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Scaling Through Hardware Advances is Intractable
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Computing Systems are Gradually Using More Energy
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The Rising Energetic Cost of Computing

Total computing energy usage has been
growing exponentially for more than a
decade.

If this trend continues, computing is
forecasted to consume >8 PWh, or
~20% of generated electricity by 2030

It is time to invest in efficient
algorithms, software, and operating
strategies.

JISEA—Joint Institute for Strategic Energy Analysis

9,000 terawatt hours (TWh)

20.9% of projected
electricity demand

~ ENERGY FORECAST
Widely cited forecasts suggest that the

_ total electricity demand of information and
communications technology (ICT) will
accelerate in the 2020s, and that data
centres will take a larger slice,

B Networks (wireless and wired)
B Production of ICT

Consumer devices (televisions,
computers, mobile phones)
M Data centres

0
2010 2012 2014 2016 2018 2020 2022 2024 2026 2028 2030

The chart above is an ‘expected case’ projection from Anders Andrae, a
specialist in sustainable ICT. In his ‘best case’ scenario, ICT grows to only
8% of total electricity demand by 2030, rather than to 21%.

Figure from Jones, N. (2018). How to stop data centres from gobbling up the world's
electricity. Nature, 561(7722), 163-167. https://www.nature.com/articles/d41586-018-06610-y



https://www.nature.com/articles/d41586-018-06610-y

The Rising Energetic Cost of Computing

* National Lab Scientists: Computing becomes constrained by energy use.
— Allocated a computing energy budget?
— Can you afford the energy to do the computation?
* DOE: Failing to foresee and address a rapidly escalating consumer of energy.
— May take a decade or more to catch up
* Industry: Commercial activity and innovation limited by computing energy demands.
— Energy for computing becomes the de-facto currency

* National Security: Internal and external stresses on computing energy demands breed
instability through conflicts between energy consumers, producers, and stakeholders.

* Humanity: Long-increasing benefits from computing stagnate, stagnating human progress.

— Computing energy production unequally impacts disadvantaged groups while primarily
benefitting advantaged groups.

* Nature: Increasing carbon emissions and energy production demands reduce quality and
diversity of life on the planet.
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Addressing the Challenge

e Systems Management Efficiency
— Dynamic, grid-integrated load-shifting and throttling strategies
— Advanced cooling systems
* Improved efficiency, reliability, and component longevity
— Virtualization and multi-tenant systems
e Architectural efficiency
— Optimizing system layouts for the most intensive workloads
* network, system, operating system, and chip level
e Total environmental and energy footprint reduction

— Accounting for the impacts of manufacturing, operation, and
decommissioning may indicate surprising strategies to reduce
environmental impacts of computing

* Algorithmic Efficiency
— In breakthrough cases, gains can be exponential in nature
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50 °F

Facility supply temperature key driver for energy use

Water usage, chiller setpoint = 10 Celsius

Energy usage, chiller setpoint = 10 Celsius
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Comm on facility tem peratures 10-32°C. Exam ple to
illus trate effect of facility Tem perature on Energy use

» The price paid for the standard supply temperature low 1s Excessive Energy Use
— Chiller has to run most of the year — 0.75 quads for cooling

— Wateris consumed in most locations — approx. total of =500 billion gallons of water use attributable to

IS data centers (~57%sourced from potable water)
https://www.nature.com/articles/s41545021-00101-w
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CHANGING WHAT'S POSSIBLE

Credit: Peter de Bock (from DOE ARPA-E Cooling Compute Systems Efficiently, Anytime, Anywhere Workshop, December 2021)
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https://www.arpa-e.energy.gov/events/cooling-compute-systems-efficiently-anytime-anywhere-workshop

Efficient heat rejection can Change the Landscape 140 °F
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Iftechnology is developed to reject heat from future servers 10 x more efficient in secondary loop (chip
to facility supply); facility temperatures can be evaluated, and cooling energy i1s saved

Bonus features:

+ Location/ climate independence + Reduced footprmnt
+Minimal/No need for water usage + Heat rejection >60°Cfacilitates future WHR
‘il ‘)Ij‘ime& December22,2021 Energy Efficiency Com puting Workshop 10

CHANGING WHAT'S POSSIBLE

Credit: Peter de Bock (from DOE ARPA-E Cooling Compute Systems Efficiently, Anytime, Anywhere Workshop, December 2021)
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Algorithms for Sustainable Operations:
Al for Data Center Operations (AIOPs)
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Dynamic job scheduling for load shaping
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HPC Green Computing Efforts @ NREL
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Computational Fluid Dynamics Research @ NREL

— Computational Fluid Dynamics (CFD)

* Uses highly parallelized computer software to solve the
underlying equations of fluid motion

* CFDis used in a wide range of engineering applications from
wind energy, combustion science, bio-reactors, aerodynamics,
etc.

* These simulations routinely require thousands of
computational nodes to evolve the millions to billions of
computational grid cells needed to resolve relevant physical

phenomena
— Exascale Computing ©ermels develop at 6 ms. and quickly expand over
* New CFD codes have recently been developed at NREL to the injection plumes '

leverage exascale HPC systems, namely ExaWind and the Pele
Suite of exascale codes

* These codes have been parallelized on up to 56,000 GPUs

* They are highly optimized for computational efficiency on both
CPUs and GPUs

* Energy efficiency analysis on these codes will provide a new
metric with which to evaluate the performance on this class of
software

* Future development can then be aimed at developing
numerical algorithms that balance both computational and
energy efficiency metrics

Still from exascale simulation using PeleC. Simulation was run on thousands of GPUs evolving
trillions of variables to compute the combustion phenomena in a clean burning diesel engine.

Simulation showing the flow structures from a 5 MW wind turbine using Nalu-Wind, an exascale
CFD software developed out of the ExaWind project at NREL.
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Red Al: Deep Learning's Energy Footprint
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Figure From Amodei, D. and Hernandez, D. Al and compute, 2018. Open Al Research Blog.
https://openai.com/research/ai-and-compute
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Deep Learning's Energy Footprint

 Computing is an increasing consumer of energy resources worldwide
* Alisapopular consumer of computing resources
* Within Al, Deep Learning is both highly prevalent and computationally expensive

* Training and applying popular neural network models are consuming
vast quantities of energy and incurring large carbon footprints.

Model Hardware  Power (W) Hours kWh-PUE COse Cloud compute cost
Transformery,,. P100x8 1415.78 12 27 26 $41-5140
Transformery;,  P100x8 151543 84 201 192 $289-$981

ELMo P100x3 517.66 336 275 262 $433-51472
BERT},.c V100x64 12,041.51 79 1507 1438  $3751-$12,571

BERT e TPUv2x16 — 96 — —  $2074-%6912

NAS P100x8 1515.43 274,120 656,347 626,155 $942,973-$3,201,722
NAS TPUv2x1 — 32,623 — —  $44,055-$146,848
GPT-2 TPUv3x32 — 168 — —  $12,902-$43,008

Table 3: Estimated cost of training a model in terms of CO4 emissions (Ibs) and cloud compute cost (USD).” Power
and carbon footprint are omitted for TPUs due to lack of public information on power draw for this hardware.

Table from [3] Strubell, E., Ganesh, A., & McCallum, A. (2019, July). Energy and Policy Considerations for Deep Learning in
NLP. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (pp. 3645-3650).
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Green Al: Right-sizing neural networks
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Addressing the Challenge at NREL

— By investing in green computing research now, we are establishing a program that will be
well-prepared for the increasing calls to reduce computing's energy demands.

* Current research portfolio addresses sustainability in computing from
algorithms to facilities

— Establishing Partnerships
* Industry interest in green computing is strong and universal
* Funding agency interest is moderate
* Engaging Industry & Academic Partners to form a Green Computing Consortium

* Collaborations across NREL: Computing, buildings, mechanical engineering, policy
* Industry partnerships: Hardware, software & cloud providers, applications (blockchain)

* Community engagement: HPC Data Center Community, OCP (Open Compute Project) Heat Reuse
group, Energy Efficiency HPC Working Group, Data Center Dynamics, other pre-competitive
research consortia
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What should we do today to maximize our impact?

— What are your ideas for establishing productive Green Computing
partnerships & collaborations?

* Industry, Academic, Research Groups, Labs, etc.

* Which potential partners we should engage?
— Do you have / know of any connections to initiate the process?

* Possible networking opportunities

— How can we form a strong coalition of green computing partners?
* How can we propagate strong industry interest to funding agencies?
* How to fund our efforts in the interim?
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What should we do today to maximize our impact?

— Which topics should we focus our research efforts on to maximize our
success?
 Measurement capability
* Optimizing HPC/Datacenter Operations
* Optimizing Datacenter Cooling Efficiency
* Algorithmic Optimization
— CFD
— Green Al

* Are there other areas we should consider breaking into?
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Thank youl!

NREL/PR-6A50-87115

WWW.jisea.org

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for
Sustainable Energy, LLC, for the U.5. Department of Energy (DOE) under Contract No. DE-AC36-
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08GO028308. Funding provided by the Joint Institute for Strategic Energy Analysis, and the National
Renewable Energy Laboratory. The views expressed herein do not necessarily represent the views Joint Institute for
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