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We present an extension of the quasiparticle self-consistent GW approximation (QSGW) [T. Kotani et al.,
Phys. Rev. B 76, 165106 (2007)] to include vertex corrections in the screened Coulomb interaction W .
This is achieved by solving the Bethe-Salpeter equation for the polarization matrix at all k points in the
Brillouin zone. We refer to this method as QSGŴ . QSGW yields a reasonable and consistent description
of the electronic structure and optical response, but systematic errors in several properties appear, notably a
tendency to overestimate insulating band gaps, blueshift plasmon peaks in the imaginary part of the dielec-
tric function, and underestimate the dielectric constant ε∞. A primary objective of this paper is to assess
to what extent including ladder diagrams in W ameliorates systematic errors for insulators in the QSGW
approximation. For benchmarking we consider about 40 well-understood semiconductors, and also examine
a variety of less well-characterized nonmagnetic systems, six antiferromagnetic oxides, and the ferrimagnet
Fe3O4. We find ladders ameliorate shortcomings in QSGW to a remarkable degree in both the one-body
Green’s function and the dielectric function for a wide range of insulators. New discrepancies with experiment
appear, and a key aim of this paper is to establish to what extent the errors are systematic and can be traced
to diagrams missing from the theory. One key finding of this work is to establish a relation between the band
gap and the dielectric constant ε∞. Good description of both properties together provides a much more robust
benchmark than either alone. We show how this information can be used to improve our understanding of the
one-particle spectral properties in materials systems such as SrTiO3 and FeO.
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I. INTRODUCTION

The one-particle Green’s function G(r, r′, ω) provides es-
sential information about material properties. Aside from
having value in its own right, determining both ground-state
properties (total energy, charge, and magnetic densities) and
excitation energies, it is the starting point for transport and
other two-particle properties, e.g., spin and charge response
functions, and superconductivity.

As a consequence, knowledge of G is of the first impor-
tance, and a vast amount of effort has been dedicated to
finding prescriptions to yield G both efficiently and with high-
fidelity ab initio (without recourse to models or adjustable
parameters). Density-functional theory [1] (DFT), where the
electron density n replaces G as the fundamental variable,
is an alternative, and indeed it is far more popular because
of its efficiency and good scaling with system size. DFT
is a ground-state theory, but it generates an auxiliary one-
body H0, with fictitious eigenvalues and eigenfunctions. H0

often provides a reasonable approximation to excitations of
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the real system, but it is often unsatisfactory, e.g., its noto-
rious tendency to underestimate splitting between occupied
and unoccupied levels. Wave-function methods, widely used
in quantum chemistry, but less so in materials physics, use
the single-particle orbitals ψi as the fundamental variable.
They can provide high-fidelity solutions to the many-body
Schrödinger equation. As Kohn noted in his Nobel prize
lecture [2], wave-function methods contain more information
than is needed or useful, but nevertheless require concomitant
effort needed to compute observables. For that reason they are
expensive and scale poorly with system size. Also, spectral
properties are not readily computed.

Green’s function (GF) methods lie between the two: G has
more information than n but less than the wave functions.
As with DFT, G-based methods create an effective one-body
potential �(r, r′, ω), but differ in that � is nonlocal and en-
ergy dependent. They are computationally more intensive than
DFT; however, they can be made to scale reasonably well with
system size, and because of their better fidelity it is likely they
will ultimately outphase DFT methods for many functional
materials, particularly when excitations are involved. Thus,
GF theories might be called the “Goldilocks” approach. GF
methods possess a key advantage in another respect: dynam-
ical screening becomes the predominant many-body effect
for systems involving many atoms. Hedin’s equations [3]
can be expanded diagrammatically in powers of the screened
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Coulomb interaction W, and encapsulate this phenomenon in a
natural way, even in the lowest order (GW). The traditional tar-
get applications are also different: quantum chemical methods
focus mostly on ground-state properties while GF methods
focus on spectral properties, especially two-particle spectra.
GF methods do not yet possess the fidelity of wave-function
methods, and to what extent their fidelity can eventually ap-
proach them remains a key open question.1

One key aim of this paper is to provide a partial answer to
this question. The quasiparticle self-consistent GW approxi-
mation (QSGW) provides an effective way to implement GW
theory without relying on a lower-level approximation as a
starting point. This makes discrepancies with experimental
data much more uniform, and it is essential to distinguish
errors intrinsic to the theory itself, from accidents as a result
of the starting point. We assess in some detail the extent to
which discrepancies QSGW displays with experiment can be
mitigated by adding the low-order diagram (ladder diagram)
to the random-phase approximation (RPA)2 for the bare polar-
izability. As noted, the GW approximation is the lowest-order
diagram in the many-body perturbation theory (MBPT) of
Hedin [3], and while GW shows significant improvement over
DFT (including functionals designed to surmount the well-
gap underestimate [7]), it has well-known problems. First,
it is a perturbation theory, which typically starts from some
reference noninteracting G0 and generates a correction to it.
The most common choice of G0 is one based in DFT, but many
kinds of choices have been made to improve on the final result.
This situation is unsatisfactory in two respects:

(i) G0 can be (and often is) tuned to improve agreement
with experiments. G0 plays the role of a free parameter, and
in this sense the theory is not really ab initio any more.

(ii) The errors inherent in low-order MBPT, e.g., GW, can
be masked by the arbitrariness in G0. Sometimes qualitatively
wrong conclusions can be drawn, or good agreement with
experiment found, but for the wrong reason. This is a quite
common, albeit not well-appreciated, difficulty with the the-
ory (see, for example, Ref. [8]).

By employing the GW approximation in the QSGW form,
we can circumvent these difficulties. QSGW is a procedure
where G0 is determined self-consistently. Self-consistency is
used not to minimize the total energy, but instead some mea-
sure (norm) of the difference between G−1

0 and G−1 [9]. With
a definition for optimal construction for G0, it surmounts the
ambiguities from arbitrariness in the starting point [10]. It
provides a good and systematic G0 so that discrepancies with
experiment that appear tend to be similarly systematic, mak-
ing it possible to associate these discrepancies with diagrams
missing from the theory.

There is no unique definition of the norm, but one intu-
itively appealing definition leads to a static (quasiparticlized)

1As regards total energy, not examined here, GF methods are im-
mature [4] but they have advanced significantly in recent years. A
particularly noteworthy example is the study of the “S66” test set,
where the authors achieved quantum-chemical accuracy by adding
only singles and second-order screened exchange to GW [5,6].

2May also be referred to as the independent-particle approximation.

self-energy �0 generated from the dynamical one as

�0(r, r′) =
∑

i j

ψi(r) �0
i j ψ∗

j (r′),

�0
i j = 1

2

{
Re[�(εi )]i j + Re[�(ε j )]i j

}
, (1)

where i and j are eigenstates of the one-particle Hamiltonian.
Ismail-Beigi showed this construction satisfies a variational
principle, not for the total energy but its gradient [11].
One other important consequence of Eq. (1) is that at self-
consistency the poles of G and the poles of G0 coincide:
thus, in contrast to DFT, the energy bands of H0 generated
by QSGW correspond to true excitations of the system.

Results generated by QSGW may sometimes worsen agree-
ment with experiment over other forms of GW. For example,
ε∞ generated from a Kohn-Sham band structure is often better
than the QSGW one. We will argue that this stems from a
fortuitous cancellation of errors (see Sec. III B 3). Fortuitous
error cancellation in QSGW is much less pronounced and, as a
result, discrepancies with experiment are better exposed, and
moreover they are much more uniform. Several of the most
salient discrepancies are connected to the inadequate descrip-
tion of the dielectric polarizability. This forms the primary
motivation for this work: to make a detailed assessment of
how the simplest extension to the RPA polarizability improves
both G and the dielectric response. In this work, the excitonic
contributions are taken into account by including ladder dia-
grams into the screened Coulomb interaction W through use
of the Bethe-Salpeter equation (BSE) [12,13] for the polariza-
tion. A high fidelity G is essential for a good description of
any response function, including the magnetic one, as shown
for NiO [14] and for yttrium iron garnet [15], and the particle-
particle correlation function that governs superconductivity
(see, e.g., Ref. [16]).

Other works have considered the effect of vertex correc-
tions to the dielectric screening on the band gap. For example,
Refs. [17–19] included ladder diagrams through an effec-
tive nonlocal static kernel constructed within time-dependent
density functional theory to mimic the BSE. More recently,
Kutepov proposed several schemes for the self-consistent so-
lution of Hedin’s equations including vertex corrections [20].
In particular, for selected semiconductors and insulators [21],
he included the vertex correction for the dielectric screening
at the BSE level together with a so-called first-order approx-
imation for the vertex in the self-energy, � = iGW �. In all
the cases, an improvement over LQSGW was observed (see
See. II D 2 for a comparison between LQSGW and QSGW ).
With respect to these previous works, we include vertex cor-
rections to the dielectric screening only at the BSE level, but
introducing the usual static approximation for the BSE kernel,
which was lifted in Refs. [20,21].3 Here we omit the first-order
vertex for �, in keeping with our present objective: to find
the best single-Slater determinant construction. The QSGW

3An analogy in the quantum-chemical literature is the fully self-
consistent framework corresponding to “multireference” starting
points while the quasiparticlized form corresponds to an optimized
single reference.
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philosophy incorporates this vertex in an approximate way,
via a Ward identity in � that goes as 1/Z in the q → 0, ω → 0
limit, canceling the Z factor that is the predominant difference
between the quasiparticlized G0 and the interacting G [22].
Adding this vertex explicitly jeopardizes this cancellation. It
can be surmounted via a fully self-consistent G, as Kutepov
did, but the cost is considerable. Ladder diagrams can be
included in W while retaining O(N3) scaling [23], but there
is no obvious analog to adding the vertex in �. We show here
that including the vertex in W is more important: including
it without the vertex in � usually yields quite satisfactory
results. Kutepov noted the interacting G with both vertices
performs better in CuCl: more generally it seems to matter
when the highest occupied states are flat and nearly dis-
persionless (see point 2, Sec. II D 1 and discussion around
Table IV). Finding a way to surmount this shortcoming in a
quasiparticle framework is a work in progress.

Another readily identifiable source of error is the contribu-
tion lattice vibrations make to �. It can be a few tenths of an
eV in diamond and in polar compounds with light elements, so
we include that contribution here in an approximate way, by
obtaining the reduction in the gap by an independent method
(Sec. II G) and using a hybrid self-energy to reproduce this
shift (Sec. II D 3).

II. THEORY AND NUMERICAL IMPLEMENTATION

Starting from the Hedin equations (Sec. II A), we outline
how the original QSGW approximation (Sec. II C) is modified
to include excitonic contributions (Sec. II B). The resulting ap-
proach, which is referred to as QSGŴ (where the substitution
W →Ŵ implies that vertex corrections are included in W ), was
numerically implemented within an all-electron framework
using a linear muffin-tin orbital basis set (Sec. II E) in the
QUESTAAL package [24]. Later sections show applications to a
broad range of materials.

A. The GWA from the Hedin’s equations

The approach described in this work, the standard GW
approximation (GWA) and the QSGW, are all derived from
the many-body perturbative approach developed by Hedin [3].
In this method, the following set of closed coupled equa-
tions [3,25,26] are to be solved iteratively:

�(1, 2) = i
∫

d (34) G(1, 3+)W (4, 1)�(3, 2, 4), (2)

G(1, 2) = G0(1, 2) +
∫

d (34) G0(1, 3)�(3, 4)G(4, 2), (3)

W (1, 2) = v(1, 2) +
∫

d (34)v(1, 3)P(3, 4)W (4, 2), (4)

P(12) = −i
∫

d (34)G(1, 3)G(4, 1+)�(3, 4, 2), (5)

�(1, 2, 3) = δ(1, 2)δ(1, 3)

+
∫

d (4567)
δ�(1, 2)

δG(4, 5)
G(4, 6)G(7, 5)�(6, 7, 3),

(6)

where G is the Green’s function, v(r, r′) = 1/|r − r′| is the
bare Coulomb interaction, W is the screened Coulomb inter-

action, � is the irreducible vertex function, P is the irreducible
polarizability (the functional derivative of the induced density
with respect to the total potential), and � is the self-energy
operator. In Eqs. (2) and (5), the indices subsume position and
time and the + superscript implies t ′ = t + η, with η → 0+.

In the standard GWA, also known as one-shot GW or
G0W0, Eq. (6) is approximated as

�(1, 2, 3) ≈ δ(1, 2)δ(1, 3) (7)

in both the expressions for the self-energy [Eq. (2)] and the
irreducible polarization [Eq. (5)]. In addition, � and P are
both evaluated for G = G0, the independent-particle Green’s
function,4 that in the frequency domain takes the form

G0(r, r′, ω) =
∑

n

ψn(r)ψ∗
n (r′)

ω − εn ± iη
. (8)

In Eq. (8), ψn and εn are the single-particle wave functions
and energies; the index n contains band, spin, and wave-vector
indices and the + (−) is for unoccupied (occupied) bands.

The approximation for the irreducible polarization ob-
tained by neglecting the vertex is referred to variously as
the independent-particle approximation, the time-dependent
Hartree approximation, and the random-phase approximation
(RPA) [27]. When using Eq. (8) in frequency space it takes
the form

PRPA(r, r′; ω) =
∑
n1n2

(
fn2 − fn1

) ψn2 (r)ψ∗
n1

(r)ψn1 (r′)ψ∗
n2

(r′)

εn2 − εn1 − ω + i
(

fn2 − fn1

)
η
,

(9)
where fn are the single-particle occupations.

The Green’s function in Eq. (8) can be constructed from the
Kohn-Sham electronic structure, which is obtained from the
self-consistent solution of Schrödinger-type equations with
the single-particle Hamiltonian

H0(r) = − 1
2∇2 + Vext (r)[ρ] + VH (r)[ρ] + VXC(r)[ρ]. (10)

In Eq. (10), Vext (r) is the external potential due to nuclei and
external fields, VH (r) is the Hartree potential describing the
classical mean-field electron-electron interaction, and VXC(r)
is the exchange-correlation potential describing correlation
effects missing in VH (r). ρ is the electronic density calculated
as

∑
occ |ψn(r)|2, that is constructed from the eigensolutions

of H0 (from which the self-consistent solution is obtained).
Because of VXC, the corresponding single particle G0 effec-
tively contains many-body effects. Then in Eq. (3) for the
many-body Green’s function, the self-energy is replaced by
�� = � − VXC to avoid double counting. Equation (3) is
rewritten as a nonlinear equation for the quasiparticle energies
Enk:

Enk = εnk + 〈ψnk|�(Enk) − VXC|ψnk〉, (11)

and solved after it is linearized,

Enk = εnk + Znk〈ψnk|�(εnk) − VXC|ψnk〉, (12)

4Equivalent to performing one iteration, starting with � = 0 in
Eq. (2).
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where the renormalization factor Znk is

Znk = [1 − 〈ψnk|∂�(ω = εnk)/∂ω|ψnk〉]−1. (13)

B. Ladder diagrams in W

In previous works employing QSGW [9,22,28,29] the RPA
was used to make W . This leads to errors noted in the Intro-
duction, e.g., a significant band-gap overestimation. Here we
go beyond the RPA and include ladder-diagram corrections
in W through the BSE for the polarization [30]. To include
the vertex in Hedin’s equations we need to determine the
interaction kernel δ�/δG in Eq. (6). Suppose we have adopted
the GW approximation for �,5 and assume that δW/δG is
negligible [27], then δ�(12)/δG(45) = iW (12)δ(1, 4)δ(2, 5),
where W is determined in the GW approximation. This ex-
pression is then inserted in Eq. (6).

Before we present the BSE for the polarization we
will introduce the expansion of the two-point polar-
ization to its four-point counterpart: P(12) = P(1122) =
P(1324)δ(1, 3)δ(2, 4). We are now able to present an ex-
pression for the polarization that goes beyond the RPA using
Eqs (5) and (6) and adopting the expression for the interaction
kernel from above:

P(12) = PRPA(12) −
∫

d (34)PRPA(1134)W (34)P(3422),

(14)
where PRPA(1234) = −iG(13)G(42). The W that appears in
the interaction kernel, δ�/δG, is calculated at the level of the
RPA and this is usually assumed to be static,6 i.e., δ�/δG =
iW RPA(ω = 0). To avoid confusion with W in Eq. (2) we will
refer to the W in Eq. (14) from here on as K .

The Dyson-type equation for the polarizability [Eq. (14)]
can be transformed to an eigenproblem for an effective
two-particle Hamiltonian by introducing the basis of single-
particle eigenfunctions that diagonalize the RPA polarization.
Using the completeness of the eigenfunctions, any four-point
quantity can be expanded as

S(r1, r2, r3, r4) =
∑

n1n2n3n4

Sn1n2n3n4

× ψ∗
n1(r1)ψn2 (r2)ψn3(r3)ψ∗

n4(r4), (15)

where we have again combined band, spin, and wave-
vector indices, and Sn1n2n3n4 = ∫

d (r1r2r3r4)S(r1, r2, r3, r4) ×
ψn1 (r1)ψ∗

n2
(r2)ψ∗

n3
(r3)ψn4 (r4).

Inserting the expression for the RPA polarization from
Eq. (9) in Eq. (14), one arrives at the following expression
for the polarization:

Pn1n2k
n3n4k′

(q, ω) = [H (q) − ω]−1
n1n2k
n3n4k′

(
fn4k′+q − fn3k′

)
, (16)

5The vertex in Eq. (2) can been shown to effectively cancel with
the Z factor (see, for example, Appendix A in Ref. [9]).

6In few works this approximation has been relaxed (see, e.g.,
Ref. [31]).

whereby the conservation of momentum we have k2(4) =
k1(3) + q and7

Hn1n2k
n3n4k′

(q) = (εn2k′+q − εn1k′ )δn1n3δn2n4δkk′

+ ( fn2k+q − fn1k)Kn1n2k
n3n4k′

(q),

Kn1n2k
n3n4k′

(q) =
∫

dr1dr2ψ
∗
n1

(r1)ψn3 (r1)

× W RPA(r1, r2; ω = 0)ψn2 (r2)ψ∗
n4

(r2). (17)

The expression (H − ω)−1 can be expressed in the spectral
representation as

[H (q) − ω]−1
ss′ =

∑
λλ′

Aλ
s (q)N−1

λ,λ′ (q)A∗λ′
s′ (q)

Eλ(q) − ω ± iη
, (18)

where Aλ
s (q) is element s = n1n2k of the eigenvector of H (q)

with corresponding eigenvalue Eλ(q) and N (q) is the over-
lap matrix. When the Tamm-Dancoff approximation (TDA)
is adopted [32], H is Hermitian and Eq. (18) reduces to∑

λ

Aλ
s (q)A∗λ

s′ (q)
Eλ(q)−ω±iη .

The polarization in Eq. (16)can then be expressed in real
space according to Eq. (15) and contracted to its two-point
form. This two-point polarization is then used in Eq. (4) to
obtain W with ladder diagrams included. In what follows we
will denote W RPA with the symbol W , and refer to W with
ladders included as Ŵ . The updated W or Ŵ is then used in the
expression for the self-energy with the vertex � in the exact
self-energy (iGW �) omitted. The justification for omission,
and the consequences of it, is taken up in Sec. II D.

In works that report optical absorption α(ω), we construct
it using the relation

α(ω) = 2ω

c
Im

√
ε(ω), (19)

where ε is calculated from the macroscopic part of the dielec-
tric matrix ε = 1 − vP.

C. Self-consistency: QSGW

In the DFT-based G0W0 approximation, the Enk are
obtained as a first-order correction of the Kohn-Sham single-
particle energies. As mentioned in the Introduction, the GWA
works when the Kohn-Sham system gives a qualitatively
correct description of the physical system, i.e., when the
Kohn-Sham single-particle energies are not “too far” from the
quasiparticle energies. When this is not the case, the GWA
does not give accurate results. It is often improved in practice
by choosing some other G0 constructed, e.g., from a hybrid
functional. Another route is to replace the corrected energy En

[Eq. (12)] either in the Green’s function [33] [Eq. (8)], or in
the RPA polarization [Eq. (9)] entering the screened potential
W , or in both.

7Note that if we are determining the reducible polarizability χ , such
that W = v + vχv, then the kernel becomes K = W − V [27].
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FIG. 1. Flow chart of the QSGW cycle. Noninteracting eigen-
functions and energies (ψ, ε) are calculated self-consistently (blue).
These are used to construct the noninteracting Green’s function
G0, Coulomb interaction v, RPA polarization P0= − iG0G0, and
W = (1 − vP0)−1v. W is used to make a vertex and better P via
Eq. (14), which gives the improved Ŵ . One cycle makes the static
self-energy �0, that is passed to H0 (green), and the cycle repeated
to self-consistency.

Here we use the QSGW approach in which the starting
point is chosen to effectively minimize ��: the difference be-
tween the dynamical self-energy and (static) quasiparticlized
one. In practice, once the self-energy has been calculated
within the GW approximation, a new effective single-particle
static potential is determined by Eq. (1). Then, by substituting
VXC in Eq. (10) with �0 [Eq. (1)], a new set of single-
particle energies and wave functions can be determined. In
turn, those can be used to recalculate the GW self-energy, and
the whole procedure can be repeated until self-consistency in
the energies and eigenvalues is achieved. In this procedure the
resulting electronic structure does not depend on the quality of
the Kohn-Sham DFT electronic structure for the system and,
equally important, it removes the arbitrariness in starting point
[10]. Figure 1 shows a flow chart of the process.

Why self-consistency is important

Self-consistency is not typically performed in weakly
correlated materials. LDA-based GW can do very well (see de-
scription of Bi2Te3, Sec. III E 2) but self-consistency improves
the theory and makes the discrepancies with experiment sys-
tematic. Recent work shows this to be the case even for
simple sp metals such as Li, Na, and Mg [34] where errors
in RPA for W are likely to be less important than in insulating
systems. Similarly excellent agreement is found for the Fermi-
liquid regime of Fe, in a detailed study examining several
properties [35].

Perhaps the first study applying GW to a correlated material
was the work of Aryasetiawan and Gunnarsson [33], in which
case a starting point better than the LDA becomes essential.
This issue arises for many kinds of narrow-band systems,

FIG. 2. Low-energy band structure of wurzite InN at four differ-
ent levels of approximation. Colors depict orbital character of the
bands: red for N pxy character, green for N pz character, blue for In
s character. LDA bands are shown in top left panel: the state of In s
character at � lies below the three states of N p character, reflecting
an inverted gap. Upper right panel shows the effect of GW treated
perturbatively from the LDA, i.e., Eq. (12), with Z = 1 for reasons
explained in the text. GW rectifies the inverted gap at �, but without
off-diagonal parts of � it cannot undo the wrong topology given by
the starting point, and thus the bands cross near �. Bottom left panel
is the classic QSGW result, Ref. [9]. It provides a good description of
the InN energy bands; however, the gap is overestimated (1.01 eV)
relative to experiment (0.6 eV). The QSGW dielectric constant ε∞
is calculated to be 6.1, about 3

4 of the measured value (8.4). Bot-
tom right panel is the QSGW result with W augmented by ladder
diagrams. The gap (0.74 eV) is slightly larger than experimental
one, and differs by approximately the electron phonon interaction
(estimated to be 0.07 eV [38]).

and even in weakly or moderately correlated ones the starting
point can be important. Narrow-gap semiconductors in which
the LDA has a negative gap offer one notable illustration of
this. Using GW in the usual manner [correcting the reference
eigenvalues via Eq. (12)] cannot correct the wrong topology of
the starting point [36]. InN is a classic example (Fig. 2). Even
while the states at the k point � have the correct ordering, the
improper initial ordering leads to unphysical dispersions in the
band structure in the vicinity of �. Other systems which fall
into this class are Ge, PbTe, InAs, and InSb. (In PbTe, a gap
appears at L within the LDA, but with L+

6 and L−
6 wrongly

ordered; see Fig. 13 of Ref. [37]).
Another effect of self-consistency is to modify the one-

body part of H or G. This is because not only the eigenvalues
but the density is significantly renormalized relative to
the LDA. GW induces a corresponding change in the ef-
fective potential through the inverse of the susceptibility,
χ−1(x1, x2) = δV (x1)/δn(x2). Starting from the perturbation
δV 0 = �QSGW [G0

LDA] − V xc[G0
LDA], and if we assume that

χ−1(x1, x2) is adequately approximated by the LDA, we can
estimate the change in n from δn = χ0δV 0, and from this
obtain the attendant screening potential as

δV scr ≈ V HXC[nLDA + δn] − V HXC[nLDA]. (20)
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TABLE I. Dependence of the band gap on various kinds of treat-
ment in the off-diagonal parts of the self-energy. In all cases the
starting Hamiltonian is the LDA. EG(�diag) is the outcome from a
treatment similar to the usual way GW is employed [Eq. (12) but
with Z = 1]. EG(n0) adds the full � − V LDA

XC to the LDA Hamilto-
nian, including the off-diagonal elements, but without updating the
density. EG(n0+δn) is similar to EG(n0) but the density is updated
in a “small” loop keeping � fixed, as described in the text around
Eq. (20). QSGW is the quasiparticle self-consistent result (QSGŴ
result in parentheses). Values reported for Ge, GaSb, and TiSe2 are
for the direct gap at �, with TiSe2 in the high-temperature P3̄m1
phase. In each of these three cases, the valence and conduction band
edge states are inverted in the LDA, similar to Fig. 2.

EG(�diag) EG(n0) EG(n0+δn) QSGW

Ge 1.11 1.10 1.07 1.18 (1.06)
GaSb 0.83 0.88 0.85 1.14 (1.01)
CdO 0.58 0.53 0.63 1.52 (1.18)
ZnO 3.13 3.04 3.15 4.12 (3.61)
CaO 6.92 6.81 6.69 7.61 (7.06)
MnOa 1.54 1.55 1.98 3.77 (3.05)
LiFb 14.5 14.6 14.7 15.9 (14.6)
MnTe 0.98 0.81 0.89 1.60 (1.36)
SrTiO3

c 2.54 2.19 1.89 4.56 (4.04)
TiSe2

d 0.23 0.30 –.37 –.25 (–.25)
CeO2

e 5.90 4.92 2.73 4.93 (4.24)
La2CuO4

f 0.05 0.24 0.43 3.09 (1.67)

aSection III F 3.
bSection III E 1.
cSection III E 6.
dSee Ref. [8].
eSection III E 4.
fSection III F 6.

Here V HXC is the combined Hartree + (LDA) V XC. In prac-
tice the QUESTAAL codes execute an operation similar to this
in the natural course of self-consistency: an internal loop is
performed in the one-body code adding the fixed �QSGW as
an external potential and making the density self-consistent.
This accelerates convergence to self-consistency, but for the
present we use that process to estimate the effect of δV scr

on the band gap. In Table I we compare the band gaps for
GW generated from the LDA, in various forms. It compares
the usual Eq. (12) (with Z = 1), GW including the full matrix
structure of � without updates to the one-body Hamiltonian
[39]; an estimate for the change in one-body potential as just
described; and finally QSGW. A key takeaway is that the
off-diagonal parts of � are unimportant only in the simplest
nearly homogeneous systems, such as Ge. Even in SrTiO3,
a simple d0 transition metal compound, they are significant,
modifying the eigenvalues both directly and indirectly through
changes in the density. Another important finding is that both
direct and indirect contributions vary widely in both mag-
nitude and sign, and indeed the change is often larger than
the well-recognized need to account for the electron-phonon
contribution [40].

One solution is to perform partial eigenvalue-only self-
consistency: i.e., use Eq. (12) in a self-consistent manner by
updating the eigenvalues without changing eigenfunctions.

There is a simpler way to approximate eigenvalue-only self-
consistency by simply omitting the Z factor in Eq. (12). This
was shown to be rigorously true for a two-level system in the
Appendix of Ref. [36]. Eigenvalue-only self-consistency can
significantly reduce the discrepancies with experiments, but it
cannot resolve the topology problems or the modifications to
the density noted above. Further, the off-diagonal parts of �

can have nontrivial effects on the quasiparticle spectrum, as
noted for example in the discussion around Fig. 2. Another
solution is to choose a better starting point, e.g., based on an
extension of LDA (as, for example, using a hybrid DFT ap-
proach [41] or LDA+U [42]) or the Coulomb-hole screened
exchange approximation (COHSEX) [3]. Since the starting-
point dependence can be chosen freely, the theory loses its ab
initio flavor. This freedom is lost with QSGW, and errors that
appear better reflect the nature of the approximations made.

D. Motivation for QSGŴ

QSGW is already a good approximation in many systems,
but it is well known that discrepancies with experiment ap-
pear. They tend to be very systematic, and mostly related to
the RPA approximation to W. Band gaps being systematically
overestimated, the high-frequency dielectric constant ε∞ un-
derestimated, and blueshifts in peaks in Im ε(ω), all fairly
universal with QSGW, are connected to the RPA approxima-
tion to W. It has long been known, starting from independent
work in the groups of Louie [43] and of Reining [44], that
if the RPA is extended to include ladder diagrams, optical
response is significantly improved in simple semiconductors.

Our primary focus here is to determine to what extent
ladder diagrams in W ameliorate these discrepancies. As we
will show here, when W is extended to Ŵ and the cycle carried
through to self-consistency, many of the systematic errors in
the QSGWRPA self-energy are ameliorated to a remarkable
degree for a wide range of weakly and strongly correlated
insulators. (We restrict outselves to insulators since that is
where ladders are most important [45].) While this is encour-
aging, some discrepancies remain, and these form a major
focus of this paper. A very important feature of QSGWRPA

has been that when discrepancies with experiment appear, the
origin can often be clearly associated with a particular missing
diagram, enabling the possibility for a systematic, hierarchical
extension of the theory. We will show that this remains mostly
true with � = iGŴ : QSGŴ improves on QSGW but system-
atic errors remain. The following omissions account for many
of the shortcomings in results presented in this paper.

1. Shortcomings in QSGŴ

(1) The electron-phonon interaction is a well-identified
contribution to the self-energy and, if lattice vibrations are
in the harmonic approximation, consists of two contributions
(Fan and Debye Waller terms) [3]. The diagram usually re-
duces insulating band gaps; it also is needed to capture optical
transitions between states of different wave numbers, e.g., in
indirect gap semiconductors. For its effect on the index of
refraction, see Sec. III D.

(2) Omission of � in the exact self-energy iGW �. As
noted in the last paragraph of the Introduction, there is a
partial renormalization Z factor connecting G to G0 (see
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Appendix A of Ref. [9]), which we rely on in the QSGŴ ap-
proximation. Typically this vertex pushes down all the states
in an approximately uniform manner with a minimal effect
on the band gap [46]. The effect is more pronounced for a
nearly dispersionless d or f state, and when such a state com-
prises the valence band maximum, the gap is underestimated.
Semicore d states in semiconductors such as CdTe and GaSb
lie about 0.7 eV above photoemission experiments (Fig. 11).
Also, band gaps in materials systems whose valence band
consists of a 3d state, or a strong admixture of it, tend to
be too small (Table IV). An extreme manifestation of this is
EuO: the valence band maximum consists of a nearly disper-
sionless, atomiclike f state, and as a result the QSGW gap
is underestimated [47]. From this calculation it was inferred
that the Eu 4 f state should be pushed down by ∼0.7 eV, a
somewhat larger shift than for a flat 3d state (presumably it is
even more atomiclike). A shift in corelike d levels of order
0.5 eV was first explicitly demonstrated by Grüneis et al.,
who introduced a simple first-order vertex into GLDAW LDA

[46]. Very recently Kutepov added a first-order vertex in a
somewhat more rigorous manner [48].

As regards this work the most important error seems to
occur with systems with shallow corelike levels, particu-
larly when they occur near the valence band maximum. See
Sec. III D 2 and also the discussion around Table IV for in-
stances where this neglect is important.

(3) Higher-order diagrams in the polarizability. The in-
teraction kernel W [Eq. (14)] is taken from the RPA and
moreover it is assumed to be static. Other diagrams have been
considered in a few works, e.g., the second-order screened
exchange [49]. This diagram when augmenting the RPA was
quite successfully used to predict total energies in chemi-
cal systems [6]. We consider only one additional diagram,
namely, to use W BSE as the kernel in generating Eq. (14), and
note its effects on a few systems (Sec. III C 1).

(4) Inadequate treatment of spin fluctuations. In the
theory presented here, the only spin contribution to the self-
energy comes from the Fock exchange. We present some
spectral properties of correlated antiferromagnetic insulators
(Sec. III F), and show that even in such correlated cases, the
response in the charge channel seems to be reasonably de-
scribed. This is likely because, in contrast to spin fluctuations,
charge fluctuations sense the long-range Coulomb interaction.
The situation may be different when the gap closes or be-
comes small on the scale of spin excitations (�0.1 eV). In
such cases there may be cross coupling between spin and
charge channels. Our solution to date has been to augment
QSGW with dynamical mean field theory (DMFT). DMFT
is a nonperturbative method and exact solutions are possible
with, e.g., continuous time quantum Monte Carlo [50] that
include all diagrams. However, the vertex is assumed to be
local, which is reasonable for spin fluctuations as the vertex
is thought to predominantly reside onsite among the corre-
lated orbitals where the fluctuations occur [51]. Indeed, the
QSGW++ framework (++ referring generally to extensions of
QSGW), augmented either by ladder diagrams or by DMFT,
does seem to have unprecedented predictive power in a num-
ber of strongly correlated materials [16,35,52–56]. Yet, there
are places where a nonlocal vertex may be important, e.g.,

to explain the nematic phase of FeSe. Some approaches have
been formulated to improve on DMFT, e.g., the “D�A” ap-
proximation, a nonperturbative, semilocal approach [57], but
it is extremely demanding in practice.

In addition to the T matrix [51], somewhat more sophis-
ticated low-order diagrams that treat spin fluctuations on the
same footing as charge fluctuations have been proposed [58],
but this has not been attempted yet in an ab initio context.
As spin fluctuations tend to be low energy, many channels
are possible, so whether a low-order theory is sufficient or
not remains an open question. A low-order perturbation the-
ory that could replace DMFT would be very advantageous
since DMFT has its own unique set of challenges. We do not
consider such cases in this work, but it should be noted that
the claim that charge fluctuations are well described already
in low order is not universal [59] and whether a low-order
perturbative theory can be sufficient remains an open question
in low-density and strongly correlated metals.

Perhaps surprisingly, this obvious deficiency does not seem
to play a significant role in the systems we study here. This
work considers only systems with band gaps, and the likely
explanation is that spin-wave frequencies are typically small
energy compared to the optical gaps, which suppress spin
fluctuations.

Other discrepancies with experiment in zinc-blende semi-
conductors will be presented that do not appear to have a
simple interpretation. Perhaps the most notable unexplained
error are the errors in the k-dependent dispersion of the
conduction band minimum in zinc-blende semiconductors
(Sec. III C). Such systems are weakly correlated and the origin
of the error is not readily explained. One significant possi-
bility is that QUESTAAL’s present implementation does not
include a scheme to make the basis set truly complete [60].
This would not be a limitation of the theory itself, but in its
implementation.

Finally, several outliers are noted often because the
distinction between optical gaps and fundamental gaps is ig-
nored, e.g., in ScN (Sec. III E 3), SrTiO3 (Sec. III E 6), TiO2

(Sec. III E 5), and CuAlO2 (Sec. III E 7), or are likely artifacts
of inaccurate experiments, e.g., hBN (see discussion around
Table VII), and in correlated systems where the experiments
are less reliable. FeO seems to be an extreme example of
this (Sec. III F 4). The connection between discrepancies in
one-particle properties and those in two-particle properties is
discussed in Sec. III D 2.

The method is self-interaction free, however, so-called self-
screening remains. As discussed in Ref. [61] the inclusion
of exchange diagrams in the polarization (electron-hole in-
teractions) remedies the self-polarization contribution.8 The
remaining self-screening contribution can be removed with
the inclusion of the second-order exchange self-energy [61],
incorporated with the inclusion of the vertex in the expression

8The inclusion of excitonic effects reduces self-polarization greatly
with respect to methods that adopt the RPA, however, if we were to
use the bare Coulomb interaction for the BSE kernel in Eq. (17), then
we would have perfect cancellation between the direct and exchange
terms in the polarization.
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[210]

[34]

[62]

FIG. 3. (Left) Dynamical self-energy �(ω)−�(ωQP ) of the low-
est valence band at the � point in Na, as function of ω (in eV).
(Right) The same for the highest valence band and lowest conduction
band at the X point in NiO. In all cases the QP level corresponds
to the energy where �(ω)−�(ωQP ) crosses zero (−2.96 eV in Na,
−2.12 eV and +1.99 eV in NiO). The arrows indicate the potential
difference between LQSGW and QSGW for a particular state, at
the QSGW QP energy. Table: some values for the Na bandwidth
calculated from different variants of QSGW , and the bandwidth from
a recent experiment (in eV).

for the self-energy, iGW �. The self-screening effects that
remain in this method will be more pronounced in systems
with highly localized and correlated d and f orbitals, such as
the systems investigated in Sec. III F.

2. Relation between LQSGW and QSGW

We noted earlier that Kutepov constructed both a quasi-
particlized scheme and a fully self-consistent one. His
quasiparticlized scheme (LQSGW ) is somewhat different
from QSGW . They are similar, but with the extensions to
RPA presented here and in his work, the fidelity becomes high
enough that the difference can be significant. To show this we
present here a brief analysis of the relation between LQSGW
and QSGW .

Kutepov quasiparticlizes the self-energy with �(ω = 0),
but folds in an effective energy dependence through �′(ω =
0) (LQSGW ) while preserving the ability to construct a
static Hamiltonian. The Appendix derives a rough estimate
for the expected difference in QP levels between LQSGW
and QSGW , obtaining leading contribution from the omitted
quadratic term [Eq. (A2)].

In the QSGW scheme, the diagonal element of static
(quasiparticlized) �0

nn is by construction equal to dynamical
self-energy at the quasiparticle level ωqp, so �nn(ω) = �QSGW

nn
at ω = ωqp. For LQSGW this is no longer true; thus, the quasi-
particle levels of the static G0 do not coincide with the poles of
G. We can estimate the difference between the LQSGW and
QSGW QP levels from the difference between �nn(ωqp) and
the linear approximation to it, �nn(ω = 0) + ωqp�

′
nn(ω = 0).

This is depicted in Fig. 3 for the first band in Na, and the high-
est valence band and lowest conduction band in NiO. In Na,
it corresponds to the QSGW -LQSGW change in bandwidth;

in NiO, the change is the QSGW -LQSGW difference in the
direct gap at X.

For the Na case, according to the simple perturbative ex-
pression [Eq. (A2)], LQSGW and QSGW should differ by
0.11 eV. A better estimate is the difference noted in the previ-
ous paragraph. The graphs of Fig. 3 indicate that the LQSGW
bandwidth in Na should be slightly larger than QSGW , and the
NiO band gap also slightly larger. Numerically, the difference
in self-energies in the Na case, at the QSGW QP energy, is
0.17 eV. According to first-order perturbation theory, this is
the expected difference between LQSGW and QSGW QP en-
ergies. Indeed, the discrepancy between LQSGW and QSGW
appears to be of this order: one LQSGW and two QSGW
calculations have been reported for Na9 (see table in Fig. 3).
0.17 eV is similar to the spread between QSGW and a recent
photoemission measurement [62]; see the table in Fig. 3. As
GW is known to break down at sufficiently low densities, an
accurate determination of the bandwidth in Na is important
since it is one of the best realizations of a nearly homogeneous
low-density metal.

3. Hybrid QSGW self-energies

As QUESTAAL has no implementation of the electron-
phonon vertex as yet, or the vertex modifying GW , we cannot
evaluate its effect ab initio. However, by perturbing slightly
the QSGŴ self-energy with an admixture of the QSGW
� when the gap is underestimated or LDA V xc when it is
overestimated, we can modify to �h to reach a target band
gap without affecting the eigenfunctions too severely. That
permits us to assess the effect of the error in EG on ε∞.
Table VII presents cases where both EG and ε∞ are well
known, and it establishes that discrepancies in the two are
intimately connected for several systems. That provides an in-
dependent confirmation that the one-body Hamiltonian would
be of high fidelity if this perturbation were properly included.

To make a reasonable proxy to the QSGŴ self-energy, e.g.,
for the electron-phonon self-energy and missing vertex noted
in Sec. II D 1 (points 1 and 2), we will construct a hybrid one-
body self-energy �h defined as

�h = α�[QSGŴ ] + β�[QSGW ] + γV LDA
XC ,

1 = α + β + γ (21)

This equation has often been used with α = 0, β = 0.8, γ =
0.2 because ε∞ computed from QSGW has been found empir-
ically to be very nearly 80% of the true value for a wide range
of semiconductors [see Fig. 4(b)]. This formula has been em-
pirically found to yield very good band gaps in many kinds of
materials sytems [63,64]. In Sec. III D 2 we use it to show how
the errors in � (whatever their origin) are closely connected
to discrepancies in the dielectric function. A caveat should be
noted here: even while the band gap can be rendered accurate
with such a hybrid self-energy, ε∞ computed from the RPA

9A precise comparison cannot be made because the three imple-
mentations presented in the table are all different, and yield slightly
different results for ostensibly the same theory. Perhaps the most
rigorous implementation of QSGW is the SPEX implementation
used in Ref. [34].
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FIG. 4. (Top) Fundamental band gap for selected materials cal-
culated within the LDA (red squares), QSGW (blue circles), and
QSGŴ (green diamonds). The black crosses add to QSGŴ an es-
timate for the gap correction from the electron-phonon interaction
when it exceeds 0.19 eV. Where available, this was taken from
Ref. [40]; otherwise it was estimated from the Frölich expression,
Eq. (24). (Bottom) εRPA

∞ calculated from G0 generated QSGW (blue
circles) and εBSE

∞ calculated from G0 generated QSGŴ (green dia-
monds). The dark dashed line corresponds to perfect agreement with
experimental data. The light dashed line corresponds to εth

∞/ε
expt
∞ =

0.8. For hBN, we used ε in the basal plane; see Table VI. Bench-
marking ε∞ in the antiferromagnetic oxides CuO, MnO, FeO, CoO,
NiO, and Cu is more complex. They are omitted here but discussed
in Sec. III F. For a comparison between two inconsistent approxima-
tions, εRPA

∞ calculated from G0 generated QSGŴ and εBSE
∞ calculated

from G0 generated QSGW, for a subset of the materials considered
here, refer to Fig. 6.

is not similarly improved, so the theory cannot capture both
quantities in a consistent manner. Section III B 3 discusses this
at greater length.

We will also assume this connection to hold in cases where
the fundamental gap is uncertain while ε∞ is better known. By
aligning ε∞, or the frequency dependent ε(ω) with measured
data, we can make a reasonable estimate for the fundamental

gap. This is done for several systems, e.g., TiO2 (Sec. III E 5)
and FeO (Sec. III F 4).

E. Numerical evaluation of the kernel matrix elements

Our numerical implementation of the BSE relies on a
generalization of the linear muffin-tin orbital basis [9,65,66].
The eigenfunctions are expanded in Bloch-summed muffin-tin
orbitals in spheres around atom centers. The radial part of
the eigenfunctions in these spheres is expanded by numerical
solutions of the radial Schrödinger equation. In the region
between the spheres, the eigenfunctions are then expanded in
either smoothed Hankel functions [66] and/or plane waves.
Expanding the interstitial in plane waves, the eigenfunctions
are

�nk(r) =
∑
Ru

αkn
Ruϕ

k
Ru(r) +

∑
G

βkn
G Pk

G(r), (22)

where R denotes the atomic site and u is a composite in-
dex that contains the angular momentum of the site along
with an index that denotes either a numerical solution of the
radial Schrödinger equation at some representative energy;
its energy derivative (since the energy dependence has been
linearized by expanding in a Taylor series about the repre-
sentative energy [67]); or a local orbital which is a solution
at an energy well above or below the representative energy.
In GW and the BSE a basis is required that expands the
product of eigenfunctions. Expanding the interstitial in plane
waves, the product eigenfunctions will also be expanded in
plane waves, and within the spheres the basis is expanded by
ϕRu(r) × ϕRu′ (r). This mixed product basis (MPB) is denoted
Mk

I (r).
Using the notation in Ref. [9], the kernel K in the MPB is

read as

Kn1n2k
n3n4k′

(q) =
∑
I,J

〈
ψn3,k

′
∣∣ψn1,kM̃k′−k

I

〉
W RPA

IJ (k′ − k; ω = 0)

× 〈
M̃k′−k

J ψn2,k+q

∣∣ψn4,k
′+q

〉
, (23)

where the matrix elements and W RPA
IJ are calculated as in

Ref. [9].
Owing to the huge computational demands of the BSE

only a subset of transitions that occur between bands within
a selected energy range about the Fermi level are considered.
Contributions from transitions not included in the BSE are,
however, included at the level of the RPA. To include such
contributions, we effectively have a matrix H that is diagonal
except for a block corresponding to the coupled transitions
discussed above. To calculate the polarization in this case, the
RPA contribution from the subset of states that are treated
at the level of the BSE are not included in the full PRPA

[calculated according to Eq. (32) in Ref. [9]] and the contri-
bution from PBSE is added to PRPA. The corrected polarization
is then transformed into the MPB and the dielectric matrix
ε = 1 − vP, and hence W = ε−1v, are thus obtained. The
so obtained WIJ (q, ω) is used as in Eq. (34) of Ref. [9] to
calculate the correlation part of the self-energy.
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F. Divergence of the macroscopic dielectric function at q = 0

The macroscopic (G = G′ = 0) dielectric function (head
of the dielectric matrix) is constructed from the divergent
bare Coulomb interaction (4π/|k|2) and polarization function.
Since the dielectric matrix contains a three-dimensional in-
tegral over k, the dielectric matrix for k = 0 itself remains
finite but angular dependent, resulting in the dielectric tensor.
In this work we employ the offset � method [9,68,69], to
treat the divergent part of W , where an auxiliary mesh is
introduced that is shifted from the original �-centered mesh.
The averaged macroscopic dielectric function calculated in a
small cell around � is then used to calculate the macroscopic
part of the screened Coulomb interaction for k → 0, as in
Ref. [68].

The G = G′ = 0 component of the irreducible polarizabil-
ity should vanish at q = 0. Owing to numerical errors this
is not exactly the case, so to correct for this its value is
subtracted from the irreducible polarizability for all q. This
adjustment stabilizes the calculations and also improves on
the k convergence of the polarizability and self-energy. We
performed careful checks for the k convergence in ε∞ in the
RPA, and found for example in zinc-blende semiconductors
an 8 × 8 × 8 mesh was reasonably good, and a 12 × 12 × 12
mesh converged ε∞ to ∼1% in all cases but the smallest gap
semiconductors.

G. Including the Frölich contribution to the band gap

To correct the value for the band gap in this method due to
the neglection of electron-phonon interactions we can include
an approximation for the contribution from the Frölich contri-
bution to the Fan term, which, in polar insulators such as LiF,
should be the dominant part. We include lattice polarization
corrections (LPC) using the method outlined in Ref. [70]. The
energy shift is determined from

�Enk = e2

4ap

(
ε−1
∞ − ε−1

0

)
, (24)

aP =
√

h̄

2ωLOm∗ = a0

(
m

m∗
e2

2a0 h̄ωLO

)1/2

, (25)

where aP is the polaron length scale, which, in the effec-
tive mass approximation is computed from the optical mode
phonon frequency ωLO and the effective mass m∗. aP is dif-
ferent for electrons and holes, and we take an average of the
electron and hole contributions, following Ref. [70]. ε∞ is the
ion-clamped static (optical) dielectric constant and ε0 contains
effects accounting for nuclear relaxations. The values for ε0,
ε∞, and ωLO used in this work are taken from Refs. [70,71]
for materials discussed there. For many of the systems studied
here a more rigorous calculation of the gap shift has been
published (Ref. [40]). Where available, we use those results.

For a given shift, we use a proxy �h [Eq. (21)] to estimate
the effect on the band structure and ε∞.

H. Effective oscillator model for index of refraction

In Ref. [72] it was established that the frequency-
dependent index of refraction of many compounds can be fit
reasonably well by a single-oscillators model. The model has

the form

n2 − 1 = Ed E0

E2
0 − (h̄ω)2

, (26)

where E0 is the oscillator energy, and Ed is a measure
of the strength of interband optical transitions. Empirically,
(n2−1)−1 has been found to be a mostly linear function
of (h̄ω)2, for a wide range of ionic materials, which lends
credence to the model. In some experiments where n(ω) is
tabulated, we use Eq. (26) to extrapolate to ω = 0.

III. RESULTS AND DISCUSSION

A. Computational details

All results have been obtained using QUESTAAL [24].
Table XII contains the relevant parameters used in the cal-
culations. The � cutoff for partial waves inside muffin-tin
spheres was set to 4 and an spdfg-spdf basis was used in
all calculations, except in some lighter systems where the g
orbitals were omitted. Local orbitals were also used in some
systems as indicated in Table XII. Empty sites were used
as placements for additional site-centered Hankel functions
(to �max = 2 or 3) without augmentation, to improve the ba-
sis in systems with large interstitial voids. When calculating
the polarization within the RPA, the tetrahedron method is
employed for integration over the Brillouin zone [9]. In the
BSE implementation, a broadening was applied according to
Eq. (18) and set to 0.01 Ha for vertex calculations.

The TDA was also adopted due the huge increase in
com·pu·ta·tion required to store, calculate, and diagonalize
the non-Hermitian matrix that has twice as many rows and
columns as the Hermitian TDA one. We would, however, not
expect going beyond the TDA to have too much of an impact
on the systems investigated in this work [32]. We did remove
the TDA in a few cases, e.g., InSb, ScN, and MgO, and found
the effect to be minor, as anticipated (Sec. III C 1).

Treatment of the screened Coulomb interaction

For numerical reasons the QUESTAAL codes compute Fock
matrix elements not of the bare Coulomb interaction 1/q2

but a slightly screened one, 1/(q2 + κ2). A small value for
κ is taken, between 10−5 and 10−4. The QSGW self-energy is
not usually sensitive to the value of κ; however, the dielectric
constant ε∞ can vary by a few percent for κ ranging between
10−5 and 10−4. For that reason, we compute ε∞ for three
values of κ between 10−5 and 3×10−5 and extrapolate to
κ = 0.

Also, to avoid evaluating matrix elements at q = 0, we
use the offset-� method [9], which requires generating the
polarizability for small values of q near zero. For ε∞ we eval-
uate ε(ω, q) for three small finite values of q and extrapolate
to q = 0. The direction of approach to q = 0 gives us the
orientation dependence of ε(q = 0).

Both kinds of extrapolations are done in one process. The
difference between extrapolated and finite-(q, κ) values can
differ by a few percent.
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B. Survey of results

We begin with a birds-eye view of some key results.
Figure 4 shows the fundamental band gaps (EG) and high-
frequency dielectric constant (ε∞) for a wide variety of
materials, comparing classical QSGW results to QSGŴ . This
figure elucidates the general trends: QSGW tends to overesti-
mate band gaps and underestimate ε∞ by an almost universal
constant factor 0.8. As anticipated, addition of ladder dia-
grams ameliorates both of these discrepancies. Apart from a
few exceptions (see discussion in Sec. III D 2), QSGŴ greatly
improves on QSGW . On the wide scale of the figure the ability
of QSGŴ to predict optical properties (Fig. 4) looks stellar,
but discrepancies appear on closer inspection. A main theme
of this paper is to seek out these deviations, and associate
them, where possible, with the missing diagrams noted in
Sec. II D 1. Fortunately, most of the discrepancies with mea-
sured data are fairly systematic, which opens the possibility
that the shortcomings can be rectified with relatively simple
low-order diagrams.

1. Index of refraction

Typically, ε∞ is obtained by extrapolating the frequency-
dependent index of refraction ε(ω) to zero using, e.g.,
Eq. (26). Its value is known only to a resolution of a few
percent even in the best cases, and the uncertainty is often
larger. An extreme case is AlN, where several values have
been reported ranging between 3.8 [73] and 4.8 [74], and hBN
is another instance (Sec. III D). When several experimental
values are available for the compounds in Fig. 4, we use
an average value. Reported values for ε∞ for antiferromag-
netic transition metal oxides (not shown in Fig. 4) also show
variations, and calculations show larger deviations from the
average value. They are discussed in Sec. III F.

There is a small indeterminacy on the theory side also.
Aside from the extrapolation noted in Sec. III A, care must
also be taken to converge the uniform k mesh entering into
numerical Brillouin zone integration: for narrow-gap semi-
conductors pushing this mesh beyond 12 × 12 × 12 divisions
was not feasible, leading to a slight tendency to underestimate
ε∞. These approximations lead to an uncertainty of a few
percent.

The bulk of the remaining paper focuses on discrepancies
where either EG or ε∞ are outside the experimental uncer-
tainty, which appear in some systems. One primary aim of this
work is to draw a connection between EG and ε∞. Generally
speaking, in well-characterized systems the discrepancies in
EG and ε∞ occur largely at the same time: when the gap is
accurately described, ε∞ is also. We believe this to be a sig-
nificant finding, and it is taken up in Sec. III B 3. Sections III D
and III D 2 present cases where EG deviates the most strongly
from experiment. We use hybrid self-energies [Eq. (21)] to
correct the gap, to see how the change in ε∞ tracks it.

2. NiO as archetype system

NiO is an archetype system that exhibits many of the phe-
nomena that are the subject of this work. Figure 5 shows in
greater detail how ladder diagrams renormalize the QSGW
self-energy in NiO. This manifests as shifts in QSGŴ energy
bands and peaks in the density of states (DOS). DOS are

−8

−4

0

4

8

12

16

X Γ L U T02040
1

2
3

0 4 8 12 16 20
0

2

4

6

8

ω (eV)

Im
ε

RPA@QSGW

BSE@QSGW

BSE@QSGŴ
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FIG. 5. Middle panel: Energy bands in NiO, within the QSGŴ
approximation (colored bands), with valence band maximum at 0.
Green projects onto Ni d character, blue onto Ni sp character, and
red onto O p character. Shown for comparison are the QSGW results
(light gray bands). Left panel: QSGŴ (green) and QSGW (gray)
DOS, compared against PES data (E < EF ) and BIS data (E > EF )
from Ref. [75] (circles). Right: Experimental dielectric function
Im ε(ω) from Ref. [76], compared to results calculated at three levels
of approximation: RPA@QSGW , BSE@QSGW , and BSE@QSGŴ .
As is typical, the shoulder of RPA@QSGW is blueshifted, by roughly
2 eV in this case. Adding ladders (BSE@QSGW ) shifts the shoulder
towards the experiment, but it is still ∼1 eV too high, as a conse-
quence of overestimate of the QSGW fundamental gap (Table IX).
BSE@QSGŴ describes Im ε(ω) rather well, including peaks around
6, 13.5, and 17 eV. However, the shoulder around 3.5 eV is slightly
redshifted compared to experiment, indicating that the fundamental
gap is underestimated. ε∞ is also overestimated. See Sec. III F 1 for
more details.

compared to bremsstrahlung-isochromat spectroscopy (BIS)
and x-ray photoemission (XPS) measurements in the left
panel [77].

(i) BIS data exhibit three peaks between 0 and 9 eV, which
the QSGŴ DOS captures quite well, except for a small under-
estimate of the fundamental gap seen in both BIS and optics
(see Sec. III F 1). This shows that ladders do an excellent
job of capturing the frequency dependence of the local (k-
integrated) spectral function.

(ii) The corresponding QSGW peaks are blueshifted rela-
tive to experiment, but in varying amounts. Peak 1, which is
composed almost entirely of flat Ni d states, is shifted about
1.5 eV while peak 2, derived essentially of dispersive Ni sp
states, is shifted by about half of that. This reflects a uni-
versal tendency: flat bands are affected by ladders more than
dispersive ones. Fe3O4 offers a particularly striking example
(Sec. III F 7).

(iii) QSGŴ significantly narrows the occupied Ni d bands
relative to QSGW . Red bands (depicting O character) are
almost unaffected, while there is a significant narrowing of
the green bands relative to QSGW . This is a potentially
important finding. It is well known that the LDA severely
overestimates d band widths in narrow-band transition metal
compounds. Further, it has been shown in several works, e.g.,
Ref. [78], that QSGW narrows d bands relative to the LDA,
but nevertheless continues to overestimate these bandwidths,
especially in systems with strong spin fluctuations such as
BaFe2As2 and FeSe. In cases we have studied where exper-
imental information is also available, e.g., in Sr2RuO4 [56],
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this overestimate is remedied very well by augmenting QSGW
with DMFT, which includes vertices in both charge and spin
channels. Whether the bandwidth can be captured entirely by
a combination of low-order diagrams in both spin and charge
channels remains an intriguing possibility. To the extent it is
true, this greatly simplifies the complexity of the electronic
structure problem in correlated systems. This will be explored
in a future work.

Some more details for NiO are presented in Sec. III F 1.
Also, there are some strong parallels with La2CuO4; see
Sec. III F 6.

3. Consistency between one- and two-particle properties

The consistency between benchmarks for one- and two-
particle quantities (EG and ε∞ in Fig. 4) is striking. Apart
from some outliers to be discussed in Sec. III D, the calculated
values ε∞ agree with measured ones to within the available
resolution. When this is not the case, usually there is a corre-
sponding discrepancy in the fundamental gap: discrepancies
in EG and ε∞ occur largely at the same time: overestimate
of EG yields underestimate of ε∞, and underestimate of EG

yields overestimate of ε∞.
The internal consistency between one- and two-particle

properties is a signature of consistency of the theory since
the same quantities (G and W) construct both ε(ω) and the
potential �(ω) that makes G.

If we assume the fidelity of the theory is sufficient for this
principle to be universally applicable, the extra information
provides an ansatz to predict optical properties in materi-
als with stronger correlations, where benchmarking is less
simple. In such cases there is often a large uncertainty in
the benchmark itself, not only owing to a wide variation in
reported experimental data, but also the extraction from one-
particle properties (e.g., fundamental gap) from two-particle
response functions. This is reasonable for tetrahedral semi-
conductors where excitonic effects are small (see Fig. 9), but
has less validity in general. For these more correlated cases
our approach will be to compare optical experiments directly
with calculated response functions. Combining such a com-
parison with the observed relation between calculated one-
and two-particle properties, we can benchmark the theory, and
sometimes provide values of quasiparticle levels where not
well known, or new interpretation of accepted values.

Figure 4 was generated from two consistent approx-
imations: εRPA

∞ @QSGW and εBSE
∞ @QSGŴ . Consider by

contrast two inconsistent approximations εBSE
∞ @QSGW

and εRPA
∞ @QSGŴ (Fig. 6). Both of these approxima-

tions show more randomness than either εRPA
∞ @QSGW or

εBSE
∞ @QSGŴ of Fig. 4. Yet, there is a strong similarity be-

tween the green diamonds and the blue circles in the two
figures. The green diamonds in Fig. 6 fall slightly below the
ideal line, showing a modest but non-negligible effect of im-
proving the reference G0. The blue circles rise slightly above
the 80% showing that the RPA continues to underestimate ε∞,
even with a nearly ideal reference G0. This affirms that most,
but not all, of the underestimate of ε∞ originates from the RPA
itself.

This sheds light on the commonly observed fact that εRPA
∞ ,

when computed from the GLDA, often provides a rather good

FIG. 6. ε∞ generated by two inconsistent approximations:
εRPA

∞ @QSGŴ (blue circles) and εBSE
∞ @QSGW (green diamonds), to

be compared against Fig. 4. Also shown are LDA results: εRPA
∞ @LDA

(red squares). Agreement is best for indirect gap semiconductors,
where gaps for vertical transitions are relatively large.

estimate for ε
expt
∞ , e.g., in sp semiconductors. The obvious,

naive reason for this is a fortuitous error cancellation: LDA
underestimates band gaps, which tend to overestimate ε∞,
while the RPA’s neglect of electron-hole attraction tends to
underestimate the screening, and thus tends to underestimate
ε∞. However, there has been some speculation that the good
agreement is not accidental, but a consequence of charac-
teristics inherent in the RPA and the LDA. In particular, a
recent work [79] asserts that εRPA@LDA should be a good
approximation for insulators, based on two arguments. First,
ladders involve tunneling processes, and are effective at short
range but not long range; thus, the long-range screening that
predominantly controls ε(q = 0) is well described by the RPA
[80,81]. The first argument is rather appealing, and consistent
with prior work establishing that the largest corrections to
the RPA occur at short distances [80–82]. This argument can
be rigorously checked by comparing blue circles in Fig. 6 to
green diamonds in Fig. 4: both share the same eigenfunctions
generating ε, the only difference being the presence or ab-
sence of ladder diagrams. Agreement is fairly good, differing
by 15%–20%, which explains in part why QSGW is a good
and consistent theory. The argument of van Loon et al. [79]
is only partially true: even if the vertex part of P0 is short
range, v is long range so ε = 1 − vP0 can have a long-range
contribution from the short-ranged part of P0. Notably, the
difference does not get smaller as the gap becomes large, as
Ref. [79] asserted based on the tunneling argument. This is
apparently because as the gap closes the screening becomes
large, so the long-range contribution from a short-range vertex
becomes relatively less important. It is nevertheless striking
that the BSE correction is so insensitive to the band gap.

The second argument of Ref. [79] is that the local ver-
tex in insulators is approximately accounted for by using
LDA eigenfunctions. The argument is based on a connection
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FIG. 7. Ratio εRPA
∞ @LDA/ε

expt
∞ , plotted as a function of the LDA

relative gap error ELDA
G /E expt

G . Blue circles are indirect-gap semicon-
ductors; red hexagons are direct gap.

between the LDA derivative discontinuity and the missing
vertex, which emerges in a model. To examine this proposi-
tion, εRPA

∞ @LDA is also presented in Fig. 6 (red hexagons).
The second argument is more difficult to assess quantitatively
because screening modifies both G0 and ε∞, but roughly
speaking the difference between blue circles and green di-
amonds should be similar to the difference between red
hexagons and blue circles. One might attribute the poor agree-
ment to inadequacy of the LDA functional (distinct from the
derivative discontinuity in the exact functional), but at least
in a few systems where it has been tested, the primary gap
error has been shown to originate largely from the derivative
discontinuity, and not inadequacy of the functional [83].

There is a distinct tendency for LDA to better predict ε∞
for indirect gap tetrahedral semiconductors than for direct-gap
ones: compare diamond, AlAs, AlSb, GaSb in Fig. 6 to ZnO,
ZnS, CdTe, InP, and GaAs. Since the derivative discontinuity
does not vary wildly between direct- and indirect-gap materi-
als, this is a hint that some other parameter controls the errors
in εRPA

∞ @LDA. Note also that in the one-oscillator model [72],
Sec. II H, the effective oscillator energy E0 tends to better
align with the smallest direct gap than the fundamental one.
To disentangle the various effects, Fig. 7 plots the relative
error in εRPA

∞ @LDA against the relative error in the gap,
which is a proxy for the derivative discontinuity. Excepting
the d0 and f 0 systems, the relationship between ELDA

G /E expt
G

and εRPA
∞ @LDA/ε

expt
∞ is roughly linear. The sensitivity of

εRPA
∞ @LDA to the derivative discontinuity, together with the

tendency of RPA to underestimate band gaps established
earlier, provides strong indication that εRPA

∞ @LDA yields rea-
sonable ε

expt
∞ only sometimes, and since it generally produces

values larger than experiment while the RPA underestimates
the screening as we have shown, there is an additional hidden
benefit from fortuitous error cancellation.

C. Benchmarks in weakly correlated semiconductors

The tetrahedrally coordinated sp3 compounds form a good
benchmark for weakly correlated systems in part because

FIG. 8. Energy bands in GaAs, depicting vertical transitions E0,
E ′

0, E1, and E2 that can be measured by ellipsometry. Circles depict
measurements of states at high-symmetry points. They have been
determined by ARPES [84] to a resolution of about 0.1 eV. E0,
E ′

0, E1, and E2 are reported by Lautenschlager et al. in Ref. [85].
Combining these data provides one way to determine levels at X
and L in the conduction band. Colored bands are taken from QSGŴ
calculations, with red and green showing projections onto Ga and
As, respectively. Gray lines show results of QSGW calculations. In
the valence, QSGŴ and QSGW are nearly indistinguishable. QSGŴ
and QSGW dispersions in the conduction band are very similar, with
QSGW slightly higher in energy.

they are the best characterized of any family of materials,
but also because weak correlations make it possible to well
identify transitions between single-particle levels, especially
associating peaks in ellipsometry measurements with them.
The valence band maximum falls at or very near � for all
tetrahedrally coordinated semiconductors, which simplifies
the analysis. Aside from the lowest �-� transition E0, the
next �-� transition E ′

0 has been measured for some materials.
Ellipsometry also measures E1 and E2 shown in Fig. 8. E0

and E1 are easier to measure accurately because there is larger
volume in k space where the valence and conduction bands are
parallel. E2 has been measured for most semiconductors, but
its determination is less certain (excepting compounds such
as Si, C, and SiC where the global conduction band minimum
lies near X). Some data for E ′

0 are available, but their values
are also less well known.

The wider conclusions we draw from the detailed analysis
to be described below are as follows.

(1) Band gaps in light (and especially polar) materials
are overestimated (MgO, LiF, LiCl, NaCl, TiO2, SrTiO3,
C). The primary cause is the electron-phonon interaction
(Sec. III D). A diagrammatic electron-phonon contribution to
� has long been known [3] though, historically speaking,
reliably determining its magnitude has posed a challenge.
A fairly high-fidelity calculation of it has recently appeared
(Ref. [40]), and we use their results to estimate this term where
available. In other cases we make a simple estimate using the
Frölich approach of Ref. [71] (Sec. II G). The fundamental
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TABLE II. Band gaps at X or L for some zinc-blende semi-
conductors. All the semiconductors listed above have a global
conduction band minimum near X, except for Ge and GaSb. When
the electron-phonon interaction is taken into account, gaps at X are
systematically underestimated by ∼0.15 eV, while those at L are not.

EG (expt) QSGŴ ZP (est) QSGŴ -ZP

C 5.40 X 5.64 −0.40 5.24
Si 1.17 X 1.08 −0.06 1.02
SiC 2.42 X 2.35 −0.15 2.20
GaP 2.35 X 2.22 −0.09 2.13
AlAs 2.24 X 2.14 −0.04 2.10
Ge 0.74 L 0.81 −0.05 0.76
GaSb 0.88 L 0.91 −0.03 0.88

gaps with these adjustments are shown as black crosses in
Fig. 4. See also Sec. III D 2.

(2) The gap in compounds with shallow, nearly disper-
sionless, d levels are too small (Table IV), and semicore d
levels are too shallow (Fig. 11). This is a consequence of the
imperfect Z-factor cancellation noted in Sec. II D 1, point 2.
To correct it would require the missing vertex � in the exact
self-energy, GW �. Several instances of this are presented in
Sec. III D 2.

(3) k dispersions in the conduction bands of zinc-blende
semiconductors show systematic errors of the order ±0.1 eV
(see discussion around Tables II and III). There is no obvious
diagram that explains this discrepancy.

Figure 9 benchmarks E0, E ′
0, E1, and E2 transitions in zinc-

blende semiconductors where ellipsometry data are available.
E1 shows close agreement, but E0 and E2 exhibit discrep-
ancies with distinct patterns: Tables II and III establish that
there is a systematic, k-dependent error in the conduction
band in zinc-blende semiconductors on the order of 100 meV.
The consequences can be significant: note, for example, that
QSGŴ predicts GaSb to have a global minimum at L, with
E�−EL = 0.05 eV, while experimentally at 0 K it is a direct
gap, with E�−EL = −0.09 eV [89]. Also, where gaps are
overestimated, effective masses are too large (Fig. 10).

The k-dependent gap error is further discussed in
Sec. III C 1, but we can find no obvious explanation for it.

TABLE III. E0 in narrow-gap zinc-blende semiconductors is
overestimated by 0.1 eV. The tendency does not hold for narrow-gap
semiconductors that form in other structures, shown as the entries
in the second half of the table. An estimate for low-temperature
band gap for Ti2Se2 (24-atom P3̄c1 CDW structure) is taken from
Ref. [90].

EG (expt) QSGŴ ZP (est) QSGŴ -ZP

Ge 0.90 1.06 −0.05 1.01
GaSb 0.81 0.96 −0.03 0.93
InAs 0.42 0.53 −0.02 0.51
InSb 0.24 0.42 −0.02 0.40

InN 0.70 0.74 −0.07 0.67
Bi2Te3 0.15 0.15
PbTe 0.19 0.18
TiSe2 0.15 0.15
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FIG. 9. E0, E ′
0, E1, and E2 transitions in zinc-blende semicon-

ductors, where experimental data are available. Red squares, blue
circles, and green diamonds correspond to LDA, QSGW , and QSGŴ
matching Fig. 4.

One possibility is that QUESTAAL’s implementation of QSGW
contains an error not inherent in QSGW itelf. In particular, the
incomplete basis noted by Betzinger et al. in the GLDAW LDA

context [60] may be a factor. It cannot be ruled out that the
nearly perfect agreement for so many systems is a fortuitous
artifact of the implementation, or fortuitous cancellation of
higher-order diagrams. At all events there is no simple expla-
nation that reconciles these inconsistencies.

Figure 10 benchmarks for effective masses and band gaps
in tetrahedral semiconductors. For the direct-gap systems (cir-
cles and hexagons), the discrepancy in m∗ compared to the
experimental value scales approximately in proportion to the
discrepancy in EG (compare to the light dashed gray line).
k·p theory predicts a m∗ to be proportional to EG, assuming a
fixed matrix element coupling valence and conduction bands,
showing that errors in m∗ have the same origin as whatever
causes the gap to be too large.

LDA (GW )LDA QSGW QSGŴ

Cation Anion Cation Anion Cation Anion Cation Anion

Mean 3.1 5.2 1.2 2.0 0.7 1.1 0.9 1.3
RMS 1.5 2.5 0.4 0.6 0.4 0.5 0.4 0.4

Core levels. Figure 11 presents d-core levels at different
levels of theory and compares to photoemission results. As
is well known, their position is too shallow in the LDA.
(GW )LDA improves agreement with experiment, but levels
remain too shallow. Self-consistency (QSGW ) shows further
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FIG. 10. Effective masses in weakly (and mostly tetrahedrally)
coordinated semiconductors. Mass m∗ is plotted as a function of band
gap EG. Black denotes experimental data, blue QSGŴ results, red
QSGW results. Circles denote direct gaps in zinc-blende structures,
pentagons denote direct gaps in wurtzite compounds, and triangles
denote indirect gaps. The figure provides two independent kinds of
information: the band-gap discrepancy can be seen comparing blue
(or red) against black on the abscissa; the mass discrepancy compares
the ordinate. The light dashed gray line shows a linear function
m∗(Eg). This is the dependence of mass on the gap in k·p theory,
assuming the matrix element is fixed. Data for III-V semiconductors
are taken from Ref. [86]; other data taken from Adachi’s compilation
[87]. CdTe, ZnTe, and GaAs are taken from a two-photon magne-
toabsorption experiment [88] which is thought to be reliable. AlSb
data are for the conduction band at �.

improvements. QSGŴ fares slightly worse than QSGW on
average, but the consistency improves with the level of theory.

Table IV shows some materials system where the valence
band maximum is nearly flat and dispersionless. The band gap
is consistently underestimated in QSGŴ . (QSGW fares better,
but this is an artifact of fortuitous error cancellation).

Shortcomings shown in Fig. 11 and Table IV have a com-
mon origin, the missing vertex (Sec. II D 1, point 2). Note that

TABLE IV. Band gaps in systems with valence band maximum
formed from a corelike d state. The band gap of FeS2 is not well
known, but the QSGŴ gap lies below the most likely value of 0.9 eV.

EG (expt) QSGŴ QSGW

CuCl 3.46a 2.67 3.44
Cu2O 2.17b 1.74 2.27
FeS2 ∼0.9c 0.69 0.81
VO2 ∼ 0.7d 0.43 0.76
FeO ∼1.1e 0.64 1.9

aTwo-photon absorption [94].
bInferred from interpretation of experiment with effective mass
model and exciton observed at 2.0 eV [95].
cAn estimate from many measurements, from Ref. [96].
dSee Sec. III E 8.
eSee Sec. III F 4.
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FIG. 11. (Left) Cation d-core levels relative to the valence band
maximum, in eV. (Right) Anion d-core levels for systems where they
are present. The center of gravity of the d5/2 level was taken, except
for ZnSe where it was not reported. Red circles are photoemission
data taken from Refs. [91–93]. Yellow squares, green diamonds, blue
hexagons, and crosses are results from LDA, (GW )LDA, QSGW , and
QSGŴ , respectively. Calculated anion d5/2−d3/2 splittings (1.5 eV,
CdTe; 0.8 eV, GaAs; 1.3 eV, GaSb) are in close agreement with
photoemission data. The table below the figure shows the mean
difference with the photoemission data, and the RMS fluctations
about the mean, for the different levels of approximation.

the discrepancy with experiment increases with distance from
the Fermi level: from ∼0.5 eV for the valence states near EF ,
∼0.9 eV for cation levels around −10 eV, and ∼1.3 eV for
the deeper anion levels.

Valence band parameters. The structure of the valence band
around � provides less reliable benchmarks because of exper-
imental uncertainty in the parameters. Key parameters are the
effective masses, and in the wurtzite structure, the crystal-field
splitting arising from inequivalence of the z and xy directions.
As regards the masses, the matter is considerably complicated
by intermixing three states at the valence band maximum
near the � point and the nontrivial role of spin-orbit coupling
that splits the threefold degeneracy at � and pushes the band
maximum slightly off it.

To encapsulate the many different masses, a Luttinger
model is typically used, which has only three independent
parameters. The Luttinger parameters can be generated from
the following effective masses:

γ1 = 1

2m001
lh

+ 1

2m001
hh

,

γ2 = 1

4m001
lh

− 1

4m001
hh

,

γ3 = 1

4m001
lh

+ 1

4m001
hh

− 1

2m111
hh

, (27)

where mlh and mhh denote light-hole and heavy-hole masses.
Table V shows Luttinger parameters for a few systems where
they are best known. The range of values shown in the ex-
perimental columns correspond to the range collated from
different measurements. In the two cases where the band gap
is close to experiment (Si and InP) the calculated Luttinger
parameters fall within the range of experimental data. In the
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TABLE V. Top: Valence band Luttinger parameters in selected zinc-blende semiconductors. Bottom: Crystal-field splitting parameter in
III-N compounds.

QSGŴ Expt

EG γ1 γ2 γ3 γ1 γ2 γ3

Sia | 1.22 4.24 0.32 1.42 4.26-4.29 0.34-0.38 1.45-1.56
Gea | 0.81 10.7 3.00 4.41 13.2-13.4 4.20-4.24 5.56-5.69
AlAsb | 2.14 3.99 0.89 1.45 3.42–3.44 0.67–1.23 1.17–1.57
GaAsc | 1.63 6.75 1.83 2.74 6.79–7.20 1.90–2.88 2.68–3.05
InPb | 1.41 5.58 1.59 2.27 4.61–6.28 0.94–2.08 1.62–2.76

AlN GaN InN

EG �cr EG �cr EG �cr

QSGW 6.93 −0.224 3.93 0.023 1.02 0.010
QSGŴ 6.40 −0.228 3.60 0.021 0.74 0.010
G0W0

d 6.47 −0.295 3.24 0.034 0.69 0.066
Expt 6.13 −0.230 3.5 0.009-0.038 0.67 0.019-0.024

aCompilation in Ref. [99].
bCompilation in Ref. [86].
cCompilation in Ref. [86].
dExperimental data and G0W0 results taken from Ref. [98].

other two cases (Ge and GaAs) the parameters are underes-
timated for the same reason the conduction band effective
masses are overestimated (see Fig. 10): the direct gap is some-
what overestimated (see, e.g., Table III). In Ge, for example,
the conduction band mass at � was measured to be 0.037 [97],
while our QSGŴ mass is 0.047.

Table V also show shows crystal-field splitting �cr in the
III-N semiconductors (splitting between states of pz and pxy

character at �) in the absence of spin-orbit coupling. The
QSGŴ result is within ∼0.01 eV of the measured values,
which is quite satisfactory. This quantity is rather sensitive
to find details of the potential. To obtain �cr reliably, a fine
k mesh of 9×9×6 divisions was needed: its value increased
by 0.005 eV compared to the standard 6×6×4 mesh. Note
that OEP-based GW reported in Ref. [98] yields quite different
values for �cr.

Two extensions to the theory and their effect
on zinc-blende semiconductors

As two possible sources of error on the QP levels of zinc-
blende semiconductors, we first considered eliminating the
Tamm-Dancoff approximation (TDA). Here we focus on InSb
as it has the largest relative gap error. Removing the TDA
reduced the QSGŴ E0 gap by 0.03 eV, considerably less than
the discrepancy with experiment. We also considered whether
eliminating the TDA improves the k dispersion, in particu-
lar, the wrong prediction of the global minimum in GaSb
noted above. Removing the TDA reduces the gap in GaSb
by 0.03 eV (similar to InSb), but the shift was essentially
independent of k and did not rectify this shortcoming. Note
that we also consider the effect of removing the TDA when
examining the f -sum rules in Sec. III D 3.

We also considered the effect of using a better kernel in the
BSE. In all the calculations presented here, we used W RPA

for the kernel [Eq. (23)]. It is possible that the dispersion

errors in these compounds is a consequence of W RPA being too
removed from the exact vertex. We can assess this effect by us-
ing a better kernel, namely, BSE W as the kernel for the BSE.
If we assume naively that the main effect of BSE is to reduce
W (q = 0, ω = 0) (i.e., the change in ε∞) then the substitution
W RPA→W BSE in Eq. (23) would reduce the strength of the
electron-hole attraction and shift the electronic structure to
(e.g., the band gap) something intermediate between QSGW
and QSGŴ . This is roughly what happens in some cases, e.g.,
CrX3 [100]. In sp semiconductors, however, using a better W
in the vertex causes the gap to decrease still further by a small
amount, e.g., by 0.03 eV in InSb. This is another manifestation
of vertex corrections being short ranged, as noted earlier.

To conclude, the combined effect of eliminating the TDA
and better W in the vertex are not sufficient to explain the ten-
dency to overestimate the direct gap in small-gap zinc-blende
semiconductors, or errors in the band dispersion.

D. Response functions in semiconductors

1. Birefringence

Birefringence occurs when the refractive index depends
on the polarization and propagation direction of light. It
is normally measured as a difference in the principal axes
of the ellipsoid’s index of refraction, sometimes called the
“ordinary” and “extraordinary” indices when there are two
inequivalent ones. We consider a few materials where n in the
basal plane differs from n normal to it:

n = (n‖+n⊥)/2, �n = n‖−n⊥, (28)

ε = (ε‖+ε⊥)/2, �ε = ε‖−ε⊥. (29)

Birefringence is measured as the difference �n. Table VI
compares QSGW and QSGŴ predictions against experiment.
With the possible exception of hBN, QSGŴ predicts n and
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TABLE VI. Birefringence in selected insulators.

QSGŴ QSGW Expt

n �n n �n n �n

ZnO 1.91 0.011 1.77 0.010 1.92 0.012a

1.92 b

CdS 2.29 0.015 2.10 0.010 2.30 0.016c

TiO2 2.45 0.22 2.37 0.21 2.50 0.26d

2.55 0.24e

hBN 1.83 0.49 1.79 0.44 1.89 0.48f

2.12 0.20g

AlN 2.04 0.038 1.82 0.048 2.06 0.046h

2.16 0.040i

aExtrapolated from Ref. [101], using Eq. (26).
bReference [72].
cReference [102].
dReference [103].
eReference [104].
fSingle crystal, Ref. [105].
gPolycrystalline, Ref. [106].
hInfrared frequencies, Ref. [107].
iReference [108].

�n approximately within the available resolution of the ex-
periment.

2. Relation between gap and dielectric function

Figure 4(b) appears to predict ε∞ very well, but there are
discrepancies. Here we focus on systems for which εBSE

∞ falls
outside the uncertainty of experimental values (estimated by
the variation in reported values), and show that these errors
directly correlate with errors in the fundamental gap.

Several known potential sources of error in � were enu-
merated in Sec. II D. Among them, the electron phonon
interaction is significant for wide-gap, light-element com-
pounds, especially polar ones where the narrow valence band
enhances the Frölich interaction (24). The electron-phonon
interaction usually reduces gaps, by as much as 0.5 eV in an
extreme case such as MgO. Table VII selects some materials
where this reduction exceeds 0.3 eV. In such cases ε∞ is
slightly underestimated. As we noted previously, at present
QUESTAAL does not have the capability to incorporate the
electron-phonon self-energy into the QSGW cycle; however,
we can make a proxy by making a hybrid of the LDA and
QSGŴ potentials to reduce the gap [Eq. (21)]. We choose
β = 0 and pick the mixing parameter α to approximate the
gap change from electron-phonon interaction calculated in
Ref. [40]. This should be a reasonable proxy for �e-ph since
for these systems the LDA and QSGŴ bands differ mostly
in a simple rigid shift of the conduction band. Materials in
Table VII above the dividing line show systems for which the
electron-phonon interaction exceeds 0.3 eV, and where both
EG and ε∞ are thought to be reliably known. Renormalization
causes a modest increase in ε∞, and the systematic tendency

to underestimate it is reduced to approximately the experi-
mental uncertainty.10

For compounds in the bottom half of the table, benchmark-
ing becomes murkier because the electronic structure is not
known or is poorly understood. hBN might have been put
in the top half of the table, if so it would present a severe
anomaly. Data for hBN in Tables VI and VII were computed
from an average of Refs. [105,106]. To suggest the possible
source of the anomaly, Table VII also shows an entry where
experimental data are taken only from Ref. [105], and by such
a comparison the agreement is in line with other materials.
Further experiments are needed to determine the true values
(both ordinary and extraordinary) for ε∞ in hBN.

For less well-characterized systems, if we make the ansatz
that the calculated ε∞ should coincide with the experimental
one when EG also coincides, we can assess the effect of the
error in the fundamental gap if ε∞ is better known (this is a
common situation). We can estimate what EG should be by
matching ε∞ [more generally ε(ω)] to experiment. In later
sections we apply this technique to several materials systems,
e.g., CuAlO2 (Sec. III E 7) and FeO (Sec. III F 4).

3. Thomas-Reiche-Kuhn sum rule
and the Tamm-Dancoff approximation

The Thomas-Reiche-Kuhn sum rule ( f -sum rule)

2

πω2
p

∫ ∞

0
ω′ Im[ε(ω′)] dω′ = 1 (30)

is readily derived within the RPA, assuming a local,
static potential. ωp = 4π n e2/m depends only on the the
number of free electrons/volume n, and fundamental
constants.

This rule is strongly violated if ε(ω) is calculated in the
RPA from an interacting G [129]; indeed this fact was one of
the original motivations for developing a quasiparticle form of
self-consistency. The QSGW potential is static but nonlocal,
so the position operator does not commute with the potential.
Thus, the TRK sum rule is no longer satisfied within the RPA,
and the left-hand side of Eq. (30) will typically exceed unity,
when Imε is computed within the RPA. This can be seen
from the special case when a potential is added to a local
(e.g., LDA) potential, which is diagonal in the basis of its
eigenfunctions. This is the most common way GW is applied
(Sec. II C): it modifies eigenvalues but not eigenfunctions.
Writing ELDA and EQP as the local (LDA) and QP-corrected
eigenvalues, respectively, matrix elements of velocity and mo-
mentum operators are related by [130,131]

〈i|v| j〉 = 〈i|p/m| j〉[EQP
i − EQP

j

][
ELDA

i − ELDA
j

]−1
, (31)

where i and j are unoccupied and occupied states, respec-
tively. Since GW tends to widen gaps relative to the LDA,
typically 〈i|v| j �〈i|p| j〉 which makes ImεQP > ImεLDA.

10MgO is a mild anomaly: QSGŴ already overestimated ε∞ and
the gap reduction worsens the discrepancy to about 7%. Several in-
dependent experiments place ε∞ at 2.95, so the experimental number
is likely reliable.
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TABLE VII. Estimated change to ε∞ induced by adjusting the QSGŴ self-energy according to Eq. (21), using α given in the table. �EG <

0 shows the change in fundamental band gap, in eV: �EG < 0 indicates the gap is reduced by taking β = 0 and γ = 1−α. �EG > 0 indicates
the gap is increased by taking γ = 0 and β = 1−α. ε and �ε are defined in Eq. (28). Column “org” indicates the probable predominant
physical origin of �EG: one of e-ph (electron-phonon); � (missing vertex in �), or * (unknown). Top box displays systems where both EG and
ε∞ are fairly reliably known, or reliably known. Bottom box contains entries where EG, and to some extent ε∞, are not well known. For CoO
and MnO no adjustment was made owing to uncertainty in ε∞, and lack of information about the effect of the electron-phonon interaction.

QSGŴ [α · QSGŴ + ��]a Expt

ε �ε ε �ε α �EG org ε �ε

AlN 4.14 0.155 4.33 0.172 0.80b −0.44 e-ph 4.47c 0.185
TiO2 6.03 1.09 6.40 1.20 0.90b −0.37 e-ph 6.39d 1.25
SrTiO3 4.84 5.11 0.90b −0.35 e-ph 5.17e

C 5.64 5.82 0.80b −0.31 e-ph 5.70f

CaO 3.04 3.28 0.90b −0.37 e-ph 3.28g

MgO 3.07 3.16 0.85b −0.53 e-ph 2.95h

InSb 14.2 15.5 0.80i −0.23 * 15.7j

CuCl 3.91 3.69 0.0k +0.77 � 3.71l

NiO 6.14 5.97 0.9m +0.23 � 5.73n

hBN 3.42 1.78 3.56 1.97 0.80b −0.48 e-ph 4.08o 1.33
hBN 3.63p 1.82
Cu2O 7.81 6.80 0.0q +0.53 � 6.46r

CuAlO2 5.43 5.22 0.8s +0.18 * 5.13t

CuO 7.86 7.12 0.8 +0.25 � 6.5%u

FeO 17.6 12.8 0.7 +0.26 � 10.2v

CoO 5.15 5.05w

MnO 4.76 4.95x

aα determines �� from Eq. (21), as described in the figure caption.
bTo make �EG correspond approximately to shift given in Ref. [40].
cAverage of Refs. [107,108].
dAverage of Refs. [103,109].
eAverage of Refs. [103,104].
fReference [110].
gReference [72].
hReference [111].
iSo that EG approximately match known gap, 0.24 eV at 0 K.
jReference [112]. See discussion around Table III.
kAdjusted gap approximately matches 3.46-eV gap from two-photon absorption, Ref. [94].
lAverage of Refs. [113,114].
mAdjust gap to average of Refs. [75,115].
nAverage of Refs. [76,116,117], variation ±0.3. See Sec. III F 1.
oAverage of Refs. [105,106].
pData from Ref. [105] alone.
qQSGW gap approximately matches 2.17 eV reported in Ref. [95], and is slightly smaller than the 2.3-eV gap reported by Zimmermann [118].
rReference [119].
sAdjust gap to approximately match measured ε∞.
tAverage of Refs. [120,121], with variation ±0.15. See Sec. III E 7.
uAverage of Refs [122,123]. See Sec. III F 5.
vAverage of Refs [124,125], variation ±0.9. See Sec. III F 4.
wAverage of Refs. [76,126,127], variation ±0.3. See Sec. III F 2.
xReference [128]. See Sec. III F 3.

It has been shown that the first-order vertex correc-
tion to the polarization reduces this violation [132,133]. In
Appendix A of Ref. [132] it was shown that Eq. (30) should
be satisfied for a particular form of nonlocal potential (self-
consistent COHSEX approximation) because terms from the
BSE kernel cancel the nonlocal part of the potential. Unfor-
tunately, the self-consistent COHSEX approximation yields
poor eigenvalues; but if the eigenvalues are bettered, e.g., with

a scissor operator, the cancellation is no longer exact. QSGW
is not COHSEX, but something akin to it, so we might expect
Eq. (30) to be reasonably well satisfied if we generate εBSE

from the QSGŴ hamiltonian.
Figure 12 shows the TRK integral (30) but where the upper

limit is taken to be a finite frequency ω, for Si, MnO, and
NiO. This shows how the effective number of electrons within
a frequency spectrum contribute to the sum. neff (ω) is not a
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FIG. 12. Frequency-resolved sum rule in Si, MnO, and NiO.
Dielectric functions εRPA, εBSE-TDA, and εBSE-full are compared: all are
generated from the same QSGŴ Hamiltonian.

strictly monotonic of ω in Si and MnO. This can be attributed
to finite cutoff parameters which slightly affect ε(ω) at
large ω.

We additionally assess the effect of the Tamm-Dancoff
approximation (TDA) on the sum rule. We have compared
QSGŴ with and without the TDA for a number of materials,
and for all the materials we studied, the change in εBSE was
quite small, and this is reflected in small changes to the sum
rule.

In all cases the sum rule derived from εRPA, εBSE-TDA, and
εBSE are compared. For Si and MnO the sum rule slightly
exceeds unity for εRPA, and is close to unity for εBSE, entirely
consistent with the preceding discussion. For NiO the behav-
ior is similar, but the sum rule seems to be underestimated by
about 20%.

We found that the TDA had little effect on the f -sum rules
in the systems investigated. This finding is not surprising since
the TDA has long been known to have a greater effect in
finite systems than in extended systems [32,134]. In theory
we believe the QSGŴ method with the TDA should satisfy the
f -sum rules reasonably well within the numerical accuracy of
the implementation in QUESTAAL, but the dependence of the
result on interaction kernel and the use of the TDA both need
further investigation.

E. Band structure and dielectric function in selected
nonmagnetic materials

In this section we present a variety of selected materials.
Where sufficient experimental information is available (e.g.,
LiF), those results are used to benchmark the theory. For
most of the systems presented here, the available experimental
information is partial, confused, or contradictory. For these
systems we use a mix of theory and what experimental in-
formation seems sufficiently reliable, to arrive at a consistent
picture where it seems reasonable to do so. In a few cases it is
not fully possible (see CuAlO2, Sec. III E 7).

The analysis relies on the ansatz stated in Sec. III D 2,
namely, that if G0 is good enough to well characterize one-
particle properties, it also well characterizes two-particle
properties provided an adequate theory for the vertex is used
and, moreover, that ladder diagrams are sufficient for the
vertex. This hypothesis was affirmed in nearly every case in
this study where reliable information is available.

1. LiF

The macroscopic dielectric function of the polar insulator
LiF was recently calculated in Ref. [29] within the BSE using
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FIG. 13. Imaginary part of the macroscopic dielectric function
for LiF. The experimental data (blue squares) [135] are compared
with the results from the QSGŴ method. The spectrum is redshifted
by 0.483 eV to account for lattice polarization effects (see text).
The spectral broadening was increased linearly to match that of the
experimental spectrum: the broadening at the first excitonic peak is
0.15 eV and at the X exciton peak (∼22 eV) is 1.25 eV.

QSGW as the starting G0. Since the vertex corrections are
omitted in QSGW the screening of the exchange was under-
screened and the gap too large. Combined with the neglect
of the electron-phonon self-energy, this results in a greatly
overestimated band gap of ∼16.2 eV, i.e., about 2 eV larger
than the experimental value. The underscreening also caused
an overestimation of about 0.5–1 eV of the exciton binding
energy. As a result of the partial cancellation of these errors,
producing the optical absorption spectrum using the BSE
with the QSGW electronic structure results in a blueshift of
∼0.9 eV with respect to experiment.

Here, we repeat the BSE calculation of the optical spectrum
but on top of the QSGŴ electronic structure and also consider
the lattice polarization effects. Including ladder-diagram ver-
tex corrections produces a fundamental band gap of 14.7 eV,
a reduction of over 1.4 eV, in agreement with the vertex cor-
rection calculated in Ref. [18]. Including the 0.48-eV polaron
shift correction from Ref. [70] gives then a band gap in excel-
lent agreement with the experimental value of 14.2 ± 0.2 eV
[136]. The exciton binding energy is around 2 eV, also in
agreement with the experimental value [136] and, as a conse-
quence, Fig. 13 shows an excellent overall agreement between
the theoretical and experimental spectra. The BSE ε∞ (1.95)
is close to the experimental one (1.96, Ref. [137] and 1.92,
Ref. [138]).

2. Bi2Te3

Bi2Te3 is widely studied because it has topological sur-
face states protected by time-reversal symmetry [139]. It is
a narrow-gap system with reported energy gaps between 130
and 170 meV [140–143]. The QSGW and QSGŴ bands
are shown in Fig. 14, and are seen to be nearly identical.
This system was studied previously [39] within the LDA and
GLDAW LDA approximations (albeit including the off-diagonal
parts of �). Figure 14 is in close agreement with Fig. 1 of
Ref. [39]. That the three many-body calculations (GLDAW LDA

of Ref. [39], QSGW and QSGŴ ) are so similar suggests
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FIG. 14. Energy band structure for Bi2Te3 computed by QSGŴ
(colored lines) and by QSGW (gray dashed lines).

that W is already well described by the LDA. Evidently,
ladder diagrams have almost no effect. This is perhaps not
surprising since the LDA and GW bands are also similar, with
the LDA gap slightly smaller at 50 meV [39]. QSGW and
QSGŴ energy gaps are both 145 meV, slightly larger than
120 meV reported in Ref. [39] (presumably because of self-
consistency), and within the range of reported experiments
[140–143].

3. ScN

ScN is a material of considerable interest in optoelectronics
applications, especially as a buffer layer. It is an indirect
gap material with the conduction band minimum at X. Its
band gap has been controversial with many reported values
ranging from 2.03–3.2 eV for the direct gap and 0.9–1.5 eV
for the indirect one. Theoretical predictions similarly vary,
with predictions ranging between 1.82–2.59 eV (direct) and
0.79–1.70 (indirect) (see Ref. [144] for a summary and de-
tailed discussion).

The most recent and detailed experimental study taking
into account prior work (Ref. [144]) yields an optical indirect
gap of 0.92 ± 0.05 eV (table in Fig. 15). QSGŴ predicts a
larger fundamental gap, 1.27 eV. The latter should be re-
duced by the electron-phonon interaction. Unfortunately no
information is available in the literature, but it is likely to be
similar to InN. The longitudinal and transverse mode phonon
frequencies are similar, while the electron effective masses in
ScN are heavier (0.34 eV for ScN, 0.07 eV for InN). Thus,
according to the Frölich formula (24), the electron-phonon
renormalization should be larger, by a factor between 1 and
2. A reasonable estimate is 0.1 eV, which is used in the table
in Fig. 15.

A study of εBSE(ω) yields an exciton at 2.19 eV; thus,
there is a spread of 0.14 eV between fundamental and optical
gaps. This is apparent in the dielectric function (right panel
of Fig. 15). The shoulder between 2 and 2.3 eV is the subgap
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FIG. 15. (Left) Energy bands for ScN. Red and green depict
projection onto Sc and N orbitals, respectively. (Right) Real and
imaginary parts of the BSE dielectric function. The gray dashed
line depicts the RPA dielectric function computed from the QSGŴ
self-energy. The dotted line is a guide to the eye, extrapolating the
second shoulder in Im ε to zero. Table below the figure: Experimental
and QSGŴ gaps and values for ε∞.

EG EG (dir) �E (e-ph) ε∞

Expta 0.92 2.07 7.7
QSGŴ 1.27 2.33 −0.10b 7.8
QSGŴ +e-ph 1.17 2.23

aReference [144].
bBased on analogy with InN, as described in the text.

excitonic transition. The dotted line is a guide to the eye,
extrapolating the onset of the second shoulder to zero.

Combining this shift with an (admittedly crude) estimate of
0.1 eV for the electron-phonon interaction brings the QSGŴ
and ellipsometry direct optical gaps to within 0.1 eV (approx-
imately the uncertainty in both theory and experiment). ε∞
also agrees well with Ref. [144] (table in Fig. 15). As εBSE(ω)
does not include indirect couplings via the electron-phonon
interaction, and we did not consider contribution from q = 0
transitions, and cannot determine the exciton binding for the
indirect transition, but it is reasonable to assume it is similar
to the direct one.

To summarize, a consistent picture emerges in close agree-
ment with the recent work of Ref. [144], with the proviso that
the one- and two-particle gaps must be distinguished.

4. CeO2

Electric conduction in CeO2 takes place both by ionic
and electronic conduction, and can be controlled by changing
the O2 pressure. Its unusual electrical properties make it a
promising candidate anode in solid oxide fuel cells, or for
intermediate-temperature electrolytes [145]. Its energy band
gap has been measured optically by a number of groups, by
absorption [146,147] or reflectance [145,148,149]. They vary
in details, but all report optical band gaps ranging between 3.1
and 3.3 eV. We compare against absorption data in Ref. [146]
because the reported energy range was wide enough to show
two peaks (Fig. 16).
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FIG. 16. Left: Energy band structure in CeO2 computed by
QSGŴ . Red, green, and blue correspond to Ce- f , Ce-d , and O-p
character, respectively. Light gray dashed lines show corresponding
QSGW bands. Right: Corresponding dielectric function. Circles are
absorbance data digitized from Ref. [146]. Red curve is the BSE
absorption α generated from the QSGŴ Hamiltonian (α = 4πn/λ,
n2 = dielectric function). The energy axis for the calculated function
is redshifted by 0.5 eV as described in the text.

The QSGŴ band gap is computed to be 4.24 eV (4.93 eV
in QSGW ). The valence band is almost pure O-p character,
the lowest conduction bands are nearly dispersionless Ce-4 f
bands (see left panel, Fig. 16). Above the narrow Ce-4 f bands
are states of mixed Ce-5d and Ce-6s character. LDA bands are
not shown, but there is an orbital-selective shift: Ce-4 f bands
shift about 2.4 eV relative to the LDA, while the Ce-5d bands
shift only 0.8 eV. (There is a smaller but orbital-selective
shift of the opposite sign as ladders are added to QSGW , as
happens for NiO, Fig. 5.) The LDA gap (1.8 eV) is not so far
removed from the optical gap (∼3.2 eV), but this is largely
fortuitous, for several reasons.

(i) The LDA badly underestimates the shift in empty
Ce-4 f states.

(ii) There is a large renormalization of the Hartree part
of the Hamiltonian, which reduces the gap substantially
(Table I), and this partially cancels the first error.

(iii) The optical gap and fundamental gap apparently differ
by ∼0.6 eV. Note the absorption spectra in the right panel of
Fig. 16. In that figure, the BSE optical spectra were redshifted
by 0.5 eV to align them with the absorption data. Thus, the
QSGŴ optical gap is ∼3.6 eV, about 0.6 eV less than the
fundamental gap. QSGŴ still overestimates the optical gap
by ∼0.5 eV (Fig. 16); however, some portion of this differ-
ence can be attributed to the electron-phonon interaction, as
explained below.

The global valence band maximum falls on the � line,
about 2

3 between � and K (see Fig. 16), though other local
maxima are nearly degenerate with it.

Comparing ε∞ to experiment is not straightforward be-
cause of the wide dispersion in reported experimental data,
as well as preparation conditions [150] and the crystallinity of
the material. Reported values vary from 4.7 [151] to a range
between 5.8 and 6.6 [152] on single crystals. A measurement
of highly oriented crystalline films yields ε∞ = 6.1 [150]. ε∞
from QSGŴ +BSE is found to be 5.8, which fits comfortably
within the range of reported experimental values.

An estimate of the zero-point motion can be made using
Eq. (24). For this equation, aP is needed separately for the
conduction band and valence band; however, the effective
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FIG. 17. (Left) Energy bands for TiO2. Colored bands are taken
from QSGŴ calculations, with red and blue showing projections
onto Ti d and O, respectively. Dashed gray lines show corresponding
QSGW results. (Right) Dielectric function for polarization parallel
and perpendicular to the z axis. Circles connected by dotted red lines
are data digitized from Ref. [103]. BSE Im ε⊥(ω) and Im ε‖(ω), com-
puted from QSGŴ , are shown in green. Light dashed lines compare
the RPA results generated from the same QSGŴ Hamiltonian.

mass approximation is not meaningful for the almost flat
conduction band, and we consider only the valence band
here. Various experiments put ωLO = 30±5 meV [153]; we
compute the QSGŴ hole masses to be (0.86, 1.3, 1.8)m0, for
an average mass of 1.27. Using these values, we obtain aP =
18.9a0. The static dielectric constant is roughly ∼25 [154].
Using ε∞ = 6, Eq. (24) predicts the valence band contribution
to gap reduction to be 46 meV. Effective mass theory cannot
be applied to the nearly dispersionless conduction band, but
it is reasonable to expect its contribution to the total gap
reduction to be several times larger. A factor of 3 larger con-
duction band contribution would give a total gap correction of
∼0.2 eV. This accounts in part, but it would seem not entirely,
for the apparent ∼0.3–0.5 eV overestimate of the optical gap
predicted by QSGŴ . It would seem a discrepancy of order
0.3 eV remains, but a better determination of the electron-
phonon interaction is needed to know the discrepancy reliably.
Assuming that, for whatever reason, the QSGŴ gap is too
large by 0.5 eV, the fundamental gap should be about 3.75 eV.

The RPA dielectric function calculated from the LDA [153]
also shows a peak around 3 eV, but this is an artifact of error
cancellation: RPA omits strong excitonic effects and the LDA
gap is too small.

5. TiO2

TiO2, also known as titania, is a widely used commer-
cial compound as food coloring (E number E171) and as a
pigment in paint, for example. We consider here only the
rutile phase. TiO2 is a d0 system with valence band essen-
tially O-2p character and conduction Ti-d character (Fig. 17).
The optical absorption edge was measured to be ∼3.3 eV by
Cardona and Harbeke from reflection measurements [103],
and as 3.03 eV from optical transmission [155]. This is well
below the calculated QSGŴ fundamental gap of 3.88 eV. Part
of the difference may be attributed to the electron-phonon
interaction, which was calculated in Ref. [40] to reduce the
gap by 0.34 eV. Reducing the gap by this amount puts it in
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line with a PES/BIS study, which reported a fundamental gap
of 3.3 ± 0.5 eV [156].

The first peak in Im ε(ω) is blueshifted about 0.2 eV
compared to experiment [103], and correspondingly ε∞ is
about 5% smaller than experiment (Table VII). The corre-
sponding QSGŴ birefringence is also slightly underestimated
(Table VI): �nBSE = 0.22 compared to �nexpt = 0.26. The
corresponding RPA values from QSGW are about 80% of
experiment, as is typical, with �nRPA = 0.16. Excitonic ef-
fects are strong in TiO2: compare ImRPAε to ImBSEε in Fig. 17
(both were generated from the same Hamiltonian). The BSE
redshifts the peak in Imε and significantly changes the shape.

Both ImBSE
‖ ε(ω) and ImBSE

⊥ ε(ω) show reasonable resem-
blance to the experiment below 6 eV: peak at 4 eV, shoulder
at 5 eV in both Im ε‖ and Im ε⊥. Three bound, weakly ac-
tive excitons are found in the region (Ec−0.45, Ec−0.17 eV)
below the fundamental gap, and several bright ones between
Ec−0.13 and Ec. Here Ec is the conduction band minimum.
Thus, ImBSEε shows a strong peak close to the fundamental
gap, with a tail extending below.

The electron-phonon interaction missing in QSGŴ well
accounts for the blueshift in leading shoulders in ImBSE

‖ ε(ω)
and ImBSE

⊥ ε(ω) relative to experiment. As a proxy to account
for it, we repeat the calculation with a hybrid G0, consisting
of 90% QSGŴ and 10% LDA. This reduces the gap by
the amount calculated in Ref. [40]. With this shift, ε∞ and
the birefringence both align closely to available experiments
(Table VII).

Thus, discrepancies in QSGŴ fundamental gap and ex-
perimental optical gap are fully explained in terms of a
combination of excitonic effects, and the electron-phonon
interaction. Adding the latter to the QSGŴ fundamental gap,
we conclude that its true value is 3.5 ± 0.1 eV, significantly
larger than the widely accepted value of ∼3 eV.

6. SrTiO3

SrTiO3 is a perovskite material that may exist in the
usual different perovskite phases: cubic, tetragonal, and or-
thorhombic. Like TiO2, it is a d0 compound with valence
band essentially O-2p character and conduction Ti-d character
(Fig. 18). In this respect it is very similar to TiO2, and care
must be taken in interpreting the experiments to determine
the fundamental band gap. The experimental band gap is re-
ported to be 3.25 eV (indirect) and 3.75 eV (direct) [157] and
according to Bhandari et al. [71] it is almost independent of
the structure. According to QSGŴ , the system has a indirect
gap, of 4.06 eV, with the valence band maximum at R and
conduction band minimum at �. The direct gap at � is 4.51 eV,
larger than the indirect one by 0.45 eV; however, the QSGŴ
fundamental gap and optical direct gap differ by about 0.75 eV
(Fig. 18). Note the BSE code has no electron-phonon coupling
and cannot detect indirect transitions.

Peak positions at 5, 9, and 12 eV correspond well to ellip-
sometry data, though peak amplitudes are different, especially
at 6 and 7 eV. There are three reported experimental values for
ε∞: the low-frequency index of refraction [109] extrapolated
to 0 (Sec. II H) yields ε∞ = 4.71. n between 2.2 and 2.3 (re-
ported in Ref. [157]) yields ε∞ ranging between 4.8 and 5.3;
and finally a classic ellipsometry measurement by Cardona
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FIG. 18. (Left) Energy bands for SrTiO3. Colored bands taken
from QSGŴ calculations, with red and blue showing projections
onto Ti 4d and O 2p, respectively. Gray lines show corresponding
QSGW results. (Right) Dielectric function. Circles connected by
dotted red lines are data digitized from Ref. [103]. The black line
shows the Im εBSE(ω) generated from a QSGŴ Hamiltonian on a
10×10×10k mesh (the waviness is an artifact of incomplete k con-
vergence). The gray line shows Im εRPA(ω) generated from the same
Hamiltonian. Im εRPA(ω) vanishes at the fundamental direct gap.

[158] reported ε∞ = 5.3. Thus, it is likely ε∞=5.0±0.3. We
find from QSGŴ ε∞ = 4.84 slightly lower than the average,
consistent with the band gap being slightly overestimated. Ac-
cording to Ref. [40], the electron-phonon interaction should
reduce the gap by 0.33 eV.

The shoulder in QSGŴ dielectric function in Fig. 18
lies about 0.1 eV above the ellipsometry measurement of
Ref. [157]. This suggests that the band structure is close to
the true one. ε∞ is slightly lower than the average experi-
mental value (Table VIII), which suggests that the uncorrected
QSGŴ gap is slightly too large. Using a hybrid functional to
reduce the gap, ε∞ moves close to the average experimen-
tal value for ε∞ (Table VIII), but the shoulder in ε(ω) is
slightly redshifted relative to the Benthem data. Thus, there
is a slight inconsistency. This excludes a precise determina-
tion of the fundamental gap, but we conclude it is 3.75 ±
0.1 eV, which is about 0.5 eV larger than the reported optical
gap.

7. CuAlO2

CuAlO2 has received a great deal of attention because it is
a p-type transparent conducting oxide (TCO); indeed, it seems
to be the only known TCO that can be doped p type.

CuAlO2 was not included in Fig. 4 because reports of its
magnitude vary widely. Reports of the lowest (indirect) gap

TABLE VIII. Experimental and QSGŴ gaps and ε∞ in SrTiO3.

EG EG (dir) �E (e-ph) ε∞

Expta 3.25 3.75 5.0 ± 0.3b

QSGŴ 4.05 4.42 −0.33c 4.84
0.9 QSGŴ +0.1LDA 3.72 5.11

aReference [157].
bAverage of Refs. [109,157,158].
cApproximately the value in Ref. [40].
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FIG. 19. (Left) Energy bands for CuAlO2. Colored bands are
taken from QSGŴ calculations, with red, blue, and green showing
projections onto Cu d , O, and Cu sp, respectively. Dashed gray lines
show corresponding QSGW results. Points S, F, and L correspond
to ( 2

3 , 1
3 , 0), ( 1
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2 ), respectively, as multiples of
the reciprocal lattice vectors. (Right) Dielectric function (average
of x and z directions) as function of frequency ω (eV). Solid line
shows Im εBSE(ω), generated from QSGŴ . The green dashed line
shows Im εRPA also generated from the QSGŴ Hamiltonian. Note
Im εBSE and Im εRPA approach 0 near the fundamental direct gap at
4 eV; however, Im εBSE has additional subgap peaks from strongly
bound excitons. The blue dotted line shows Im εRPA(ω) generated
from QSGW . The RPA functions look similar except for a 1-eV shift,
because of the difference in band gaps.

range between 1.65 [159,160] and 2.99 eV [161,162], and
a direct gap ranging between 3.3 and 4.2 eV [161,163,164].
QSGŴ finds that the valence band is almost exclusively Cu 3d
character, with its maximum at a low-symmetry point near S
in Fig. 19. The conduction band minimum at � is mixed Cu-sd
and O-p character. The fundamental (indirect) gap is found
to be 3.5 eV, and the lowest direct gap at L is 4.0 eV. There
is a large region of k space where the highest valence band
is nearly dispersionless. A prior calculation, using a hybrid
functional, found similar gaps but not the nearly dispersion-
less highest valence band [165].

The principal axes for hole mass are along low-symmetry
directions, with a moderate mass (1.3) on one principal axis
and large masses (2.7, ∼10) on the other two. The conduction
band at �, by contrast, has much smaller masses and they are
along the Cartesian axes (1.3 in xy, 0.41 along z). It has been
argued that there should be a large gap renormalization from
the electron-phonon interaction [166]; however, the measured
difference ε∞ (5.1) and ε0 (7.7) [120] is fairly small, and the
eigenstates at the band edges are mostly Cu like instead of O
(as it is in MgO), both of which reduce �e-ph in the Frölich
model (Sec. II G).11

The fundamental gap is in line with the photoemission
study of Ref. [159], which measures the DOS, a one-particle
property. However, when two-particle properties are consid-
ered, QSGŴ predicts the situation to be more complicated.
The right panel of Fig. 19 compares the BSE and RPA di-
electric functions. Both approach 0 at the fundamental direct
gap. However, the BSE shows strong peaks below the fun-
damental gap, around 3.2 eV; there are also several excitons
between 3.7 eV and the fundamental gap at 4 eV. Such deep

11It would seem that Ref. [166] did not properly take into account
the volume confinement of W in q space [70].

excitons are not typical in sp semiconductors, but it can be
understood as an artifact of the nearly dispersionless Cu-like
valence band, as well as a relatively small dielectric constant
of 5.1. QSGŴ predicts ε∞ rather well. If the strong correlation
between the reliability of ε∞ and the band gap (Sec. III B 3)
applies equally to CuAlO2, the gap should be close to the
QSGŴ prediction of 3.5 eV.

ε(ω) was computed without an electron-phonon contribu-
tion, so it can only measure direct transitions. Presumably
there will be other excitons for bound electron-hole pairs
coupling � and states in the valence band as well; thus, the
optical response will show some intensity in a spread below
the peak at 3.2 eV, larger than what is shown in Fig. 19, possi-
bly as much as the difference between the direct and indirect
gap. Since most determinations of the gap are performed with
optical measurements, much of the confusion in the literature
likely originates from these deep excitons. These excitons
cannot explain a gap as low as 1.8 eV; however, such a gap
likely originates from a defect band, which explains why it
is not always seen. Indeed, recent work [167] shows that the
optical absorption edge is strongly dependent on preparation
and postannealing conditions. Defects apparently play an im-
portant role, which adds to the confusion about experimental
reports on this materials system.

8. VO2

In the low-temperature monoclinic (M1) phase, VO2 has a
gap approximately 0.7 eV [168,169]. M1 is a deformation of
the high-symmetry rutile phase. The unit cell, consisting of
four V atoms all equal in the rutile phase, dimerize into two
pairs with short bond lengths. It is generally agreed that the
V dimerization is what is responsible for the gap, splitting the
V d manifold into a single occupied d bond per dimer, and
a corresponding antibond (Peierls transition). Wentzcovitch
et al. [170] calculated the energy band structure and suggested
that despite the LDA yielding no gap, that the origin of the
gap was more Peierls type than Mott type. This picture is
further supported by the observation that LDA augmented
by single-site DMFT is also metallic [171], which would not
happen in a simple Mott description. A cluster form of DMFT
added to LDA does yield a gap [172]. This indicates that
the nonlocality of the self-energy is essential, and explains
why it is too small in the LDA. Gatti et al. [173] employed
GW to study this system, which captures the nonlocality quite
well. While they found GLDAW LDA failed to open a gap, a
self-consistent GW scheme within the COHSEX approxima-
tion did so. Counterbalancing this view, a DMFT work [174]
argued the M1 phase should be characterized as the Mott tran-
sition in the presence of strong intersite exchange. In our view
Gatti’s work is the most definitive, as it does not rely on the
LDA, partitioning, or adjustable parameters. It also confirms
the original Wentzcovitch conjecture: VO2 is a simple band
insulator.

In further support of this conjecture, magnetism appears
to play no role in this phase, as we show next. Here we
computed the electronic structure of VO2 in the QSGW and
QSGŴ approximations. VO2 has a nearly dispersionless core-
like valence band maximum (Fig. 20). This makes it a prime
candidate for the gap to be underestimated, owing to the

165104-23



BRIAN CUNNINGHAM et al. PHYSICAL REVIEW B 108, 165104 (2023)

−6

−4

−2

0

2

4

6

Z Γ N Y Γ M
−6

−4

−2

0

2

4

6

Z Γ N Y Γ M

FIG. 20. Left: Energy band structure of VO2 in the M1 phase
within the QSGW approximation. Red, green, and blue project onto
V d (m = −2, −1, 0), Vd (m = 1, 2), and O orbitals, respectively.
The QSGŴ bands (not shown) are essentially the same but with a
0.3-eV smaller band gap (see text). Right: Corresponding bands of
the M2 phase. In this figure red and green project onto the dimerized
and undimerized V d orbitals, respectively.

missing vertex (see discussion around Table IV). Indeed,
QSGW predicts a rather good gap (EG = 0.76 eV) owing to a
fortuitous error cancellation, while QSGŴ underestimates the
gap (0.43 eV), reminiscent of CuCl.

If Mott physics were involved, magnetism should play a
role. We find within QSGW that magnetism is totally sup-
pressed in the M1 phase: attempts to find a magnetic solution
always reverted to a nonmagnetic one with self-consistency.
The situation is very different in the metastable M2 phase,
where half of the V pairs dimerize and the other half do
not. Nonmagnetic QSGW predicts a metallic phase. An in-
sulating phase forms, however, if the system is allowed to
be magnetic. To determine the magnetic structure, each of
the four V atoms was assigned an arbitrary moment and
the system driven self-consistent. We find that the magnetic
moment on the dimerized pair vanishes, while spins on the
undimerized pair becomes antiferromagnetically aligned with
a local moment of 0.8 μB, which opens a gap of 0.7 eV.12

The band structure looks remarkably similar to the M1 phase,
even though the physical basis for the gap is very different.
Strikingly, one of the two states forming the upper valence
band consists almost purely of dimerized V, while the other is
almost purely undimerized V. There is very little hybridization
between them, or between V and O.

That the physical basis for gap formation differs in the
M1 and M2 phases was already pointed out in a comment to
the Wentzcovitch paper [175]. Their argument was based on
NMR and EPR evidence for low-lying spin excitations in the
M2 phase, which is consistent with this work.

The picture from QSGŴ is similar to that of the DMFT
calculation of Ref. [174] for the M2 phase, but differs for
the M1 phase. It finds a simple Peierls distortion accounts
for the known properties, and magnetism plays essentially no

12In the M2 phase the magnetism is likely disordered. However, a
paramagnetic state can maintain essentially the same gap as the an-
tiferromagnetic one, as it does for many antiferromagnetic insulators
such as NiO, CoO, and La2CuO4.

role for the latter. Reference [174] argues that the temperature
dependence of the band gap is electronic in origin, and uses
this as support for the Mott picture; however, QSGW calcula-
tions point to phonons playing an important role in controlling
the band gap at high temperature, with strong support from
experimental data [176]. Figure 3 of that work also presented
the conductivity derived from the BSE dielectric function,
with QSGW as a reference Hamiltonian. Agreement with
ellipsometry data [177] is quite satisfactory.

F. Antiferromagnetic insulating oxides

The monoxide crystal structures MnO, FeO, CoO, and NiO
are all of rocksalt form. The magnetic structure consists of
sheets of spins antiferromagnetically ordered, which doubles
the size of the unit cell. According to the classic paper by
Roth [178], the alternating sheets lie in the (111) plane, but
the spin orientation depends on the monoxide. MnO and NiO
are predicted to be band insulators even within the LDA. In
these cases the spin orientation scarcely affects the electronic
structure, and we assume the simpler [001] orientation. CoO
and FeO are different: LDA predicts both to be metallic. Spins
point in the [1̄1̄7] direction in CoO, and perpendicular to the
(111) plane in FeO [178]. For these systems we orient the
spin quantization axis along these directions and also do not
assume time-reversal symmetry.

All of the rocksalt structure oxides have sizable magnetic
moments. By contrast, CuO is monoclinic with 8 formula
units in the unit cell (Sec. III F 5) and a small local moment
(Table IX).

Rödl and Bechstedt modeled the QP band structure of the
rocksalt oxides with GW starting from a GGA+U functional
[179], and later these authors used the BSE framework to
examine the optical response, using a reference potential gen-
erated by a GHSE03W HSE03 functional [180].

In each of these systems (and probably Fe3O4, Sec. III F 7),
QSGW significantly overestimates the band gap, but not the
local moment (Table IX), the difference being more pro-
nounced than in nonmagnetic counterparts. QSGŴ greatly
amelioriates this overestimate, sometimes slightly overcor-
recting QSGW because of the missing vertex. Precise
benchmarking is difficult owing to the large uncertainty
in experimental data, especially in the strongly correlated
cases. One measure of correlation is the Z factor, Eq. (13).
Table IX presents a band- and k-averaged Z factor, namely,
the ratio of the interacting to noninteracting spectral functions
A(ω)/A0(ω) at an energy just below the Fermi level. The
degree of correlation differs in each case so each system is
dealt with individually.

1. NiO

Figure 5 shows the (noninteracting) energy bands of NiO,
and compares the DOS to BIS data. On the scale of the
figure, agreement is excellent. However, QSGŴ apparently
slightly underestimates the band gap, which is apparent in
both the BIS data and the optics data of Fig. 5. Also, the
BSE value for ε∞, at 6.15, is outside the range of re-
ported values (Table IX). Replacing �(QSGŴ ) with a hybrid
0.9 �(QSGŴ )+0.1 �(QSGW ) [Eq. (21)], the gap increases
by 0.17 eV, and ε∞ decreases to 5.97. This is perhaps the
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TABLE IX. Band gap; ε∞; local magnetic moment; band- and
k-averaged Z factor in selected antiferromagnetic insulators.

MnO NiO CoO FeO CuO LSCO

Gap 0.71 0.55 0.01
LDA ε∞ 8.81 32.0

m 4.48 1.21 0.27
QSGW Gap 3.77 5.03 4.00 1.9 2.80 3.09

ε∞ 3.72 4.27 3.87 4.08 4.86 4.04
m 4.76 1.71 2.73 3.65 0.71 0.64

QSGŴ Gap 3.05 3.23 3.28 0.67 1.52 1.66
ε∞ 4.76 6.15 5.15 17.6 7.85 5.5a

m 4.73 1.67 2.70 3.66 0.66 0.53
Z ∼0.75 ∼0.7 ∼0.75 ∼0.4 ∼0.5b ∼0.5c

Expt Gap 3–3.9 4.0,4.3d ∼2.6e <1f 1.3,1.4g ∼2h

ε∞ 4.95i 5.43–6.0j ∼5k 9.24–11.1l 6.5m ∼5n

m 4.79 1.64,1.77o 2.47p 3.32q 0.68r 0.64s

aAverage of εxx [Eq. (6.5)] and εzz [Eq. (4.5)].
bStrongly orbital dependent: Z ∼ 0.65 for the (mostly O) valence
bands, and ∼0.45 for the (mostly Cu) conduction bands.
cStrongly state dependent: Z ∼ 0.65 for the highest valence bands,
and ∼0.4 for lowest conduction band.
dReferences [75,115,118].
eOptical absorption edge, Ref. [76]; BIS Refs [181]. See Sec. III F 2.
fReference [118].
gOptical absorption edge [151]; PES/BIS and XPS [182,183].
hReflectivity, Ref. [184], optical conductivity, Ref. [53].
iReststrahlen spectrum, Ref. [128]. See Sec. III F 3.
jReferences [76,116,117].
kReferences [76,126,127]. See Sec. III F 2.
lRefserences [124,125].
mReferences [122,123].
nReported in Ref. [184]. References [185,186] report anomalously
large index of refraction (so that ε∞ ∼ 25–50), which is likely con-
nected to excess holes in nominal La2CuO4.
oValues cited in Ref. [187], taken from Refs. [188] and [189].
pSpin moment from Ref. [190]. Orbital moment estimated to be
∼1 μB.
qReference [178].
rReferences [191,192].
sA consensus value of 0.64μB ± 10% from several sources,
Ref. [193].

best-characterized correlated materials system, though even
for NiO there is some spread in reported values for both the
dielectric function and the fundamental gap. We can conclude
that to within this experimental uncertainty, the close connec-
tion between gap and ε∞ (Sec. III D 2) is affirmed.

Some ARPES experiments on this correlated antiferromag-
net have been published [194]. Accordingly, we generated the
fully dynamical self-energy to compute the k-resolved spec-
tral function and compare to it (Fig. 21). The extent to which
a particular band is broadened is strongly band dependent.
Agreement with ARPES is satisfactory, in light of the fact
that that the matrix element and final-state effects would have
to be included for a direct comparison. Quite remarkably, the
QSGŴ spectral function looks nearly identical to one gen-
erated by LDA+DMFT [195]. The close similarity between
these two completely different approaches lends support to the

FIG. 21. Spectral function NiO along the �-X line, compared
against ARPES measurements, Fig. 6 of Ref. [194] (green circles).

thesis that both are characterizing the actual spectral function
of NiO.

2. CoO

Our QSGŴ gap is 3.28 eV (see the band structure in the
left panel of Fig. 22), and larger than a gap of 2.5 eV mea-
sured by a combination of XPS and BIS [181]. Optical gap
of similar size (∼2.6 eV) has been observed [76]. These two
experimental findings are consistent only if there are no exci-
tonic effects to reduce the gap. Our QSGŴ calculations show,
however, that there are a multiplicity of excitons throughout
the gap at q = 0. The deeper ones (ranging between 0.4 and
1.7 eV) are dark, but strongly active ones at 2.8, 2.96, 3.0,
and 3.1 eV also appear. These are likely broadened somewhat,
e.g., via some phonon-mediated transitions linking different
q, which our calculation does not take into account. Finally,
the QSGŴ dielectric constant (5.15) aligns well with the
mean value of various experiments (5.43 [126], 5.29 [127],
4.75 [76]). If the consistency between gap and ε∞ argued in
Sec. III B 3 can be relied on, it provides another indication that
the QSGŴ fundamental gap is close to the true one.

3. MnO

van Elp et al. measured the fundamental gap of MnO by
x-ray photoelectron and BIS spectroscopies, and obtained a
gap of 3.9 eV [197]. Three kinds of subgap transitions have
been recorded by several groups, labeled as A, B, C transitions,
and identified with the following symmetries 6A1g→4T 1g
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FIG. 22. Left: Energy band structure of CoO. Green and blue
represents Co-centered orbitals (green: d , blue: sp f ), and red O-
centered orbitals. Right: Im ε(ω) measured by Messick et al. [196]
compared to BSE@QSGŴ .
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FIG. 23. Left: Energy band structure of MnO. Green and blue
represents Mn-centered orbitals (green: d , blue: sp f ), and red O-
centered orbitals. Right: Im ε(ω) measured by Messick et al. [196]
(circles connected by red dots) compared to BSE@QSGŴ . Also
shown at low energy (circles connected by green dots) is a scaled
absorption, α2/ω2, taken from Ref. [200].

(A band), 6A1g→4T 2g (B band), 6A1g→4A1g+4E1g (C band)
[198,199]. These transitions are forbidden due to spin and
parity selection rules, though significant oscillator strengths
have been observed. Huffman et al. reported two additional
peaks [200], the highest at ∼3.5 eV.

The band structure depicted in the left panel of Fig. 23 is
roughly similar to the one depicted by Rödl et al. [180]. Unlike
NiO, the conduction band is essentially pure Mn s character,
the Mn d (t2g) appearing at 6–8 eV. The direct gap is at �, and
is calculated to be 3.6 eV, slightly smaller than the XPS/BIS
value (3.9 eV) reported in Ref. [197].

The BSE value for εBSE
∞ is slightly smaller than observed

in a reststrahlen experiment [128] (Table IX). This suggests
an inconsistency with the gap being underestimated; however,
the maximum value of Im ε derived from n and k presented in
that experiment is about an order of magnitude too large, so it
is not clear how reliable the measurement is.

We find a dark exciton at 3.07 eV and several bright ones
at ∼3.5 eV, which can be seen from the shoulder in Im ε(ω)
below the fundamental gap. These possibly correspond to the
highest peaks observed by Huffman et al. [200]. We do not
find the weak A and B excitons [198,199]; possibly these are
associated with a phonon-assisted transition and an electronic
part at finite q. The main shoulder in Im ε(ω) starts to rise
about 0.3 eV earlier than the reflectance data of Ref. [196]
(Fig. 23). This is consistent with the discrepancy in the
XPS/BIS measurement of Ref. [197]. Thus, we tentatively
conclude that the QSGŴ gap is ∼0.3 eV too low, though
reliable experimental evidence is too limited to draw strong
conclusions.

4. FeO

FeO poses one of the most challenging benchmarks in this
study. Its highest valence state consists of a single, almost
dispersionless d orbital whose m character changes with wave
number (Fig. 24). The small-Z factor (Table IX) provides a
clear indication that FeO is strongly correlated.

Experimental information about FeO is sparse and some-
what inconsistent. Two values for ε∞ have been reported: 9.24
[125] and 11.9 [124]. The former may be more reliable since
the latter experiment was performed on FexO, with x deviat-
ing several percent from unity. Bowen et al. investigated the
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FIG. 24. Left: Energy band structure FeO. Green and blue repre-
sents Fe-centered d orbitals (green: m=−2, −1; blue: m = 0, 1, 2),
and red O-centered orbitals. Right: Absorption α(ω) measured by
Bowen et al. [201] compared to BSE@QSGŴ (red) with absorption
computed from Eq. (19). Also shown are BSE generated from a
hybrid of QSGŴ and QSGW � [Eq. (21)], with β = 0.3 (BSE1)
and β = 0.6 (BSE2) (see Table X).

infrared absorption [201], which we use here to benchmark
against the BSE.

Regarding the fundamental gap, there is a general expec-
tation in both experimental and theoretical literature that it
is of order 2.5 eV [179,187,195,202]. Rödl et al. associated
the sharp rise in α(ω) observed around 2.4 eV in Ref. [201],
with the fundamental gap. Hiraoka et al. [203] also assumed
the fundamental gap was of this order but observed a peak
in Im ε at ∼1 eV and tentatively assigned it to a defect band.
Absorption data show peaks at both 1.2 and 2.4 eV [201] (see
Fig. 24).

Turning to theory, at the QSGW level the fundamental gap
is found to be 1.9 eV, with the smallest direct gap 2.4 eV. In
all the other antiferromagnetic oxides of this study, QSGW
overestimates the gap by ∼1 eV (Table IX), so these gaps
are likely too high. At the QSGŴ level, the fundamental gap
is much smaller, 0.64 eV. This leads to a puzzle: Why does
QSGŴ yield such a gap so different from the accepted values
in the literature?

Counterbalancing the experiments just mentioned,
Zimmermann observed the one-particle spectral function
XPS/BIS [118]. He did not attempt to extract a band gap,
but based on his Fig. 15, it would be of order 1 eV. The
XPS/BIS data and the optical measurements both point to the
lowest excitation of order 1 eV, even though no deep excitons
were found by QSGŴ to explain the absorption peak there.
Thus, our QSGŴ analysis suggests a different interpretation,
namely, that the observed peak in the absorption α(ω) around
1.2 eV (Fig. 24) corresponds to the true fundamental gap.

The QSGŴ prediction for EG is likely too small: FeO’s
practically dispersionless valence band strongly resembles
that of VO2 (Sec. III E 8), and we can expect the gap to be sim-
ilarly underestimated in QSGŴ . Using materials in Table IV
as a guide, the gap can be expected to be underestimated by
∼0.5 eV. Two other pieces of evidence point to the gap being
underestimated: εBSE

∞ is much larger than the two experiments
noted earlier (Table X) and the peak in α(ω) falls at ∼0.8 eV,
well below the 1.2-eV peak reported in Ref. [201] (Fig. 24).

To adjust for the probable QSGŴ gap underestimate, we
consider a hybrid of QSGŴ and QSGW , Eq. (21), and bench-
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FIG. 25. Left: Energy band structure of CuO. Colors depict
the following orbital characters: blue, Cu d; green, Cu sp, red,
O sp. Right: Im ε(ω) measured by Ito et al. [122] compared to
BSE@QSGŴ . Discrepancies with experiment are discussed in the
text.

mark both ε∞ and the two peaks in absorption, for different
admixtures β of QSGW into QSGŴ (Fig. 24). Table X shows
the variation of EG and ε∞ with β. Perfect alignment with
the best available experimental value for ε∞ corresponds to
EG = 1.05 eV.

Thus, if FeO has a fundamental gap 1.05–1.10 eV, a con-
sistent picture emerges. First, the two peaks in α(ω) for BSE2
and BSE1 (Fig. 24 and Table X) bracket the two experimental
peaks from above and below. Second, the one-particle DOS is
consistent with XPS/BIS [118]. Finally, ε∞ is consistent with
the best available experimental data.

5. CuO

CuO has a monoclinic lattice structure of four formula
units [204], while the magnetic structure is antiferromagnetic,
and is a

√
2×1×√

2 supercell of lattice with eight formula
units [191,205]. The nominal configuration Cu2+O2− would
imply a single unpaired d electron; however, the magnetic
moment is substantially smaller than 1μB/atom (Table IX).

The QSGŴ energy band structure is depicted in the left
panel of Fig. 25. The valence band consists of approximately
2
3 O-p character, and 1

3 Cu-d character, and the conduction
bands 1

3 O-p character, and 2
3 Cu-d character. Orbital weight-

ing is quite different from cuprates such as La2CuO4, where
both band edges are dominated by Cu. This finding is roughly
in line with the DFT calculation of Filippetti and Fiorentini
[205], who assigned the highest valence to O p (the LDA puts
O p too high, so the O character will be overestimated).

A band gap has been measured optically from the ab-
sorption edge [151], and also by PES/BIS [182] and XPS
[183]. All three measurements report band gaps in 1.3–1.4 eV

TABLE X. Optical properties in FeO as a function of hybridiza-
tion parameter β, Eq. (21). EG is the fundamental gap in eV; EG

(�→�) is the direct gap at �. Labels in the second column are used
in Fig. 24.

β label EG EG (�→�) ε∞

0 BSE 0.64 0.94 17.6
0.3 BSE1 0.90 1.28 11.2
0.6 BSE2 1.19 1.63 8.04
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FIG. 26. (Left) Density of states generated from G compared to
that generated from the QSGŴ G0. Zero energy corresponds to the
valence band maximum. (Right) Spectral function from interacting G
generated by QSGŴ . Yellow lines below −2 eV trace out the QSGŴ
bands, and are equivalent to those in the left panel of Fig. 25.

range, slightly smaller than the 1.52-eV fundamental gap
from QSGŴ (Table IX). However, QSGŴ overestimates ε∞
(Table IX) by about 20%, which if the consistency between
the gap and ε∞ can be relied on (Sec. III B 3), the QSGŴ
fundamental gap must be too small. Moreover, if we compare
ε(ω) against ellipsometry measurements of Ito et al. [122],
the peaks of Im ε(ω) are seen to fall ∼0.3 eV below the
experimental data. From this we conclude it is likely that the
fundamental gap is closer to 1.6 eV, assuming the dielectric
data of Ito et al. [122] is reliable. This would mean the
PES/BIS is underestimated. It is perhaps not unexpected since
the BIS should be larger than the optical gap.

That experimentally Im ε(ω) is smoother than the QSGŴ
one can be attributed (at least in part) to ε(ω) being generated
from a noninteracting G0 (QSGŴ ). The frequency depen-
dence of � reduces quasiparticle weights (compare the DOS
of the interacting G to that of G0, left panel of Fig. 26), and
the imaginary part smears out the quasiparticle (right panel
of Fig. 26). CuO is very strongly correlated: note the sharp
reduction in the DOS around 2 eV. These dynamical effects
do not shift the average position of the bands (owing to the
QSGW construction) but will smooth out transitions between
occupied and unoccupied states and, correspondingly, the
imaginary part of the longitudinal dielectric function in the
basal plane, Im εxx.

6. La2CuO4

La2CuO4 is the parent compound for one of the most
widely studied superconductors. A gap forms because Cu
dx2−y2 bands split into a bond-antibonding pair, owing to the
formation of a local Cu moment. QSGW and QSGŴ energy
band structures are shown in Fig. 27, with the Cu dx2−y2 shown
in red. There are several striking points of contrast:

(i) QSGŴ reduces the Cu-dx2−y2 bond-antibond splitting
relative to QSGW by about 1.5 eV. The relatively flat dx2−y2

conduction band shifts more than the La d band (cyan), rem-
iniscent of NiO. Thus, the the addition of ladders reduces the
fundamental gap to 1.66 eV, from the QSGW gap of 3.1 eV.

(ii) The occupied Cu-dx2−y2 band narrows relative to
QSGW . QSGW itself narrows this band substantially relative
to LDA or LDA+U (compare Cu dx2−y2 in top right to bottom
left panel), but the ladders narrow it still further, again rem-
iniscent of NiO. Such mass renormalization plays a critical
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FIG. 27. Energy band structure of La2CuO4. Upper left and right
panels apply to QSGŴ and QSGW approximations, respectively.
Colors depict the following orbital character: red: Cu dx2−y2 ; green:
Cu d3z2−1; blue: O 2p; cyan: La 5d . Black valence bands are the re-
maining Cu-3d orbitals. Lower left panel is the LDA band structure,
with the same color scheme. The narrow window of black bands at
3–4 eV are of La 4 f character. Bottom right is GLDAW LDA result,
with Z = 1 and including the off-diagonal parts of �.

role in the correlations of this orbital, which drives supercon-
ductivity. Spin fluctuations will narrow this band still further,
but whether low-order perturbation theory will be sufficient to
yield the true bandwidth remains an open question.

(iii) The O-p band is pushed down relative to QSGW , thus
reducing the hybridization of O into the Cu-dx2−y2 state. The
LDA often misaligns orbitals of different character, but it is
notable that ladder diagrams not only reduce the gap, but
induce a shift to the QSGW valence bands.

(iv) For both QSGŴ and QSGW the La-4 f states are
pushed well above the Fermi level, something the LDA fails
to do.

(v) Self-consistency plays a very important role in this
system (compare GLDAW LDA to QSGW energy bands, and see
Table I). As with NiO, the GLDAW LDA band gap is severely
underestimated [33]. The one-shot gap can be improved by
using LDA+U or a hybrid functional instead of the LDA, but
the resulting energy bands depend on the choice, as will other
parts of the spectrum (e.g., the position of O-2p states).

The left panel of Fig. 28 shows two measurements of
the dielectric function, Im εxx, one inferred from reflectivity
at 122 K [184], and the other from low-temperature optical
conductivity [53]. Reference [184] also shows results from a
photoconductivity measurement, which looks similar to the
blue squares in the figure but slightly blueshifted. QSGŴ
results are also shown: the peak in Im εxx appears at slightly
higher energy (0.1–0.2 eV) than the experimental data. The
QSGŴ result has sharper structure, in particular, there appears
a pronounced subgap peak centered at ∼1.5 eV. A corre-
sponding peak (albeit much weaker) is seen in the 122-K
reflectivity data, though this peak is washed out as the temper-
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FIG. 28. (Left) BSE dielectric function Im εxx in La2CuO4, com-
puted from QSGŴ , compared to reflectivity data from Ref. [184]
(Expt 1) and conductivity data from Ref. [53] (Expt 2). Data in
Ref. [184] are anomalously small. They also report ε∞ ∼ 5, which
does not seem to be compatible with their scale for Im εxx , from the
Kramers-Kronig relation. Expt 1 shown in the figure scales data taken
from Ref. [184] by a factor of 5 to bring it approximately in line with
Ref. [53]. (Right) Spectral function from the interacting G generated
by QSGŴ . Yellow lines are energy bands from the QSGŴ G0.

ature increases [184]. QSGŴ predicts a spectrum of 30 or so
subgap excitons, ranging between 1.2 eV and the fundamental
gap with widely varying oscillator strengths. A particularly
bright exciton appears at 1.45 eV; it is is partly responsible for
the peak in Im εxx there. As for the fundamental gap, QSGŴ
predicts an indirect gap of 1.66 eV, but the lowest direct gap is
∼2.1 eV (Fig. 27). Reference [184] assigned a charge transfer
gap of 2.1 eV, and Ref. [53] a similar gap (2.2 eV), which
probably corresponds to the direct gap. The QSGŴ result for
Im εxx shows sharper peaks than the experiment, as was shown
for CuO (Sec. III F 5). For the same reason explained there,
dynamical effects will smooth out Im εxx.

7. Fe3O4

Magnetite, or Fe3O4, has a cubic inverted spinel structure
above the Verwey transition at 123 K [206], with six Fe and
eight O atoms in the unit cell. Two Fe are tetrahedrally bonded
to O (O-Fe-O bond angles 109.5◦) and four occupy octahedral
sites with slightly larger bond lengths (bond angles 90◦ ± 2◦
and 180◦). It is a ferrimagnet with the spins in the tetrahedral
sites parallel, spins in the octahedral sites parallel, but the
tetrahedral and octahedral sites are antiparallel.

The conventional picture, originating from Verwey, is that
the tetrahedral sites are Fe3+ and octahedral sites consist of
equal numbers of Fe2+ and Fe3+. Below the Verwey tem-
perature magnetite is a narrow-gap insulator with a band
gap 0.14–0.3 eV. It was traditionally believed that above the
Verwey temperature magnetite becomes a half-metal, in part
because the conductivity increases by ∼100-fold across the
transition, and evidence from interpretations of PES and STS
experiments suggested a finite density of states at EF . How-
ever, a more recent high-resolution PES experiment [207]
found that the band gap persists above the Verwey tempera-
ture, reduced by ∼50 meV. That a gap of order 0.2 eV persists
was confirmed by a subsequent STS measurement [208]. For
a more detailed summary of the experimental status, see the
work of Liu and Di Valentin [209]. These authors applied
various one-body techniques (LDA+U , hybrid functionals) to
study magnetite and concluded that the traditional picture of
magnetic order yields a metallic ground state. They argued
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TABLE XI. Spin moments and band gap of Fe3O4 calculated
with the QSGW and QSGŴ approximations. Fet , Feo1, Feo2 indicate
Fe on tetrahedral sites, and the two inequivalent octahedral sites.

EG μ (Fet ) μ (Feo1) μ (Feo2)

QSGW 0.86 ± 0.1 −4.05 4.31 3.65
QSGŴ 0.15 ± 0.15 −4.04 4.20 3.75

that a gap appears because the octahedral sites disproportion-
ate into two kinds of atoms, one with a high spin (moment
�4μB) and one with a low spin (moment ∼3.5μB).

We performed QSGW and QSGŴ calculations with sym-
metry suppressed, so every spin could assume an independent
value. Spins on the tetrahedral sites converged to a com-
mon value and those on the tetrahedral sites converged to
two values, one high spin and one low spin (Table XI). The
calculation was extremely difficult to stabilize and a fully
converged solution was never found, even after 100 iterations.
Local moments were stable as iterations proceeded, but the
band gap fluctuated; for that reason error bars are given for the
gaps shown in Table XI. Here we denote high- and low-spin
sites as “o1” and “o2.”

The Feo2 t↓
2g manifold splits off one band (actually two, be-

cause the unit cell consists of two Fe3O4 formula units which
weakly couple), and this split-off band forms the valence band
maximum (Fig. 29). On the other hand, the Feo1 t↓

2g manifold
does not split in the same way, and it forms the conduction
band minimum. Splitting of Feo2t↓

2g is the main way in which
cubic symmetry is broken and a gap is formed.

Ladder diagrams have two major effects: first, they sharply
narrow all of the octrahedral Fe-d bandwidths, e.g., the t↓

2g
manifold forming the conduction band minimum is narrowed
by ∼30%. Second, ladders cause band centers to shift in a
highly orbital-dependent manner. Shifts on the occupied states
are modest, but for the unoccupied states they can be quite
large. Note, for example, the band center of the t↓

2g level

around 1.5 eV is pushed down by ∼1 eV, while the t↓
2g and

e↓
g levels in the 5–6 eV range shift by ∼2 eV. Unfortunately,

no experiments are available for benchmarking.
Ordering of the Fe levels is qualitatively in agreement with

the picture of Ref. [209]; see their Fig. 5, and the QSGŴ
spin moments are similar to their Table 1; we thus affirm their
description of magnetite.

IV. CONCLUSIONS

We presented an extension of the QSGW approximation in
which we include vertex corrections to W , calculated at the
level of the BSE (QSGŴ ). The primary aim of this work was
to establish to what extent QSGŴ rectifies the most severe
errors in QSGW , with the ultimate aim to develop a high-
fidelity, universally applicable theory. If low-order diagrams
are sufficient to yield high-fidelity one- and two-particle
properties, Green’s function methods offer an enormous op-
portunity to be both high fidelity and relatively efficient.
QSGŴ supplies excitonic effects which QSGW omits. They
are known to be important, as already extensively discussed
in the literature (see, e.g., Ref. [27]), so it is of interest to
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FIG. 29. Energy band structure Fe3O4, in the QSGW approxi-
mation (upper panels) and the QSGŴ approximation (lower panels).
Left panels show minority spin with majority spin bleached out;
right panels show the reverse. The character of relevant orbitals is
labeled in the figure and the labels correspond to d orbitals on the
octahedral sites with the following color scheme. t1: t2g, Feo1 (red);
t2: t2g Feo2 (green); e: Feo1+Feo2 eg (blue). Labels tet and O signify
bands centered mainly on Fe tetrahedral and O sites, respectively.

see to what extent it captures the quasiparticle spectrum in
insulators, and whether systematic errors can be discerned.

While the QSGW approximation has long been known to
overestimate band gaps, the discrepancies with experiments
are much more systematic than more commonly used G0W0

approaches with G and W constructed, e.g., from the LDA.
Its systematic character is a consequence of self-consistency,
in part because it does not rely on density functional theory.
We presented a few contexts where a non-self-consistent ap-
proach is not important (e.g., Bi2Te3), and others (e.g., TiSe2,
La2CuO4) where it is fundamentally problematic. Even when
such an approach yields a good band gap, it may occur for
adventitious reasons. The relatively unsystematic nature of
the errors in one-shot approaches makes it difficult to assess
what diagrams are essential to realize the goal of a universally
applicable, high-fidelity theory.13 Thus, self-consistency is
crucial for the aims of this work.

This work surveyed a wide range of insulators, including
tetrahedrally coordinated semiconductors where experimen-
tal information is reliable and abundant, and also a variety

13The present method also employs an all-electron basis, which
eliminates the dependence on the choice of the pseudopotential. This
can, though it should not be the case, substantially influence the GW
results.

165104-29



BRIAN CUNNINGHAM et al. PHYSICAL REVIEW B 108, 165104 (2023)

of other sp systems, d0 oxides, and polar compounds, and
a family of 3d transition metal antiferromagnetic oxides.
Each material system had a distinct set of characteristics,
but apart from some important exceptions critically examined
in this work, QSGŴ predicts with fairly high fidelity both
one-particle and optical properties for all of the systems we
studied. The exceptions are important and formed a major
focus of this study. Two shortcomings clearly identified were
the omission of electron-phonon interaction, which causes
gaps to be too large in wide-gap systems, and the omission of
the vertex in the exact self-energy. This vertex pushes down
nearly dispersionless corelike states, and when they form the
valence band maximum the band gap is consistently underesti-
mated. By constructing hybrid self-energies, we could account
for both of these shortcomings in an approximate way, and
draw the following conclusions:

(1) At the QSGŴ level, there is a very close connection
between the fidelity of the fundamental gap EG and the dielec-
tric constant ε∞. When one is well described, so is the other,
and vice versa. This provides a much more robust benchmark
of a theory than benchmarking one-particle properties alone.

(2) If we take the first point as an ansatz for a general
principle, it can be used in cases where experimental data are
unavailable or inconsistent. We presented evidence for several
systems (CeO2, SrTiO3, TiO2, ScN, CuAlO2, FeO) where the
calculated results inform the experimental observations and
indicate that accepted values of the one-particle properties
need adjustment. For FeO, the revision is rather dramatic.

(3) A low-order diagrammatic theory appears to describe
the dielectric response with high fidelity for all the systems
in this study, to the extent we are able to reliably extract
experimental data. Ladder diagrams appear to be sufficient to
capture well the main part of the optical response functions
and one-particle Green’s functions in most insulators, even
strongly correlated ones. While such an assertion is likely not
universally true [45], it appears to be the case for broad classes
of materials.

(4) Ladders not only shift the band gap but further narrow
the d bandwidth in some systems (NiO, La2CuO4, Fe3O4).
It may be that the addition of a low-order GW-like theory
accounting for spin fluctuations, such as the dual-trilex for-
mulation of Stepanov et al. [58], may adequately account for
spin and charge response functions even in strongly correlated
materials.

These last two observations suggest the tantalizing possi-
bility that, with some modest extensions that may be added
hierarchically, a broadly applicable, high-fidelity ab initio
approach to solving one- and two-particle properties of the
many-body problem is within reach.
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APPENDIX A: THE LQSGW APPROXIMATION

Kutepov’s LQSGW theory [210] is a linearized form of
QSGW . He approximates the quasiparticlized self-energy as
a Taylor series around zero frequency. Treating each band
independently and suppressing band index for simplicity of
presentation, Kutepov replaces the interacting G,

G−1(k, ω) = ω + μ − ε − �(k, ω),

by omitting the second-order and higher terms of an expansion
of � in ω:

�(k, ω) = �(k, 0) + ω �′(k, 0) + 1
2ω2 �′′(k, 0) + · · · .

(A1)

G−1 simplifies to a linear function of ω,

G−1(k, ω) = Z̄−1 ω + μ − ε − �(k, 0),

and thus reduces to a linear algebraic eigenvalue problem. The
bar over the Z factor indicates that is not equivalent to Eq. (13)
since it is defined at zero frequency ω = 0:

1 − 1/Z̄ j = �′(k, 0).

Evidently, ε − μ + �(k, 0) is the eigenvalue of a Hamilto-
nian defined as the one-body part of G−1, but including the
static part of �. The (linearized) energy dependence of �

modifies this eigenvalue to read as

E − μ = Z̄[ε − μ + �(k, 0)].

E is identical to the QSGW quasiparticle energy if � is a
linear function of ω.

Now let us retain the quadratic term in � and determine
the shift in E to estimate the difference between LQSGW and
QSGW . Let us denote the LQSGW eigenvalue E − μ as E0.
Expanding G−1 to second order we obtain, to lowest order in
�′′(k, 0),

G−1 ≈ ω −
(

E0 + Z̄

2
E2

0 �′′(k, 0)

)
. (A2)

The lowest-order difference between LQSGW and QSGW QP
levels is the second term in parentheses.
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APPENDIX B: SUPPLEMENTAL MATERIAL:
COMPUTATIONAL DETAILS

Implementation of GW requires both a one-body frame-
work and a two-body framework. Both are described in detail
in QUESTAAL’s methods paper [37], and the paper describing
QUESTAAL’s implementation of QSGW theory [9], which we
denote here as papers I and II. I places heavier focus on the
one-body part, while II focuses on the GW theory and its
implementation.

QUESTAAL is an all-electron method, with an augmented
wave basis consisting of partial waves inside augmentation
spheres, constructed from numerical solutions of the radial
Schrödinger equation on a logarithmic mesh (I, Sec. 2.2). The
one-body basis consists of a linear combination of smooth,
atom-centered Hankel functions as envelope functions, aug-
mented by the partial waves. Two partial waves are calculated
at some linearization energy φ� and energy derivative φ̇�,
which provides enough freedom to match value and slope to
the envelope functions (I, Sec. 3).

One particle basis. In a conventional LMTO basis,
envelope functions consist of ordinary Hankel functions,
parametrized by energy E . QUESTAAL’s smooth Hankel func-
tions are composed of a convolution of Gaussian functions
of smoothing radius rs, and ordinary Hankel functions (I,
Sec. 3.1); thus, two parameters are needed to define the en-
velope. In the periodic solid, Bloch sums of these functions
are taken (I, Appendix C). In this work, E is constrained to a
fixed value (−0.4 Ry for most systems), and rs determined by
optimizing the total energy of the free-atom wave function.
These are kept fixed throughout the calculation, while the
partial waves and linearization energy float as the potential
evolves. By fixing E to a universal value, we are able to
take advantage of the “screening transformation” to render
the basis set short ranged (see I, Sec. 2.9). This can be use-
ful for the interpolation of the self-energy to an arbitrary k
mesh, as described below. A second envelope function of a
deeper energy is needed to make the Hamiltonian reasonably
complete. The latter energy is chosen to be 0.8 Ry deeper
than the first. For most materials, the envelopes of orbitals
l = 0 . . . 4 the first energy, and l = 0 . . . 3 for the second. At
the GW level, a few other additions are made to make the basis
closer to complete. Completeness of the envelope functions
is sometimes improved by adding “floating orbitals,” points
in the interstitial regions where smooth Hankel functions are
placed without an augmentation sphere (I, Sec. 3.11), usually
for � up to 2. Nflt in Table XII indicates how many points
in the unit cell where floating orbitals are added. To expand
the Hilbert space inside the augmentation spheres, a local
orbital φz may be added (I, Sec. 3.7.3). φz is a solution of the
radial Schrödinger equation at an energy either well below the
linearization energy for deep corelike states, or well above it to
better represent the unoccupied states. In the table, the φz used
in the calculations here are listed, with a bar over the principal
quantum number to indicate the high-lying states. For heavier
elements, the p local orbital is sometimes replaced by the
p1/2 component of the Dirac equation. This has a modest
effect but improves the accuracy of the spin-orbit coupling (I,
Sec. 3.9). The total number of orbitals in the one-particle basis

is listed in Table XII as N1p. Another parameter is the sphere
augmentation radius, rMT.

k convergence. The GW mesh and the one-body mesh are
generally different: the latter normally needs to be somewhat
finer, as the self-energy is a relatively smooth function of k
while the kinetic energy is less so. Since the cost is low, we use
a finer mesh than necessary for the one-particle part, which
obviates the need to test the mesh for k convergence. Careful
tests of the GW mesh were made for each system. Most of the
small unit cells used a mesh of six divisions along each axis:
the number used in each materials system is listed as Nk in
the Table XII. A finer mesh, e.g., 8×8×8 divisions, changes
the result only slightly (e.g., gap changes by ∼0.01 eV in sp
semiconductors).

To enable inequivalent meshes, the self-energy must be
interpolated. To render the interpolation everywhere smooth
(I, Sec. 2G) eigenfunctions and self-energy are rotated to the
LDA basis, and the full self-energy matrix is kept only up to
a cutoff above the Fermi level in this basis, denoted �cut in
the table. Above this cutoff, only the diagonal part of � is
kept. �cut may be made arbitrarily high, but if it is too high
the interpolation is no longer smooth. Fortunately, the result
depends weakly on �cut, and �cut ∼ 2 is typically sufficient
to achieve a reasonably well-converged result.

A smooth Hankel function has a plane-wave repre-
sentation; thus, any linear combination of them, e.g., an
eigenfunction, does also. An eigenfunction represented in this
form is equivalent to a representation in an LAPW basis: it is
defined by the coefficients to the plane waves, the shape of the
partial waves and their coefficients (which are constrained to
match smoothly onto the envelope functions). The PW cutoff
for the one-particle basis is listed as Gcut (ψ ) in Table XII.

Two-particle basis. The two-particle basis is needed to
represent quantities such as the bare Coulomb interaction and
the polarizability. As with the one-particle basis, it as a mixed
construction with interstitial parts and augmentation parts (II,
Sec. II A): envelope function products are represented as plane
waves since product of plane waves is another plane wave.
Thus, the interstitial parts of the mixed (product) basis are
plane waves, and the PW cutoff is listed in Table XII as
Gcut (M ). Inside augmentation spheres, all possible products of
partial waves are called product functions B�, organized by �

with a form BI = B�(r)Y�m(r̂). The set of all possible products
of partial waves is somewhat overcomplete with a relatively
large rank. It is reduced by diagonalizing the overlap matrix,
and retaining the subset of functions above a cutoff eigen-
value of the overlap. It has been found from experience that
eigenfunctions with eigenvalues below 3×10−4 for � = 0,1
and 10−3 for � > 1 have essentially negligible effect on the
result, and are discarded. The product basis is truncated at a
finite �. For most systems, �cut was chosen to be 6 for elements
with small to moderate rMT and whose d orbitals are far from
the Fermi level, such as O or P; 8 for elements of intermediate
size; 10 for elements with large radii; and 12 for systems with
f orbitals such as Ce.

Bare Coulomb interaction. To stabilize the calculation, the
bare Coulomb interaction v(q) = 1/q2 is approximated by a
Thomas-Fermi form v(q) = 1/(q2 + VTF). This is because if
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TABLE XII. Material parameters: a is lattice constant (quantity in parentheses is c/a where applicable). Gcut (ψ ) and Gcut (M ) are plane-
wave cutoffs for the interstitial part of the one- and two-particle basis sets, in units of 2π/a; �cut the energy cutoff for above which � is
restricted to a diagonal part, as described in the text. Nk is the number of divisions along each reciprocal lattice vector defining the k mesh.
When two numbers appear, the c axis is assigned a mesh different than the basal plane. The latter number is selected to make the spacing
between k points as similar as possible along the three directions. N1p is the total number of basis functions in the unit cell. Nv and Nc are
the number of occupied and unoccupied eigenstates included in the construction of the vertex. Nflt is the number of points in the interstitial
where envelope functions were added to increase the basis completeness. ϕz lists the local orbitals (LO) for each element: n − s, n − p, n − d ,
where n is the principal quantum number of the LO. n without an overbar indicates the LO covers a corelike state, well below the linearization
energy with a principal quantum number one less than that of the valence. n̄ indicates the LO energy is far above the linearization energy, and
is included to better treat unoccupied states well above the Fermi energy. Both kinds of LO are discussed in Ref. [37]. Partial waves marked as
p̂ replace the l = 1 partial wave with the corresponding p1/2 partial wave computed from the Dirac equation, as discussed in Ref. [37]. This is
a small effect but it improves the matrix elements for spin-orbit coupling.

a (a.u.) Gcut (ψ, M ) �cut (Ry) Nk N1p Nv Nc Nflt ϕz

C 6.740 4.2 3.5 3.0 6 104 4 8 2 3̄s3̄p4̄d C
Si 10.24 3.0 2.5 3.0 6 104 4 8 2 4̄s4̄p4̄d Si
Ge 10.68 3.0 2.5 3.0 6 104 4 8 2 5̄s5̄p3d Ge
TiO2 8.681 (0.6441) 3.5 2.8 3.0 4,6 330 12 10 8 5̄s3p4̄d Ti; 3̄s3̄p4̄d O
SrTiO3 7.354 3.5 2.8 3.0 6 215 9 11 −

4s4p5̄d Sr; 5̄s3̄p4̄d Ti;
3̄s3p4̄d O

CuAlO2 3.121 (3.422) 4.1 3.3 3.5 6 177 8 8 4 5̄s4̄d Cu; 4̄s Al; 3̄s3̄p4̄d O
LiF 7.597 4.2 3.5 3.0 6 99 3 8 2 1s3̄p4̄d Li; 3̄s3̄p4̄d F
LiCl 9.600 3.6 3.0 3.0 6 104 3 8 2 1s3̄p4̄d Li; 4̄s4̄ p̂4̄d Cl
NaCl 10.62 3.2 2.6 3.0 6 104 3 8 2 2s2p Na
CuCl 10.23 3.2 2.6 3.0 6 104 8 8 2 5̄s5̄ p̂4̄d Cu; 4̄s4̄ p̂4̄d Cl
Cu2O 8.069 3.5 2.8 3.0 4 330 26 9 10 5̄s5̄p̂4̄d Cu; 3̄s3̄p4̄d O
MgO 7.933 4.0 3.3 3.0 6 104 3 8 2 2s2p4̄d Mg; 3̄s3̄p4̄d O
CaO 9.077 3.5 2.9 3.0 6 104 3 8 2 3s3p4̄d Ca; 3̄s3̄p4̄d O
SrO 9.751 4.0 3.3 3.0 6 104 3 8 2 4s4p5̄d Sr; 3̄s3̄p4̄d O
BaO 10.43 3.5 2.8 3.0 6 85 3 4 2 5s5p6̄d Ba; 3̄s3̄p4̄d O
CdO 8.874 3.9 3.2 3.0 6 104 4 4 2 6̄s6̄p̂5̄d Cd; 3̄s3̄p4̄d O
ZnO 6.138 (1.602) 3.7 3.0 3.5 6,4 204 6 8 2 5̄s5̄p̂4̄d Zn; 3̄s3̄p4̄d O
ZnS 10.23 3.4 2.8 3.0 6 104 3 8 2 5̄s5̄ p̂4̄d Zn; 4̄s4̄ p̂4̄d S
ZnSe 10.69 3.0 2.5 3.0 6 104 3 8 2 5̄s5̄ p̂4̄d Zn; 5̄s5̄p̂3d Se
ZnTe 11.53 3.0 2.5 3.0 6 104 3 8 2 5̄s5̄p̂4̄d Zn; 6̄s6̄ p̂4d Te
wCdS 7.861 (1.620) 2.7 2.2 3.5 6,4 204 6 8 2 6̄s6̄ p̂5̄d Cd; 4̄s4̄ p̂4̄d S
CdSe 11.43 2.7 2.2 3.0 6 104 3 8 2 6̄s6̄ p̂5̄d Cd; 5̄s5̄p̂3d Se
CdTe 12.24 2.8 2.3 3.0 6 104 3 8 2 6̄s6̄p̂5̄d Cd; 6̄s6̄ p̂4d Te
hBN 4.732 3.8 3.0 4.0 6,3 124 8 8 2 3̄s3̄p B; 3̄s3̄p N
AlN 5.879 (1.601) 3.8 3.1 3.5 6,4 204 6 8 2 4̄s4̄p4̄d Al; 3̄s3̄p4̄d N
AlP 10.32 3.0 2.5 3.0 6 104 4 8 2 4̄s4̄p4̄d Al; 4̄s4̄p4̄d P
AlAs 10.70 3.3 2.7 3.0 6 104 4 8 2 4̄s4̄p4̄d Al; 5̄s5̄ p̂3d As
AlSb 11.59 3.0 2.5 3.0 6 104 4 8 2 4̄s4̄p4̄d Al; 6̄s6̄p̂4d Sb
GaN 6.027 (1.626) 3.6 2.9 3.5 6,4 204 6 8 2 5̄s5̄ p̂3d Ga; 3̄s3̄p4̄d N
GaP 10.29 3.0 2.5 3.0 6 104 4 8 2 5̄s5̄p̂3d Ga; 4̄s4̄ p̂4̄d P
GaAs 10.66 2.7 2.4 3.0 6 104 4 8 2 5̄s5̄ p̂3d Ga; 5̄s5̄ p̂3d As
GaSb 11.50 2.7 2.3 3.0 6 104 3 8 2 5̄s5̄ p̂3d Ga; 6̄s6̄p̂4d Sb
InN 6.679 (1.624) 3.4 2.7 3.5 6,4 204 6 8 2 6̄s6̄p̂5̄d In; 3̄s3̄p4̄d N
InP 11.09 2.9 2.4 3.0 6 104 4 8 2 6̄s6̄ p̂5̄d In; 4̄s4̄ p̂4̄d P
InAs 11.43 2.7 2.3 3.0 6 104 3 8 2 6̄s6̄ p̂5̄d In; 5̄s5̄ p̂3d As
InSb 12.24 2.7 2.3 3.0 6 104 3 8 2 6̄s6̄p̂5̄d In; 6̄s6̄ p̂4d Sb
ScN 8.504 3.5 2.9 3.0 6 104 3 8 2 3s3p4̄d Sc; 3̄s3̄p4̄d N
PbTe 12.15 2.8 2.3 3.0 6 104 3 8 2 7̄s7̄p̂6̄d Pb; 6̄s6̄ p̂4d Te
TiSe2 6.689 (1.697) 2.8 2.2 3.0 3,2 664 16 16 16 3p4̄d Ti
FeS2 10.22 2.7 2.2 3.0 4 720 32 12 24 5̄s4̄d Fe; 4̄s4̄p4̄d S
VO2 8.536 3.4 2.8 2.0 4 332 20 8 − 3p4̄d V
CeO2 10.23 3.5 3.0 2.5 6 124 6 16 1 5s5p6̄d 5̄ f Ce; 3̄s3̄p O
Bi2Te3 4.783 (4.015) 3.0 2.5 3.0 6 260 18 12 5 7̄s7̄ p̂5d Bi; 6̄s6̄p̂4d Te

MnO 8.398 3.5 3.0 2.5 4 178 16 16 4 5̄s3p4̄d Mn; 3̄s3̄p O
FeO 8.088 3.5 2.9 3.0 4 172 9 6 − 5̄s3p4̄d Fe; 3̄s3̄p4̄d O
CoO 8.050 3.5 2.9 3.0 4 172 12 12 − 5̄s3p4̄d Co; 3̄s3̄p4̄d O
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TABLE XII. (Continued.)

a (a.u.) Gcut (ψ, M ) �cut (Ry) Nk N1p Nv Nc Nflt ϕz

NiO 7.880 3.1 2.5 2.5 4 110 16 16 − 4̄d Ni
CuO 9.558† 3.5 2.8 3.0 3 616 48 12 − 5̄s5̄ p̂4̄d Cu; 3̄s3̄p4̄d O
MnTe 7.823 (1.621) 2.7 2.3 2.2 6,4 170 8 8 2 4̄d Mn; 6̄ p̂4d Te
Fe3O4 15.87 3.5 2.9 3.0 4 746 12 12 16 5̄s3p4̄d Fe; 3̄s3̄p4̄d O
La2CuO4 9.942 (1.245) 3.1 2.5 2.5 3 524 30 30 − 5p6̄d La; 3p4̄d Cu; 3̄s3̄p4̄d O

VTF is set to zero, the result can become unstable. We use
a small value VTF, typically 2×10−5 Ry, though sometimes
somewhat larger values, up to 2×10−4 Ry were used. The
dielectric constant ε∞ can vary by a few percent over this
range. For that reason ε∞ was calculated for several values
of +VTF, e.g., 1×10−5, 1×10−5, and 3×10−5 Ry, and the
reported value is the result when extrapolated to zero.

Frequency mesh. To construct the self-energy, an energy
integration on the real frequency axis is taken. A regular
quadratic mesh of the form ωi = dw×i + dw2i2/(2ωc) is
used, with i spanning ωi = 0 and the largest eigenstate. Points
are linearly spaced for dw � ωc, but the spacing increases
for dw � ωc. It has been found empirically that results are
essentially independent of mesh for dw < 0.08 Ry and ωc �
0.1 Ry. In practice we use dw = 0.02 Ry and ωc = 0.2 Ry to
obviate the need for checking convergence. To pick up the
poles of G and W to make �, the contour is deformed to
include an integration on the imaginary axis of ω (I, Sec. 2F).
In all the calculations used here, we used six points on a

Legendre quadrature. A few checks showed that the result
hardly depended on the number of points in the quadrature.

Manual vs autogenerated input. QUESTAAL has an auto-
matic generator, blm, to construct input files from structural
data. Most input parameters are automatically generated by
blm, such as the MT radii rMT, the product basis cutoffs, and
the plane-wave cutoffs, the Gaussian smoothing radius defin-
ing the envelope functions, and the placements for floating
orbitals, when they are sought. Also, for the vast majority
of parameters, the code uses default values if inputs are not
explicitly specified. For a few parameters, manual intervention
is needed to monitor convergence, especially the number of
k points and the plane-wave cutoffs Gcut (ψ ) and Gcut (M ).
Hankel function energies E must be manually set, but usu-
ally fixed values as noted above are sufficient. Occasionally,
interpolation continues to be an issue and can be stabilized by
making E deeper, e.g., E= − 0.6 Ry was needed to stabilize
SrTiO3. Results are largely insensitive to the choice of E ,
provided it is not pushed too deep.
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