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ABSTRACT

Due to costs and practical constraints, field campaigns in the atmospheric boundary layer typically only measure a fraction of the
atmospheric volume of interest. Machine learning techniques have previously successfully reconstructed unobserved regions of flow in
canonical fluid mechanics problems and two-dimensional geophysical flows, but these techniques have not yet been demonstrated in the
three-dimensional atmospheric boundary layer. Here, we conduct a numerical analogue of a field campaign with spatially limited measure-
ments using large-eddy simulation. We pose flow reconstruction as an inpainting problem, and reconstruct realistic samples of turbulent,
three-dimensional flow with the use of a latent diffusion model. The diffusion model generates physically plausible turbulent structures on
larger spatial scales, even when input observations cover less than 1% of the volume. Through a combination of qualitative visualization and
quantitative assessment, we demonstrate that the diffusion model generates meaningfully diverse samples when conditioned on just one
observation. These samples successfully serve as initial conditions for a large-eddy simulation code. We find that diffusion models show
promise and potential for other applications for other turbulent flow reconstruction problems.

VC 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0172559

I. INTRODUCTION

Atmospheric field campaigns aim to characterize the complicated
state of the atmosphere by deploying several measurement systems,
often supplementing observations with modeling. Field campaigns in
the atmospheric boundary layer (ABL, approximately the lowest 1 km)
are critical for different research areas, such as wind energy,1,2 air qual-
ity,3,4 and wildland fires.5 While field campaigns in the ABL typically
strive to measure as much of the lower atmosphere as possible, they
measure only a small fraction of the atmosphere due to practical con-
straints and the costs associated with observation systems. Models can
be used to fill the unmeasured areas between the spatially limited mea-
surements so that atmospheric dynamics can be characterized across a
wide range of scales. This combination of measurements and models
enables what is referred to as flow reconstruction: turning spatially and
temporally sparse flow information into a highly resolved field.

Machine learning has emerged as a powerful technique for turbu-
lent flow reconstruction,6,7 joining the ranks of more traditional

approaches such as data assimilation8–12 and nudging.13,14 The flow
reconstruction problem can be formulated in a variety of approaches,
depending on the available data and choice of machine learning archi-
tecture. Perhaps the most common framing is that of a “super-
resolution” problem (see Fukami et al.15 for a recent review). In super-
resolution, low-resolution data are available, and data are upsampled
to higher resolution through the use of an algorithm. Turbulence
super-resolution has been carried out through the use of convolutional
neural network architectures16–18 as well as generative adversarial net-
work (GAN) architectures.19–24 In an alternative to super-resolution,
turbulent flow reconstruction has been posed as an “inpainting” prob-
lem.25 In this scenario, part of an image is masked, and an algorithm
plausibly reconstructs the missing data. Others have specifically exam-
ined the problem of reconstruction given sparse measurements, often
through the use of convolutional neural networks.26,27 Finally, instead
of using machine learning architectures rooted in the field of computer
vision, others have drawn inspiration from the intersection of partial
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differential equations and machine learning. Flow reconstruction
approaches in these categories employ architectures such as “physics-
informed neural networks” (PINNs)28–30 and Deep Operator
Networks.31 All in all, the aforementioned flow reconstruction techni-
ques have been applied to a variety of turbulent flow environments,
ranging from two-dimensional20 and three-dimensional32 canonical
fluid mechanics problems (e.g., flow behind a cylinder) to two-
dimensional geophysical problems26 (e.g., the state of the sea surface).

While flow reconstruction based on machine learning has been
shown to be powerful, these techniques have not yet been applied to
real-world, three-dimensional geophysical flows, such as an ABL. Real-
world, ABL flow reconstruction comes with important challenges that
must be accounted for. For example, many observation systems (e.g.,
Doppler lidar) measure line-of-sight velocity, which often serves as an
accurate proxy for just one velocity component (e.g., streamwise veloc-
ity u) instead of measuring all three velocity components (u, v, and w).
So far, only PINNs have demonstrated the ability to reconstruct all
velocity components from measurements of just a scalar field.28 While
PINNs show great potential, they often struggle for multi-scale prob-
lems33 such as high Re three-dimensional turbulence, and their success
has not yet been demonstrated in an ABL. Another issue in recon-
structing real-world flows is the sparseness of ABL measurements, as
mentioned earlier. The atmosphere is highly chaotic and flow recon-
struction from sparse measurements is typically an ill-posed problem,
as many non-unique states could correspond to the same observation.
As such, geoscientists often characterize its state probabilistically (e.g.,
in ensemble-based weather forecasting34). However, most flow recon-
struction studies have been practically deterministic (e.g., using GANs,
which suffer from the “mode collapse” problem35). Only two studies
thus far, Gundersen et al.27 using variational autoencoders (AEs) and
Hassanaly et al.23 using modified GANs, have reconstructed turbulent
flow in a probabilistic manner, though it is not clear if their two-
dimensional architectures can computationally scale to a three-
dimensional, highly turbulent ABL.

Recently, a new neural architecture known as a diffusion model
(DM)36,37 has achieved state-of-the-art status for generating high-
resolution imagery,38 showing promise for turbulent flow reconstruction
in the ABL. A specific category of DM, known as a latent diffusionmodel
(LDM),39 is computationally efficient, and LDMs have been used to gen-
erate high-resolution two-dimensional imagery39 and three-dimensional
medical imagery.40 DMs are inherently stochastic, and they have been
shown to generate diverse, photorealistic imagery when a random seed is
changed. Finally, while DMs have shown strong performance for the
super-resolution problem,39 they have also excelled at inpainting.41,42We
posit that the inpainting perspective is a natural approach to pose the
problem of flow reconstruction from spatially limitedmeasurements.

In this paper, we ask: given measurements in one small region of
the atmosphere, can we estimate the instantaneous, unmeasured state
of the ABL nearby through inpainting with an LDM? Here, we study
this problem in the context of a synthetic field campaign that is con-
ducted through large-eddy simulation (LES). In this work, our flow
reconstruction strategy is to recreate instantaneous, volumetric flow
fields. This strategy shares similarities with data assimilation
approaches that are commonly applied for mesoscale and synoptic
scale atmospheric reconstruction, namely, 4D variational data assimi-
lation (4DVAR)43 and the ensemble Kalman filter,44 which produce
plausible initial conditions for a dynamical solver given a time-history

of observations. Our investigation here addresses three key ABL recon-
struction challenges in a synthetic environment: (1) probabilistic
reconstruction, (2) dealing with spatially limited measurements, and
(3) translating from scalar measurements to all three velocity compo-
nents. For the time being, we omit two additional challenges of ABL
reconstruction, namely, dealing with (1) noisy measurements and (2) a
time-history of measurements. An optimal ABL reconstruction strat-
egy would likely be able to account for all these challenges.

We find that LDMs can successfully reconstruct ABL flow given
limited measurements, and we believe that LDMs can be applied for
other turbulent flow reconstruction problems as well. In this paper, we
demonstrate the following contributions:

• Through the use of LDMs, we can generate diverse three-
dimensional turbulent flow fields. We characterize the quality of
LDM samples through the use of qualitative visualization and
quantitative assessment.

• We show that LDMs can reconstruct all three velocity compo-
nents (u, v, w), even when given observations of almost exclu-
sively u.

• While LDM studies in the field of computer vision have masked
upwards of 75% of an image, we show that LDM reconstructions
can be conditioned, even when minimal observations (<1% of
the volume) are provided.

• We demonstrate that a LDM sample can successfully be used as
an initial condition for an LES. To our knowledge, this is the first
time that a machine learning sample has demonstrated this kind
of compatibility with an LES code.

The rest of this manuscript is structured as follows. In Sec. II, we
describe our synthetic field campaign, the configuration of the flow
reconstruction problem, and the LES dataset that is used to train and
test the LDM. In Sec. III, we provide details of the LDM architecture.
In Sec. IV, we study the performance of the LDMs. Finally, in Sec. V,
we conclude the paper and discuss potential future lines of inquiry.

II. DATA

In this work, we explore flow reconstruction in the context of the
real-world Rotor Aerodynamics Aeroelastics andWakes (RAAW) field
campaign,2 which seeks to thoroughly characterize the behavior of a
single, utility-scale wind turbine with respect to the incoming atmo-
spheric inflow, particularly on shorter timescales (1 s to 10min). Here,
we conduct a synthetic version of the field campaign, which is some-
times referred to as an “observing system simulation experiment.”

We simulate a thermally neutral atmospheric boundary layer
using the LES code AMR-Wind.45 AMR-Wind solves the incompress-
ible Navier–Stokes equations using a finite-volume approach with
second-order accuracy in space and time. Details of the spatial and
temporal discretization can be found in Almgren et al.46 The simula-
tion is run with a Smagorinsky subgrid-scale model.47 The domain is
forced by U¼ 10 m s�1 geostrophic winds in the x-direction, as well as
Coriolis forcing at a latitude of 90�. The LES domain is sized
ðx; y; zÞ ¼ ð1920; 1920; 960Þmwith ðnx; ny; nzÞ ¼ ð128; 128; 64Þ grid
points, leading to 15 m resolution in all three directions. The simulation
uses a fixed 0.5 s time step. The LES is initially run for 6 h to allow tur-
bulence to spin up and become stationary. Afterward, we generate data
for the training set by running the LES for 3.5 days of simulated time
and saving the (u, v, w) fields everywhere in the domain every minute,
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totaling 5040 samples. After the training set is generated, we generate a
test dataset by simulating another 3.5 days after the end of the training
dataset period. By using test data after the training period, we ensure
there is no cross-contamination between datasets while also achieving
good statistical agreement between the two datasets in our heights of
interest, rotor span heights of 56.5–183.5m (Sec. IV).

Synthetic measurements are generated by masking regions of the
three-dimensional LES output, and in the context of this paper, we
refer to unmasked regions as “observations.”We test the LDM on two
sets of masks (Fig. 1). The “box mask” is commonly used in two-
dimensional image inpainting problems.41,42 Here, we mask a cube at
the center of the domain spanning (64, 64, 32) grid points, in order to
qualitatively demonstrate flow reconstruction in a scenario with many
observations. For the box mask, we use observations of all three com-
ponents velocity. The “field campaign (FC) mask” hides data at loca-
tions specific to the RAAW field campaign instrumentation layout,
observing data at 1525 of 1 048 576 LES grid cells. This mask could be
modified for any other layout of field measurements. All instruments
are aligned to point into the incoming wind, as they would be in
the field. The turbine can be thought of as sitting at ðx; yÞ ¼ ð1800;
960Þ m. The horizontal scanning lidar reaches 1000m upwind of the
turbine, covering an azimuthal range of 18� at a height of 120m. The
vertical spinner lidar scan covers the rotor area and sits 120m upwind
of the turbine. The meteorological mast sits 360m upwind of the tur-
bine and measures in a vertical column between 0 and 180m.

In this study, we take steps toward developing an algorithm that
could be applied to real-world measurements, but we still make a num-
ber of simplifying assumptions that will be relaxed in future work.

• We assume that measurements are noise-free.
• We assume that both lidars directly measure the u-component of
velocity and only this component of velocity. In practice, lidars
measure line-of-sight velocity, which is then projected to other
directions to obtain specific components of the velocity vector.
As our lidars measure directly upstream into the oncoming flow,
we believe this assumption is warranted. The meteorological mast
measures all three components of velocity.

• We assume that lidars instantaneously scan their 2D x–y plane of
interest. In practice, both lidars scan across their 2D planes in
approximately 2–5 s.

III. METHODS
A. Background

In order to generate synthetic atmospheric states, we employ an
LDM39 (Figs. 2 and 3, Table I), an architecture based on DMs. In
recent years, DMs have emerged as a new category of deep generative
model. They were originally developed through the perspective of non-
equilibrium statistical physics,36 but they can be derived through the
lens of score-based modeling37 or Markovian hierarchical variational
autoencoders.48 From one perspective,49 DMs are trained with the
assistance of a prescribed degradation process, in which Gaussian noise
is repeatedly added to a sample x over an interval t 2 ½0;T� until the
final sample is indistinguishable from pure Gaussian noise. This pro-
cess can be thought of as a forward stochastic differential equation,

dx ¼ f ðx; tÞdt þ gðtÞdw; (1)

where f is the drift coefficient, g is the diffusion coefficient, and w is the
standard Wiener process. This process can be undone such that the
final Gaussian noise state can be reverted to the initial sample using
the reverse stochastic differential equation,

dx ¼ f ðx; tÞdt � gðtÞ2rx log ptðxÞ
� �

dt þ gðtÞdw; (2)

where w is the standard Wiener process for the reverse equation and
r log ptðxÞ is the score function, which is challenging to estimate.
DMs learn the score function, after which they can be used to draw
samples from the probability distribution function (pdf) p0ðxÞ (which
we will simply refer to as p(x) from here on) that characterizes the
training dataset by initially starting with Gaussian noise. Given supple-
mental information, such as observations or class labels, DMs can
draw samples from a conditional probability density function pðxjyÞ
through a number of approaches—for example, training on paired
data to directly learn to sample from pðxjyÞ as is done by Song and
Ermon (2020),37 or by first learning to sample from the unconditional
p(x) and then learning an additional conditioning mechanism.50 We
employ the first approach in this study.

While traditional DMs have been shown to generate high-quality
images, they can be prohibitively expensive to train for large samples,
and three-dimensional samples are often large. LDMs address this issue
by compressing raw, pixel-space samples into a latent space with the
use of an autoencoder (AE) [Fig. 2(a)]. The AE is traditionally trained

FIG. 1. (a) The masked region and observed region associated with the box mask. (b) The observations associated with the field campaign (FC) mask, with each instrument
highlighted. The regions without observations are masked.
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with a mixture of L1 or L2 losses, Kullback–Leibler divergence losses as in
a variational AE,51 perceptual losses based on the VGG network,52 and
patch-based adversarial losses.53 After the AE is trained, a diffusion
model is trained to generate samples in latent space [Fig. 2(b)]. After the
components of the autoencoder and diffusion model are trained, they
can be combined to generate samples in pixel-space [Fig. 2(c)].

B. Modifications to the original LDM

We modify the original LDM architecture so that it can be
applied to generate synthetic LES data. The exact implementation of
the architecture can be found at https://zenodo.org/doi/10.5281/zen-
odo.10206880, and we provide a summary of the modifications to the
LDM code here.

FIG. 2. A schematic depicting the major components of an LDM and their function. (a) First, the encoder and decoder of an autoencoder are trained. (b) Next, a diffusion model
is trained with the help of the encoder from the autoencoder. The conditioning is optional and is not included for unconditional networks. (c) The trained encoder, diffusion
model, and decoder are combined into an LDM and used to generate samples, possibly given optional conditioning. Additional details can be found in Fig. 3 and Table I.

FIG. 3. A schematic showing the internal components of the LDM in greater detail, including (a) in the autoencoder and (b) in the UNet of the diffusion model.
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• The original LDM was developed for 2D images, so we modify
the architecture to work on 3D data through the use of operations
like 3D convolutions and 3D normalization.

• While the original LDM uses several attention blocks54 through-
out the AE, we omit their use there due to the computational
demands of a 3D attention block.

• We replace group normalization55 with instance normalization56

everywhere except within attention blocks, as we found the latter
performed better.

• In the process of selecting the finalized architecture for this paper,
we experimented with different weights for each of the loss com-
ponents in the AE. We also added the option for a physics-based
loss that assesses mass conservation by calculating the divergence
of the velocity field. In the end, we found the best performance
by using an L1 term, Kullback–Leibler divergence term, and
whole-sample adversarial term in the loss function. We omit the
VGG-based adversarial loss as well as the mass conservation loss.

• In the original LDM architecture,39 image inpainting is accom-
plished by first drawing a sample from pðxjyÞ using unmasked
regions as conditioning information. In this scenario, there is no
guarantee that the generated sample exactly agrees with the condi-
tioning information y, so inpainting is achieved by overlaying y onto
the sample in a postprocessing step. In effect, this treats conditioning
information as a hard constraint, meaning the observation is exactly
matched in the reconstruction, which makes sense when inpainting
images. However, we found this hard constraint would lead to arti-
facts at the boundaries of FC mask observations, likely because these
observations are only one pixel wide in certain dimensions. As such,
we do not postprocess LDM output to exactly match the observa-
tions, thereby treating observations as soft constraints, meaning
observations are not exactly matched in reconstructions. In other
common atmospheric reconstruction techniques, namely, data
assimilation,57 observations are also treated as soft constraints. We
note that in data assimilation the relative influence of observations
on reconstructions can be controlled by prescribing a certain mea-
surement noise magnitude, whereas in our LDM technique here, we
cannot modulate the influence of observations.

C. Network configurations

The LDM requires an AE network for compression to the latent
space and decompression [Fig. 3(a)]. Here, the AE has three input,

latent space, and output channels that correspond to the velocity varia-
bles (u, v, w). Future work could expand this to learn other quantities
like temperature, though we prioritize the three velocity components
in this study as these have the greatest relevance to wind turbine
dynamics. The encoder and decoder of the AE have three internal lev-
els, each with three residual blocks,58 compressing data with spatial
dimensions of (128, 128, 64) to (32, 32, 16). The first internal level uses
16 channels, followed by 32 channels, and then 64 channels. We use a
batch size of 2 due to the high memory use of 3D convolutions. This
network is much smaller than the original LDM used in Rombach
et al.,39 https://github.com/CompVis/latent-diffusion, which, for
example, had six internal layers with 128 base channels. Our network
is smaller due to computational constraints (we train on two 16 GB
V100s) as well as our large three-dimensional samples. Following com-
mon practice, we rescale the input data so that the values in each chan-
nel fall in the range of�1 to 1.

While our primary goal is to generate candidate velocity fields
given FC-style observations, we train both a conditional DM and an
unconditional DM to provide more context on network behavior. Both
DMs use the same AE for conversion between pixel space and latent
space. The DMs use a UNet architecture59 with three internal layers,
respectively, using (192, 384, 768) channels, and two residual blocks per
layer. Attention blocks are used in the 384 channel layers, 768 channel
layers, and the center of the UNet. The DM noise schedule uses 1000
diffusion steps and is linear. The only difference between the uncondi-
tional and conditional DM architecture is the input layer—the uncondi-
tional network uses three channels, and the conditional network has an
additional four channels, three of which correspond to the compressed
observation in latent space and the last of which corresponds to a com-
pressed binary mask corresponding to observed pixels. The conditional
DM is exposed to several different masks during training, including
box-style and the FC-style observations, in order to increase robustness
and potentially accuracy.42 The same conditional DM is then used to
produce both box-style and FC-style samples.

IV. RESULTS

Below, we assess the ability of the LDM to generate plausible
atmospheric states. We begin by visualizing unconditional and condi-
tional LDM samples and qualitatively assessing them, as is common in
both computer vision manuscripts,39,49 as well as turbulent flow manu-
scripts.16,18,60 Next, we quantitatively assess the LDM samples by cal-
culating mean profiles, statistics, spectra, and divergence. Finally, we
quantitatively assess the ability of the LDM to generate diverse samples
from a single observation.

A. Qualitative assessment of LDM samples

First, in order to broadly demonstrate that LDMs can generate
samples that look like an ABL, we compare cross sections of u from the
unconditional LDM to those from the ground-truth ABL training data
(Fig. 4). Additional qualitative visualizations of v and w as well as three-
dimensional isocontours are available in Appendix A. Similar to the
training data, the LDM samples have winds that are generally slow near
the ground and stronger aloft until they hit the capping inversion near
480m, above which the winds are less turbulent. The LDM turbulent
structures look like turbulent structures in the ground truth data. The
horizontal boundaries of the samples are periodic, just as they are in the
testing data. Crucially, however, closer inspection reveals that the LDM

TABLE I. Additional parameters used during training of the autoencoder and the dif-
fusion model.

Parameter Value

Batch size, AE 2
Batch size, DM 2

Base learning rate, AE 4.5 � 10�6

Base learning rate, DM 5 � 10�5

Noise schedule Linear
N noise steps 1000
Start variance 0.0015
End variance 0.0155

N attention heads 8
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samples appear slightly smoother than the ground truth data. This dis-
crepancy on smaller scales is further characterized in Sec. IVB.

We next show that conditional LDMs can inpaint well when pro-
vided abundant data, as is the scenario with the box max (Fig. 5). We
visualize a u cross section of a ground truth sample, the associated box
mask observation, one conditionally generated sample, and the mean
and standard deviation from n¼ 100 conditionally generated samples.
The conditional samples look similar to the unconditional samples,
except the perimeter of the conditional sample and the averaged field
is relatively unchanged. The transition between the unmasked and the
masked region is smooth and does not display any artifacts. This
smooth transition is in part achieved by treating observations as a soft
constraint instead of a traditional inpainting hard constraint, in which
the exact values of the observations would be superimposed over the
unmasked region. The statistical behavior of the conditional predic-
tions qualitatively matches expected behavior. The mean prediction
clearly displays the capping inversion, above which the mean flow
structures inside the masked region agree well with the structures in
the unmasked region. Beneath the capping inversion, the mean predic-
tion is smoothed out when compared to individual turbulent realiza-
tions. Inside the unmasked region, the standard deviation of LDM
predictions is largest at the bottom of the mask and smaller aloft. This
aligns with physical behavior and is expected, as mean shear gradients
at the surface encourage mechanical generation of turbulent kinetic
energy and therefore wind speed variance. The LDM also displays
small, nonzero standard deviation in the unmasked regions, which
would not be the case if we treated observations as a hard constraint.

Finally, we find that conditional LDMs can generate samples that
look realistic even when provided minimal observations, as is the case
for the FC mask (Fig. 6). We include additional visualizations, includ-
ing visualizations of v and w which are only conditioned on meteoro-
logical mast measurements, in Appendix B. For the particular
observation shown in Fig. 6, there is a region of slow u-wind in the
vicinity of the meteorological mast. Correspondingly, each of the sam-
ples also has a patch of slow wind in the same area. This slow flow
structure is especially clear in the mean prediction [Figs. 6(d) and 6(j)],
and qualitatively, the mean prediction aligns well with the ground
truth in the vicinity of the observations. This behavior illustrates that
the LDM includes the conditional information of the measurements
when generating samples. Away from the observations, the mean pre-
diction becomes much smoother, showing that the conditioning only
has local effects, as would be expected in a turbulent flow. The stan-
dard deviation of the predictions for the FC mask [Figs. 6(e) and 6(k)]
also shows a smaller standard deviation in the vicinity of the observa-
tions, especially near the horizontal lidar measurement. Thus, the con-
ditioning is reducing the sample-to-sample spread near the
measurements, as desired. The FC samples exhibit much higher vari-
ance than the box mask samples [Fig. 5(e)], as would be expected
because the FC samples are conditioned on a smaller region. As we
discuss in Sec. IVC in greater detail, the sample standard deviation
qualitatively matches up with a different estimate of the standard devi-
ation that comes from another tool [Fig. 6(f)].

After assessing the visual quality of samples, we further demon-
strate the quality of LDM samples by showing that they can successfully

FIG. 4. (a)–(c) Streamwise cross sections
of u at y¼ 960 m from ground truth, test
data. (d)–(f) Same as above, except for
samples from an unconditional LDM.

FIG. 5. Streamwise cross sections of u at
y¼ 960 m for (a) a ground truth sample,
(b) the box observation created from the
ground truth sample, and (c) one sample
from the conditional LDM, given the obser-
vation. (d) The mean from n¼ 100 condi-
tional LDM samples. (e) The standard
deviation from n¼ 100 conditional LDM
samples. All subpanels display a white
dashed line as a reference to the mask.
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act initial conditions for our LES code. We generate a FC mask sample
using the observation in Fig. 6 and then use it as the initial condition in
a 1 h LES. We create a video that visualizes a time history of a stream-
wise cross section and a top–down view of the simulation at https://
zenodo.org/doi/10.5281/zenodo.10206880. The simulation successfully
runs and does not display any obvious numerical artifacts such as dis-
continuities in the flow field around the masked region or ringing in
the form of waves or instabilities.

B. Quantitative assessment of LDM samples

We next quantitatively assess the performance of the LDMs
against physical aspects of the LES: vertical profiles of velocity compo-
nents and kinematic fluxes, probability density functions of velocity
components, turbulence spectra, and mass conservation. For com-
pleteness, we compare LDM sample statistics to those from both the
training dataset and testing dataset. The training and testing datasets
have similar but distinct statistics, as they come from distinct simula-
tion periods. However, as we demonstrate below, their statistics match
within our region of interest (rotor disk heights), thereby improving
the probability of success for our flow reconstruction problem. To
facilitate these quantitative comparisons, we examine characteristics
between heights of 0 and 480m, namely, below the capping inversion.

The LDM accurately captures average velocity profiles [Figs.
7(a)–7(c)], while slightly underperforming on kinematic flux profiles
[Fig. 7(d)]. We compare horizontally averaged profiles from the train-
ing dataset, testing dataset, n¼ 100 unconditional samples, and
n¼ 100 conditional samples from the FC mask. The mean and stan-
dard deviation of LDM velocity profiles agree well with training data at
all heights and with testing data beneath the capping inversion. Thus,
the LDM performs well on first-order statistics. However, the LDMs

do show some deviations when comparing kinematic fluxes, a second-
order statistic that is more challenging to capture than the mean. In
particular, the unconditional LDM underestimates the downward flux
u0w0 by as much as 20% between heights of 15 and 150m. The condi-
tional LDM performs better in this region with only an 8% discrepancy,
possibly because of the near-surface conditioning information.

Similarly, the probability distribution functions (pdfs) of velocity
components show broad agreement, while missing fine-scale details
(Fig. 8). We calculate velocity distributions using the same three-
dimensional data that were used to calculate average vertical profiles.
The pdfs from LDM samples match the pdfs from training data well in
all bins, only showing minor discrepancies.

While the power spectra of LDM samples match ground truth at
large spatial scales, the LDM spectra have too much energy at the
smallest spatial scales (Fig. 9). We calculate one-dimensional spectra of
u at a height of 90m. The LDM and ground truth spectra have similar
values for wavenumbers smaller than 0.01m�1, and the LDM accu-
rately captures the inertial scale of turbulence, as visualized by the
�5=3 slope. However, for wavenumbers larger than 0.01m�1, the
LDM has too much energy. This behavior has been observed in other
machine learning reconstruction studies16,18 and is consistent with the
“spectral bias” problem61 inherent to many neural networks—the
autoencoder part of our network seeks to minimize the L1 of the sam-
ples, thereby prioritizing reconstructing fields on the largest spatial
scales. As such, the smallest scales have a relatively small impact on the
loss function.

Finally, we assess the LDM’s ability to satisfy mass conservation
by examining distributions of velocity divergence @ui

@xi
(Fig. 10). If conti-

nuity were exactly satisfied, the distribution of divergence would be
shaped like a Dirichlet function at @ui

@xi
¼ 0. The testing and training

FIG. 6. (a)–(e) Same as Fig. 5, except for
the FC mask. (f) An external estimate of
the conditional standard deviation for the
observation in panel (b), which is dis-
cussed in greater detail in Sec. IV C.
(g)–(l) Corresponding top–down views at
the height of the scanning lidar for the
data in panels (a)–(f).
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data approximately satisfy this behavior, showing small deviations
from 0 due to numerical artifacts. While distributions for both the
unconditional and conditional LDM data show a spike centered on 0,
their spikes are not nearly as sharp. Thus, the LDMs appear to have
some awareness of mass conservation, but they do not satisfy it here as
well as the ground truth data.

C. Assessment of ensembles

1. Rank histogram analysis

For ensemble-based flow reconstruction, it is important to have a
well-calibrated ensemble.34 Ensemble members are drawn from some
pdf, and in an ideal scenario, the ground truth would be seen as just
another draw from that pdf, such that the ground truth is statistically
indistinguishable from the ensemble members, a condition termed
“ensemble consistency.” Ideally, the simulated ensemble would show
zero bias relative to the ground truth, and the ensemble should have
an appropriate but not excessive amount of spread.

One common approach to assess ensemble consistency in the
geosciences is the rank histogram.60,62 When given a group of predic-
tions, the rank of the ground truth is calculated by sorting the ensem-
ble members from smallest to largest by some scalar quantity (e.g., u at
a particular grid cell) and then identifying the position of the ground
truth relative to the ensemble members. When repeated for several
reconstructions, rank calculations can be collected into a rank histo-
gram, a diagram that can diagnose ensemble bias as well as overconfi-
dence or underconfidence.

We assess ensemble quality by compiling a rank histogram using
the first 6 h (360 observations) from the test set and generating 10
ensemble members per observation (Fig. 11). We calculate the rank of
each ground truth by examining u at the unobserved grid cell immedi-
ately downwind of the first scanning lidar observation, a cell that can
be thought of as the turbine nacelle. An ideal rank histogram would
look like a uniform distribution. However, the rank histogram here

looks like a combination of a U-shape and a downward linear slope.
The U-shape shows that LDM samples are underly diverse—the
ground truth disproportionately falls at one extreme of the ensemble.
The downward slope indicates that the ground truth tends to be dis-
proportionately smaller than the rest of the ensemble, or in other
words, the ensemble often overpredicts. We verify this by calculating
the bias of the LDM samples relative to their respective ground truths,
finding that u is on average 0.02m s�1 higher. Thus, while the down-
ward slope suggests a tendency to overpredict u at turbine hub height,
the near-zero bias is balanced out by the right arm of the U-shaped
distribution. In the end, the LDM ensembles deviate from ideal behav-
ior, which is in practice the case even for skillful ensemble fore-
casts.63,64 These deviations may be small in the end, and future work
will use these ensembles in a data assimilation process and assess if the
unoptimal behavior is problematic in practice.

2. External estimate of conditional standard deviation

While rank histograms assess ensemble consistency and are used
primarily in the ensemble weather forecasting field, we can alterna-
tively assess the ensemble quality by examining “sample diversity.”
This concept is commonly examined in the deep generative modeling
field, and when applied to computer vision problems, metrics such as
Inception Score35 are commonly used. Here, we assess sample diversity
by simply examining standard deviation, which is a valuable measure
for physics-based problems. In Sec. IVA, we assessed LDM sample
diversity by taking a single observation, e.g., the one in Fig. 6(a), and
calculating the standard deviation of u across 100 conditionally gener-
ated samples [Fig. 6(e)]. This conditional standard deviation was calcu-
lated using samples from the LDM for a given observation.
Alternatively, by applying tools such as fully connected neural net-
works or stochastic estimation23 to our training dataset, it is possible to
estimate what the conditional standard deviation should be for a given
observation, without the need to generate any samples. This function

FIG. 7. (a)–(c) Vertical profiles of horizontally averaged velocity components from training data, testing data, unconditional LDM samples, and FC-mask conditional LDM sam-
ples. Averages are shown as solid lines, and61 standard deviations are shown as faded lines. (d) Kinematic fluxes of the same data.
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has no awareness of the LDM or the samples it generates, and as such,
it serves as an external check on the sample-calculated conditional
standard deviation.

Following Hassanaly et al.,23 we obtain an external estimate [Figs.
6(f) and 6(l)] of the conditional standard deviation for the observation
in Figs. 6(a) and 6(g) by training a fully connected neural network. We
provide more details on the external estimate methodology in
Appendix C. From the side [Fig. 6(f)], this external estimate agrees
well with the LDM sample standard deviation [Fig. 6(e)], but it fills in
weaknesses that arise from calculating the sample standard deviation
with a finite number of samples. From the side, the two standard devi-
ations agree well in magnitude everywhere: the lowest grid cells, the
observation network, and above the capping inversion. Both estimates

also show larger variance just upwind of the meteorological mast and
above the scanning lidar, a behavior that arises due to the presence of a
coherent structure. When viewed from the top, however [Fig. 6(l)], the
external estimate disagrees with the sample standard deviation. This
discrepancy arises because the LDM here treats observations as a soft
constraint, whereas the external estimate treats observations more like
a hard constraint. As such, the external estimate shows a near-zero
standard deviation in pixels where observation is available. From both
the side and the top, the external estimate clearly shows that the sens-
ing network has an impact on the flow reconstructions close to the
observations, up to a maximum reach of roughly 150m in any

FIG. 8. The probability distribution function for training data, testing data, uncondi-
tional LDM samples, and conditional LDM samples for (a) u, (b) v, and (c) w.

FIG. 9. The turbulence spectra of u at z¼ 90 m for training data, testing data,
unconditional LDM samples, and conditional LDM samples.

FIG. 10. An assessment of mass conservation, as visualized by distributions of
velocity divergence for training data, testing data, unconditional LDM samples, and
conditional LDM samples. Training and testing distributions sit on top of one
another.
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direction. By comparing the two standard deviations, we build confi-
dence that the LDM does not show major deficiencies in terms of sam-
ple diversity. This result complements the rank histogram analysis,
suggesting that indeed the LDM is only slightly underly diverse.

3. Influence of FC observations on reconstruction
accuracy

Finally, we quantify the impact of FC observations on the recon-
struction accuracy at three locations (Fig. 12). We calculate vertical
profiles of root mean squared error (RMSE) using the dataset that was
used in the rank histogram analysis: 360 ground truth samples from
which observations are sampled, and 10 corresponding reconstruc-
tions for each ground truth. We calculate RMSE along the centerline
of observations (y¼ 960 m) at the location of the meteorological mast
(x¼ 1440 m), the upstream edge of scanning lidar measurements
(x¼ 795 m), and an upstream location where conditional standard
deviation analysis revealed that observations no longer had an influ-
ence on reconstructions (x¼ 480 m).

The RMSE profiles show that observations improve reconstruc-
tion accuracy predominantly as would be expected. Far away from
observations at x¼ 480 m, the RMSE values for all three velocity com-
ponents are generally largest when compared to the other locations.
The shape of these RMSE profiles correlates well with velocity standard
deviations (Fig. 7)—heights with larger standard deviations are also
associated with larger RMSE for the uncorrelated location. Within the
perimeter of the synthetic field campaign at x¼ 795 m and x¼ 1440 m,
observations have their strongest impacts at rotor disk heights, with rel-
atively small impacts above and below the rotor disk. Relative to the
RMSE outside of the measurement perimeter, the RMSE of u is
decreased most substantially (approximately 0.40m s�1) at the height
of the scanning lidar measurements, as observations of u are abundant
at this elevation. While the field campaign measurements predomi-
nantly measure u, the observations still marginally impact RMSE pro-
files of v and w at rotor disk heights, decreasing v RMSE by
approximately 0.05–0.01 m s�1 at most and w RMSE by approximately
0.1m s�1. The meteorological mast at x¼ 1440 m has the only observa-
tions of v and w, and correspondingly, RMSE for these variables slightly
outperforms RMSE at x¼ 795 m.

V. CONCLUSION

In this paper, we investigate turbulent flow reconstruction in the
context of a synthetic field campaign in the atmospheric boundary
layer in which only spatially limited observations are available. We
demonstrate that latent diffusion models (LDMs) create diverse, three-
dimensional turbulent fields that are convincingly similar to true LES
fields. These reconstructions match many physical characteristics of
LES, such vertical profiles and the largest spatial scales of the spectra.
However, LDMs struggle at the smallest spatial scales, diverging from
LES spectra in this region and failing to preserve continuity.

Our LDM work extends machine learning turbulent flow recon-
struction literature in several key manners. In contrast to many of the
deterministic approaches, LDMs generate diverse samples, which is
important for turbulent environments. Our LDM reconstructed sam-
ples with minimal observations (< 1% of the domain is observed),
though the algorithm also works well with abundant observations.
Notably, LDM samples can be used as initial conditions for computa-
tionally stable LESs.

FIG. 11. Rank histogram for u at the turbine nacelle, given 10-member LDM FC
ensembles for 360 observations.

FIG. 12. Vertical profiles of root mean
squared error for (a) u, (b) v, and (c)
w along the centerline of the domain at
the meteorological mast (x¼ 1440 m),
the upstream edge of scanning lidar mea-
surements (x¼ 795 m), and a location
upstream of all observations (x¼ 480 m).
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This study suggests several lines of possible future inquiry for tur-
bulent flow reconstruction. In upcoming work, we will explore apply-
ing LDMs to noisy, real-world measurements in the RAAW field
campaign. The LDM architecture could be modified to improve per-
formance at the smallest spatial scales, perhaps through the use of
physics-informed losses.65 Finally, diffusion model researchers are
investigating methods for quicker sampling,66 which could potentially
open the road to real-time flow reconstruction. In summary, the results
indicate that diffusion models are a powerful class of machine learning
algorithm that is worthy of further exploration in turbulence research.
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DATA AVAILABILITY

The code for our modified latent diffusion model as well as the
AMR-Wind configuration used to generate data are available at
https://zenodo.org/doi/10.5281/zenodo.10206880. While the entire
dataset is too large to store on a public repository, we have included a
truncated version of the dataset at https://doi.org/10.5281/zen-
odo.10206885. This link also contains the trained model weights of the
autoencoder and the diffusion model used to generate samples in this
manuscript.

APPENDIX A: ADDITIONAL VISUALIZATIONS OF TEST
DATA AND UNCONDITIONAL SAMPLES

In this section, we provide supplemental visualizations for
samples generated by an unconditional LDM (Figs. 13–15).

APPENDIX B: ADDITIONAL VISUALIZATIONS OF BOX
AND FC CONDITIONAL SAMPLES

In this section, we provide supplemental visualizations for
samples generated by conditional LDMs trained on the box mask
(Figs. 16,17) and the FC mask (Figs. 18–20).

FIG. 13. (a)–(f) Same as Fig. 4, but for v.
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FIG. 14. (a)–(f) Same as Fig. 4, but for w.

FIG. 15. (a)–(f) Isometric views of vortices identified as contours of the Q-criterion70 with a value of 0.0003m s�1.

FIG. 16. A distinct (a) ground truth and (b) box observation from the one shown in Fig. 5. The (c) mean prediction and (d) standard deviation of prediction from 100 LDM sam-
ples are shown. (e)–(h) Four distinct LDM samples that are conditioned on the observation.
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FIG. 17. (a)–(h) Same as Fig. 16, except for a distinct observation.

FIG. 18. A distinct (a) ground truth and (b) FC observation of u from the one shown in Fig. 6. The (c) mean prediction and (d) standard deviation of prediction from 100 LDM
samples are shown. (e)–(h) Four distinct LDM samples that are conditioned on the observation.
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FIG. 19. (a)–(p) The same as Fig. 18, except for v.

FIG. 20. (a)–(p) The same as Fig. 18, except for w.
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APPENDIX C: TECHNICAL DETAILS FOR EXTERNAL
ESTIMATES OF THE CONDITIONAL STANDARD
DEVIATION

The a priori moment estimation method is detailed here.
Consider an observation y 2 Rd where d is the length of the obser-
vation vector, and x 2 Rm where m is the length of the state vector.
The function f that best approximates x given y, i.e., that minimizes
jj f ðyÞ � xjj2, is called the optimal estimator of x given y. In addi-
tion, the optimal estimator is the conditional expectation of x given
y.71 Therefore, by seeking the optimal estimator of x given y, one
can approximate the conditional moments of x given y. Likewise, by
seeking the conditional moments of x2 given y, one can approximate
the diagonal of the covariance matrix of the distribution sampled
(i.e., the pointwise variance).

We obtain a priori estimates of conditional standard deviation
by using a neural network. We construct the neural network to
approximate the optimal estimator of the atmospheric state (for the
first moment) and the square of the atmospheric state (for the sec-
ond moment), given the observed field as the input. We use the
architecture of Ledig et al.,72 a fully convolutional network with
residual blocks and skip connections.

To ensure that a reasonable approximation of the optimal esti-
mator has been reached, we train multiple neural nets with increas-
ing complexity, until the mean square-error (MSE) loss stops
improving. Similar to Hassanaly et al.,23 we adjust two model archi-
tecture hyperparameters to converge to the optimal estimator: the
number of filters per convolutional layers varied in the set
f1; 2; 4; 8g and the number of residual blocks varied in the set
f2; 4; 8; 16g. Unlike in Hassanaly et al.,23 the input and output of
the network have the same dimension. The input is altered by set-
ting the masked pixels to a zero value. The loss function is calcu-
lated by computing the MSE with the masked pixels only, thereby
enforcing that unmasked pixels do not contribute to evaluating the
conditional estimator. Since 3D convolutions are used and to
accommodate memory requirements, the batch size is typically set
to 8 but changed to 4 for the biggest network. A fixed learning rate
of 1 � 10�3 was used. Similar to Hassanaly et al.,23 the second
moment is estimated by outputting the square of the state sub-
stracted with the first moment. All networks considered here were
sufficiently trained to reach convergence (Fig. 21).

Once fully trained, the final training loss is examined to decide
if further increase in network complexity is warranted to appropri-
ately approximate the optimal estimator (Fig. 22). We find that as

FIG. 21. MSE training loss vs epoch number for all the model architectures for FC mask for the first moment estimate (left) and the second moment estimate (right).

FIG. 22. Final MSE training loss vs number of trainable parameters for the FC mask for the first moment estimate (left) and the second moment estimate (right).
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the number of trainable parameters increases beyond approximately
9000 to approximately 60 000, the MSE decreases until a point
where adding additional trainable parameters only marginally
improves the loss. As such we stop increasing the complexity of the
estimator network and produce the figure shown in Fig. 6(f) using
the model with the highest number of parameters.
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