New package designs must address thermal and reliability concerns and be
evaluated under accelerated conditions that approximate real-world conditions.
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FMMEA of a Power Electronics Module

Potential Failure Modes
(Sites)

Short circuit, loss of gate
control, increased
leakage current (oxide)

Loss of gate control,
device burn-out (die)

High leakage currents
(oxide, oxide/substrate

interface)

Open circuit (bond wire)

Open circuit (die attach)

Potential Failure Causes

High temperature, high
electric field, overvoltage

High electric field,
overvoltage, ionizing
radiation

Overvoltage, high current
densities

High temperature, high
current densities

High temperature, high
current densities

FMMEA: failure modes, mechanisms, and effects analysis

Potential Failure Mechanisms
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Reliability Research Approach
e Evaluate and improve reliability of new technologies

Bond wire cracking, lift-off * Develop predictive and remaining lifetime models
e Multiphysics parametric modeling.

Areas of Research (Technologies)

(VCE(ON)I VDS(ON))

Voiding, delamination of die

attach (VCE(ON)' VDS(ON)) e Substrates (Temprion, 3D AIN)

* Interconnects (wire/ribbon bonding, metal posts).

Patil, N., D. Das, C. Yin, H. Lu, C. Bailey, and M. Pecht. 2009. “A Fusion Approach to IGBT Power Module Prognostics.” In Proc. of Thermal,
Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems. https://doi.org/10.1109/ESIME.2009.4938491

e Attach materials (solders, Ag sinter, TLP, thermoplastics)


https://doi.org/10.1109/ESIME.2009.4938491
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Metalized Ceramic Substrate Alternatives
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Ceramic Integrated Substrate/Heat Exchanger

AIN substrate/heat exchanger printed by Synteris

Drive Cycle RUL Estimation Tool
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Automated Design for Reliability (Machlne Learning for Power Electronics)
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Accelerated Modeling, Testing, and Evaluation

Power cycling and transient
thermal analysis
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DESIGN FOR RELIABILITY



Attach Materials

Traditional bonded interfaces (solders) are replaced with materials that are
reliable under under extreme thermal stress conditions.

Materials are bonded in sample configurations and evaluated for their
reliability under thermal cycling, thermal shock, and extended elevated
temperature conditions.
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Electrically Insulating Substrates

» Alternative electrically insulated substrate designs are required to enable
reliable packages that operate with higher power densities and higher
temperatures.

» Traditional metallized ceramic substrate technologies:
o Direct-bond copper (DBC)

Oxidation of copper (Cu) foils during bonding lowers melt temperature from
1,083°C to 1,065°C Traditional substrate

— Maximum metallization thickness of 1 mm

— Must have metallization layers on both sides of the ceramic

— Examples include aluminum oxide (Al,O), aluminum nitride (AIN), and zirconia
(ZrO,)-doped high-performance substrates (HPS).

o Active metal bonding (AMB)

— Brazing process with silver-copper (Ag-Cu) alloy between Cu and ceramic at 850°C

in vacuum

— Requires more processing steps and is more expensive than DBC DuPont Temprion polyimide film
— Silicon nitride (Si;N,) substrate is an example.

- ODBC
o A polyimide dielectric is bonded with metal through elevated
temperature and pressure
o No limitations in metal material or metallization thickness
o Maintains electrical and thermal performance after 5,000 thermal
shock cycles (-40°C to 200°C, 5-minute dwells). DuPont ODBC substrate




Electrically Insulating Substrates

The ability to bond thick copper metallization layers (1-1.5

§ 1.4
. . . . =

mm) improves heat spreading directly below devicesand ¢ .,

lowers their junction temperatures. 2 E 1

Mechanical etching allows for fine width spacing (<1 mm) = g os

between conductor traces through thick metallization S5 o s
£

layers. Z os

1. Mechanically etch bottom face of top metallization layer. 5 o2

2. Assemble Temprion and metallization layers. 00

3. Apply temperature and pressure to substrate stack. 0 0.1 0.2 0.3 04 05 06 0.7 0.8 0.9

4. Mechanically etch top face of top metallization layer. Cu Metallization Thickness (mm)

Minimum width of spacing between conductors based on
metallization thickness using chemical etching [1]

Substrate assembly process Machining process NREL prototype substrate

[1] Rogers Corporation. 2022. “curamik® Ceramic Substrates Technical Data Sheet.” 2022. https://rogerscorp.com/-
/media/project/rogerscorp/documents/advanced-electronics-solutions/english/data-sheets/technical-data-sheet-curamik-ceramic-substrates.pdf.
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Electrically Insulating Substrates

« Simplified packaging process has been envisioned with
ODBC substrates in a double-side-cooled module.

Upper cold plate

Upper Temprion

1. Bond lower Temprion layer to 2. Etch bottom face of drain 3. Bond drain busbar and traces
lower cold plate. busbar and traces. to lower Temprion layer.
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3D-Printable Ceramic Packaging

Breaking the Board: Bringing Three-Dimensional Packaging and Thermal Management to Power Electronics
(ARPA-E OPEN 2021)

* Synteris has developed a proprietary and patent-pending additive manufacturing technology known as selective laser reaction
sintering (SLRS).

o Fabricate isovolumetric, complex, non-oxide ceramics (e.g., AIN, SiC, Si;N,).

* Funded work will further develop the additive manufacturing process to create AIN packaging that acts as both an electrical
insulator and heat exchanger.

* This one AIN component will replace several traditional components:

o Insulating metallized substrate
o  Substrate attach
o Baseplate/heat exchanger.
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Device
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[ | [ ]
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RELIABILITY METHODS AND
TOOLS



Automotive Test Standards
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Accelerated Testing Spectrum

* Selection of an appropriate accelerated test, from passive
thermal tests to power cycling tests, is based on the desired
failure modes and mechanisms we wish to explore.

Short Circuit  Switching

Power Stress Test Cycling High Temp @ Tpemax)

Cycling Reverse Biasing E """"""""""""""""""""""""""
Thermal Gate Switching S -
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5 A
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ging Gate Biasing
Package Failure Device Failure time
Accelerated life testing spectrum Effect of device temperature during switching cycling and power cycling
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Drive Cycle RUL Estimation Tool




Drive Cycle RUL Estimation Tool
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Drive Cycle RUL Estimation Tool
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Future RUL Methods

e Goals:

o Onboard health monitoring and
prognostics

o Digital twin/RUL estimates tied to
individual vehicles.

e Solution:

o Smart gate driver to measure aging and
define dynamic safe operating area

o This real time health monitoring feature
may eliminate unforeseen system
downtime/repairs, thus reducing
operation and maintenance costs.
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