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Executive Summary  
In the summer and early fall of 2020, large wildfires engulfed parts of Northern California, 
burned over 1 million acres and produced thick layers of smoke that blanketed large parts 
of the state. Although 2020 was a unique year in the last several decades, in terms of 
burn area, large wildfires and longer fire seasons are becoming more common with the 
changing climate. Thick smoke layers in the atmosphere can significantly attenuate solar 
radiation reaching solar arrays, and significantly reduce the electricity generated from 
those arrays.  

In this study, we quantify the potential impacts of wildfires on the California grid. 
Specifically, we study the impacts under three different wildfire scenarios—a “no wildfire” 
scenario and two wildfire-specific scenarios, “2020 wildfire” and “enhanced wildfire” (with 
both scenarios assuming the same spatial distribution of the wildfire locations as the 2020 
fires). We then combine each scenario with two solar energy infrastructure years, one 
corresponding to current solar deployment levels and one corresponding to the future 
(midcentury). This analysis is conducted using state-of-the-science modeling tools—
primarily WRF-Chem for atmospheric modeling with chemistry to account for impacts of 
wildfires on solar radiation and PLEXOS for electricity market simulations.  

Our analysis suggests that wildfires can significantly attenuate the solar radiation at both 
short downwind distances as well as far from emissions sources. WRF-Chem simulations 
indicate that monthly mean aerosol optical depth (AOD) increments averaged over the 
state can be as high as 0.14–0.46 (140%-460%), depending on the month of 2020, 
compared to a mean background AOD of ~0.10. Using PLEXOS simulations that account 
for impacts of change in AOD on photovoltaic (PV) generation, our analysis suggests that 
the 2020 wildfires resulted in a decrease of approximately 450 MW of generation on 
average in September 2020, the month with the most significant wildfire activity. Monthly 
PV generation decreased by 7.7% under current solar deployment levels, with additional 
possible reductions of 0.4% and 1.3% under the enhanced wildfire and increased PV 
deployment scenarios. Although the impacts of wildfires on PV generation are relatively 
small (~10% reduction, with PV representing 36% of the total installed capacity in 2036), 
they are not insignificant. Our analysis suggests that wildfire impacts on reserve 
requirements are much more pronounced. The 2020 wildfires scenario, and the enhanced 
wildfire scenario result in an increase in monthly reserve requirements of 53% and 64%, 
respectively. These levels of reduction in PV generation and enhancement in reserve 
requirements could likely increase the average price of electricity in the future if a wildfire 
situation similar to 2020 were to recur. It is also expected that there will be a much larger 
impact on price volatility. 

Although our analysis is limited in scope, and the study considers only a few of the many 
factors that can affect PV generation and electricity markets, there is clear indication that 
wildfire smoke is an important factor that needs to be carefully considered and analyzed 
in planning the future grid.   
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1 Introduction  
1.1 Background 
Wildfire activity has been increasing during the past few decades in the United States, 
and the importance of considering the impacts of wildfires on air quality and solar 
generation has also increased. Studying the various causes and effects of increasing 
wildfire activity has been the primary focus of several recent peer review studies 
(Abatzoglou and Williams 2016; Balch et al. 2017; Schoennagel et al. 2017; Seidl et al. 
2017; Westerling 2016). For example, Abatzoglou and Williams (2016) used modeled 
climate projections to understand factors that affect the increase in wildfire activity and 
concluded that anthropogenic climate change accounted for approximately 55% of the 
observed increase in fuel aridity from 1979–2015 across the western United States. 
Similarly, Westerling (2016) analyzed the historic frequency of fire occurrences and 
showed that large wildfires (>400 hectare burn area) have been increasing since the 
1970s, with approximately 20 additional large wildfires per decade in the western United 
States. This increased trend in fire severity and activity is predicted to continue in the next 
few decades. For example, Schoennagel et al. (2017) predicted that approximately 40% 
of the current wildland–urban interface is expected to experience a moderate to large 
increase in the probability of wildfires in the next 20 years, and the authors highlighted 
the risk to developed nonurban areas and infrastructure (e.g., solar power plants, power 
lines, pipelines).  

Forest fires have a substantial influence on atmospheric aerosol loading and solar 
radiation because significant amounts of smoke aerosols emitted by wildfire activity can 
attenuate the solar radiation by absorption and scattering. This effect directly affects solar 
energy generation during fire episodes. Recent studies (Donaldson, Piper, and 
Jayaweera 2021; Gilletly, Jackson, and Staid 2021; Juliano et al. 2022) have investigated 
this phenomenon. Donaldson, Piper, and Jayaweera (2021) demonstrated that smoke 
aerosols emitted from wildfires can spread over vast areas, resulting in increased 
atmospheric aerosol loading and a significant decrease in solar radiation levels in 
California, United States, during the summer of 2020. Juliano et al. (2022) sought to 
quantify the impact of wildfires on solar energy by conducting numerical simulations using 
different aerosol optical depth (AOD) data sets (climatology and reanalysis with 3-hour 
variations) over the California Independent System Operator (CAISO) region in 
September 2020. Their findings indicated that smoke from wildfires led to a 10%–30% 
reduction of solar power production during peak hours (12−16 PDT in their study), and 
accounting for the changes in AOD caused by wildfires improved the solar energy 
forecast accuracy by nearly 50%. This substantial reduction of solar resource availability 
could introduce uncertainties and increase vulnerabilities in the solar energy market. As 
wildfire activity continues to increase, understanding the impact on solar energy 
availability and reserve requirements becomes increasingly crucial, particularly in high-
solar energy penetration modeling scenarios. Hence, the accurate estimation of wildfire 
impacts is necessary for making informed decisions regarding reserve planning, 
generation scheduling, and reliability investments. 
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The objective of this project is to quantify the impact of wildfire-caused changes in 
atmospheric aerosol loading and thus on the availability of solar energy, ancillary 
services, and market prices for energy. An overview of various tasks in this project is 
shown in Figure 1. This assessment includes both a historical analysis and an estimation 
of future solar resource availability under different wildfire and solar penetration 
scenarios. It is expected that the study of wildfire impact on solar generation, reserve, 
and energy prices will provide useful information to system operators.  

 
Figure 1. Overview of the project activities 

1.2 Existing Work 
Recent studies have explored the impacts of various meteorological extremes on 
electricity market operation. Jaglom et al. (2014) modeled the long-term energy, 
environmental, and economic impacts of rising temperatures caused by climate change 
on the U.S. power sector. A similar study was done by Hill et al. (2021), which focused 
on the West Coast region. Forrest et al. (2018) analyzed how droughts affect hydropower 
availability. The influence of extreme winter storms on wind power losses was explored 
in Akdemir, Kern, and Lamontagne (2022). Su et al. (2020) discussed how compound 
hydrometeorological extremes drive volatility in market prices and emissions. Zhao, 
Brooks, and Du (2021) provided an analysis summarizing the impact of hurricanes on a 
wholesale electricity market, using the Electric Reliability Council of Texas (ERCOT) as 
the example. Only a few studies, however (e.g., Gilletly, Jackson, and Staid [2021]), have 
focused on wildfires, and their analyses are limited to the impacts on solar generation. 
Moreover, most studies are conducted purely based on simulation data. 

1.3 Limitations 
Note that our emphasis is on the effects of wildfire-caused solar irradiance reduction. 
Other wildfire-caused damage—e.g., pertaining to transmission lines, substations, and 
power plants—are not within the scope of our study. 
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2 Evaluation of NSRDB Data and Development of 
Wildfire Scenarios 

The following section provides a detailed description of various observational data sets 
and model products pertinent to wildfire attributes and solar radiation used in this study. 
Also included is a brief description of the methodology deployed to model changes in 
AOD under different scenarios. We use three different scenarios corresponding to three 
different levels of atmospheric aerosol loadings: one scenario corresponding to 
background aerosol levels and two wildfire-specific scenarios. These scenarios are 
described in detail in Section 2.2, Section 2.3, and Section 2.4. 

2.1 Observational Data Sets and Model Products  

2.1.1 Wildfire-Relevant Observational Data 
To investigate the wildfire activity throughout the United States and its impact on the solar 
resource and solar markets, we collected wildfire-relevant data. We obtained wildfire data 
(acres of burned area, wildfire location, and period of wildfire) from geographic information 
system databases covering different periods of time: one from the U.S. Geological Survey 
(USGS)1 (coverage years 2000–2019) and another from the National Interagency Fire 
Center (NIFC)2 (coverage year 2020). The Geospatial  Multi-Agency Coordination 
(GeoMAC)3  web-based mapping application hosted by USGS was originally designed 
for fire managers to access information on current and historic fire locations, burn area, 
perimeter, ignition date, and control dates, harmonizing data from various sources, 
including Alaska Fire History Database, U.S. Department of Agriculture Forest Service 
regional fire history data, the U.S. Bureau of Land Management BLM fire planning and 
fuels management, the U.S. National Park Service (NPS), the U.S. Fish and Wildlife 
Service, the U.S. Bureau of Indian Affairs, and the California Department of Forestry and 
Fire Protection (CAL FIRE) Fire and Resource Assessment Program. It was made 
available to the public in 2000 and replaced by a newer application in 2020. The new 
application is hosted by the NIFC and is available at https://data-
nifc.opendata.arcgis.com/. Because our analysis focused on the last 20 years (2000–
2020), we combined data from both the NIFC repository and the 2020 parameters with 
the USGS data set to complete the data for the full 20-year period. 

In addition, satellite-retrieved fire detection/hot spot data measured by Moderate 
Resolution Imaging Spectroradiometer (MODIS) were also used. MODIS are aboard 
National Aeronautics and Space Administration (NASA) Aqua and Terra polar-orbiting 
satellites measuring radiance near 11:30 and 13:30 local time. MODIS detects and identifies 
the pixel as occurrence of fire when the fire strength is sufficiently strong. Note that one wildfire 
event may include multiple fire detections/pixels depending on the size of wildfire. The fire 

 
1 See https://www.usgs.gov/. 
2 See https://data-nifc.opendata.arcgis.com/. 
3 See http://www.geomac.gov. 

https://data-nifc.opendata.arcgis.com/
https://data-nifc.opendata.arcgis.com/
https://www.usgs.gov/
https://data-nifc.opendata.arcgis.com/
http://www.geomac.gov/
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detection data are obtained from the NASA Fire Information for Resource Management 
System (FIRMS) website.4 

2.1.2 Solar Radiation and Aerosol Optical Depth Observations 
In this study, we used the ground-truth observation of Aerosol Robotic Network 
(AERONET) AOD and Solar Radiation (SOLRAD) to evaluate the National Solar 
Radiation Database (NSRDB) solar radiance and AOD data.  

The AERONET project is a ground-based remote sensing network for the observation of 
aerosols (Holben et al. 1998). The temporal resolution of AERONET data is 
approximately 15 minutes, but it is irregular due to quality control (data during the 
maintenance of an instrument or with cloud contamination are removed). The Level 1.5 
AOD data (cloud-screened and quality-controlled) collected from nine sites in California 
during 2018–2020 are used to evaluate the NSRDB. The AERONET AOD data were 
obtained from the NASA AERONET website.5 The locations of the AERONET sites in 
California are shown in Figure 2. 

The National Oceanic and Atmospheric Administration (NOAA) Earth System Research 
Laboratory (ESRL) SOLRAD Network monitors solar radiation over the United States and 
provides radiance data at a 1-minute frequency. We used solar radiation data measured 
at the Hanford site, including global horizontal irradiance (GHI), direct normal irradiance 
(DNI), and diffuse horizontal irradiance (DHI). The Hanford site, located in the central 
valley region of California in the city of Hanford, is the only SOLRAD site in the state of 
California (Figure 2). Detailed information on the NOAA SOLRAD Network can be found 
in Hicks, DeLuisi, and Matt (1996). SOLRAD radiation data were obtained from the NOAA 
ESRL SOLRAD website.6 

 
4 See https://firms.modaps.eosdis.nasa.gov/. 
5 See https://aeronet.gsfc.nasa.gov/.  
6 See https://www.esrl.noaa.gov/gmd/grad/solrad/. 

https://firms.modaps.eosdis.nasa.gov/
https://aeronet.gsfc.nasa.gov/
https://www.esrl.noaa.gov/gmd/grad/solrad/
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Figure 2. Locations of AERONET sites (blue circles), three of the largest fires in 2020 in California 

(red circles), and the solar radiation observation (yellow circles). 

2.1.3 The National Solar Radiation Database (NSRDB) 
The NSRDB data set was created by National Renewable Energy Laboratory (NREL) 
researchers and consists of solar radiation and meteorological conditions (Sengupta et 
al. 2018). For the coverage of North America, the NSRDB is simulated by NREL’s 
Physical Solar Model (PSM) with the inputs of surface and atmospheric conditions from 
NOAA’s Geostationary Operational Environmental Satellite (GOES), the National Ice 
Center’s Interactive Multisensor Snow and Ice Mapping System (IMS), and NASA MODIS 
observations and Modern-Era Retrospective analysis for Research and Applications, 
Version 2 (MERRA-2) reanalysis (Sengupta et al. 2018). For the atmospheric aerosol 
information, the NSRDB AOD data were derived from MERRA-2 AOD and downscaled 
from the native resolution of the MERRA-2 (spatial resolution: 0.5° × 0.625° (50–67 km); 
temporal resolution: 1 hour) to the NSRDB resolution (spatial resolution: 2 km; temporal 
resolution: 5 minutes). The method of downscaling includes both spatial and temporal 
scaling algorithms. The solar radiation data from the NSRDB have been evaluated with 
surface measurements (Sengupta et al. 2018; Lin et al. 2023). Here, we used the solar 
irradiance (GHI and DNI), 2-m temperature, AOD, and cloud optical depth from the 
NSRDB7 for the analysis. 

Additionally, to investigate and quantify the wildfire impact for different scenarios, 
additional simulations for the no wildfire (background AOD) and enhanced wildfire 
scenarios were conducted using NREL’s PSM. The model configuration is the same as 
that for simulating the NSRDB except for the AOD data. The methods to create the AOD 
data for the background AOD scenario and enhanced wildfire scenario are described in 
Section 2.3 and Section 2.4, respectively. 

 
7 The NSRDB data can be obtained from https://nsrdb.nrel.gov. 

https://nsrdb.nrel.gov/
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2.1.3.1 Evaluation of the NSRDB 
NSRDB AOD and solar radiation data were evaluated with ground-based observations 
for both low and high fire activity periods. Because the temporal resolutions of the three 
data sets are different (NSRDB AOD and solar data: 5 minutes; AERONET AOD: 
approximately 15 minutes; SOLRAD solar data: 1 minute), we aligned the time stamp of 
the AOD and solar radiation data accordingly. For the AOD data, the 5-minute NSRDB 
AOD data with the nearest time stamp to the instantaneous AERONET AOD data were 
selected to match the time stamp of the AERONET data. For the solar radiation data, 
because the temporal resolution of the SOLRAD data (1 minute) is higher than that of the 
NSRDB data (5 minute), we selected the SOLRAD data at a 5-minute interval to match 
the temporal resolution of the NSRDB.  

We focused on the period from 2018–2020 when the areas burned throughout California 
were reported as approximately 880,000, 140,000, and 1,440,000 acres in 2018, 2019, 
and 2020, respectively, according to CAL FIRE (CAL FIRE 2023). The years 2018 and 
2020 had large wildfires in California, whereas the year 2019 had the lowest fire activity 
during the past decade; thus, we evaluated and compared the performance of the NSRDB 
AOD and solar radiation during the low fire activity period (July–November 2019) and the 
high fire activity period (July–November 2020). Statistical metrics, including root mean 
square error (RMSE), mean bias error (MBE), and correlation coefficient (R), were 
calculated to evaluate the accuracy of the NSRDB data. 

Figure 3 shows scatterplots of the NSRDB AOD and AERONET AOD at the nine 
AERONET sites. The correlation coefficient of each site ranges from 0.57–0.81, and the 
RMSE ranges from 0.25–0.53. The MBE at all sites is small and ranges from -0.09–0.05. 
Table 1 shows the summary of the statistical metrics for the NSRDB AOD at the nine 
AERONET sites during the low fire activity period (July–November 2019) and the high fire 
activity period (July–November 2020). The mean AOD value across the AERONET sites 
is between 0.04–0.12 and 0.13–0.48 during the low fire activity period and the high fire 
activity period, respectively. The averaged MBE (0.01) and RMSE (0.04) during the low 
fire activity period is relatively small compared to that during the high fire activity period 
(MBE: –0.03; RMSE: 0.39). The negative MBE during the high fire activity period is 
probably due to the limitation of the downscaling algorithm coupled with the inadequacy 
of the aerosol transport model used by MERRA-2 to well capture the AOD value for 
extreme wildfire cases. The correlation coefficient during the high fire activity period (0.71) 
is higher than that during the low fire activity period (0.46). This is probably because the 
measurement of the low AOD has a higher uncertainty and the variation of the AOD is 
difficult to capture by a model under clean conditions (AOD <0.1). Randles et al. (2017) 
also reported that the MERRA-2 AOD exhibits a low correlation coefficient and a low bias 
against the observation over the remote Pacific, where the AOD is low (<0.3). Overall, 
MBE during the high fire activity period is comparable to that of the low fire activity period, 
and the full time series (2018–2020). The NSRDB also exhibits good performance in 
capturing the variation of AOD during the high fire activity period. 
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Figure 3. Scatterplots and metrics (RMSE, MBE, R) between the NSRDB AOD and AERONET AOD 

at nine sites from 2018–2020. The mean AOD of the NSRDB and AERONET and the number of 
samples (N) are also shown. The fitted linear model is shown in red, and the 1:1 slope line is 

shown in black. 

 



 

8 

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

Table 1. Summary of the Statistical Analysis (RMSE, MBE, R) of the NSRDB AOD at the AERONET 
Sites from July–November 2019 (Low Fire Activity Period) and July–November 2020 (High Fire 

Activity Period), Respectively 

 
July–November 2019 

(Low Fire Activity Period) 
July–November 2020 

(High Fire Activity Period) 

Site MBE RMSE R MBE RMSE R 

NASA Ames -0.01 0.03 0.53 -0.05 0.34 0.78 

Monterey ≈0 0.03 0.48 -0.09 0.42 0.78 

NEON SJER 0.01 0.06 0.43 -0.06 0.54 0.72 

NEON TEAK 0.01 0.03 0.5 -0.01 0.38 0.7 

UCSB 0.03 0.04 0.68 -0.06 0.37 0.72 

Mount Wilson 0.03 0.04 0.32 ≈0 0.51 0.57 

Table Mountain ≈0 0.02 0.49 -0.01 0.25 0.64 

La Jolla -0.01 0.04 0.25 -0.07 0.30 0.76 

Santa Monica 
College -0.01 0.05 0.44 0.04 0.37 0.72 

Average 0.01 0.04 0.46 -0.03 0.39 0.71 

NSRDB solar radiation data (GHI, DNI, and DHI) were evaluated with the SOLRAD 
observation at the Hanford site. Figure 4 shows the box plots of the GHI and DNI for the 
NSRDB and SOLRAD observation (OBS) at the Hanford site during 2018−2020. Results 
show that the median, 25th, and 75th percentiles of both NSRDB and the observations 
are comparable for GHI and DNI, indicating that the distribution of the two data sets is 
comparable. Statistical results show that the correlation coefficient of the GHI and DNI 
are high (≈ 0.9). RMSE of DNI (165.7 Wm-2) is highest among all solar radiation variables, 
which is probably because DNI is more sensitive to the impact of aerosols than GHI 
(Sengupta and Wagner 2011). The GHI and DNI in NSRDB are overestimated, as shown 
by the MBE of 4.2 and 9.5 Wm-2, respectively.  Figure 5 shows the time series of the daily 
mean solar radiation during fire season (July–November) during 2018–2020 for SOLRAD 
and the NSRDB at the Hanford site. During the months with large fires in 2020 (August–
October), both SOLRAD and the NSRDB show reductions in the daily GHI and DNI by up 
to approximately 200 Wm-2 and 400 Wm-2 in 2020 compared to the same period in 2019, 
indicating the attenuation effect of aerosols emitted from wildfires on solar radiation. The 
results also show that NSRDB can capture the impact of wildfire-driven aerosols on solar 
radiation. 

Table 2 provides a summary of the statistical analysis (RMSE, MBE, R) of 5-minute solar 
radiation (GHI, DNI, DHI) from the NSRDB at the Hanford SOLRAD site during July–
October 2019 (low fire activity period) and July–October 2020 (high fire activity period). 
Compared to the low fire activity period, the averaged GHI and DNI during high fire activity 
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period are reduced by approximately 30 Wm-2 and 90 Wm-2 (5.6 and 15.3%), respectively. 
The magnitude of the MBE of GHI and DNI in the high fire activity period is less than that 
in the low fire activity period (less than 10 Wm-2); however, the RMSE of GHI, DNI, and 
DHI during the high fire activity period is much higher than that in low fire activity period, 
possibly due to the attenuation impact of wildfire activity on solar radiation. Further, the 
correlation coefficients of the GHI, DNI, and DHI are high (>0.85) during both fire activity 
periods, indicating that the NSRDB can well capture the variation of solar radiation. 
Overall, the MBE and the correlation coefficient of the NSRDB AOD and solar radiation 
during the high fire activity period are comparable to those during the low fire activity 
period. These evaluation results show that the NSRDB can well represent the impact of 
wildfires on the enhancement of AOD and the reduction of solar radiation; thus, the 
NSRDB and PSM are suitable approaches to be used for investigating and quantifying 
wildfire impact on solar radiation. 

 

Figure 4.  Box plots of GHI and DNI for the NSRDB and SOLRAD observation (OBS) at the Hanford 
site during 2018–2020. For each box, the middle line and upper and lower hinges represent the 
median, the 25th (Q1), and the 75th (Q3) percentiles, respectively. The whiskers extend to 1.5 

times the interquartile range (Q3–Q1), which is equal to 2.7 times the standard deviation. Metrics, 
including RMSE (unit: Wm-2), MBE (unit: Wm-2), and R of the NSRDB solar radiation, are 

calculated. 
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Figure 5. Time series of daily mean GHI and DNI during July–November 2018–2020 for the NSRDB 

and the SOLRAD (observation) Hanford site. 
Table 2. Summary of Statistical Analysis (RMSE, MBE, R) of 5-Min Solar Radiation (GHI, DNI, DHI) 

From the NSRDB at the SOLRAD Hanford Site During July–October 2019 (Low Fire Activity Period) 
and July–October 2020 (High Fire Activity Period), Respectively 

July–October 2019 (Low Fire Activity Period) 

Variable MBE (Wm-2) RMSE (Wm-2) R Average 
(SOLRAD) 

Average 
(NSRDB) 

GHI (Wm-2) 11.2 50.7 0.99 524 535 

DNI (Wm-2) 14.0 107.4 0.95 558 572 

DHI (Wm-2) 0.6 22.4 0.94 57 58 

July–October 2020 (High Fire Activity Period) 

Variable MBE (Wm-2) RMSE (Wm-2) R Average 
(SOLRAD) 

Average 
(NSRDB) 

GHI (Wm-2) 3.1 91.9 0.95 494 497 

DNI (Wm-2) -6.5 172.2 0.86 481 475 

DHI (Wm-2) 6.4 44.7 0.90 70 77 

2.1.4 Atmospheric Modeling and Fire Emission Data 
The WRF-Chem8 model and the Fire Inventory from NCAR9 (FINN) were used to create 
the AOD data set for the enhanced wildfire scenario. WRF-Chem Version 4.0 is a fully 
coupled meteorology-chemistry model. For this study, we selected the Model for OZone 
and Related chemical Tracers (MOZART) gas phase chemical scheme (Emmons et al. 

 
8 WRF-Chem: Weather Research and Forecasting Model with Chemistry 
9 NCAR: National Center for Atmospheric Research 
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2010) coupled with the Georgia Institute of Technology–Goddard Global Ozone 
Chemistry Aerosol Radiation and Transport (GOCART) aerosol scheme (Chin et al 2000), 
referred to as MOZCART (Pfister et al. 2011). Other parameterizations used include 
Thompson’s microphysics scheme (Thompson, Rasmussen, and Manning 2004), the 
Rapid Radiative Transfer Model (RRTM) longwave (Mlawer et al. 1997) and Goddard 
shortwave radiation schemes (Chou and Suarez 1999), the revised Monin-Obukhov 
surface layer (Jiménez et al. 2012), the Noah-Land Surface Model (Noah-LSM), the 
Yonsei University (YSU) planetary boundary layer scheme (Hong, Noh, and Dudhia 
2006), the Grell-Freitas cumulus scheme (Grell and Freitas 2014), and the fast 
Tropospheric Ultraviolet-Visible (FTUV) photolysis scheme. The National Centers for 
Environmental Prediction North American Mesoscale (NAM) 12-km analysis data10 
provided the initial and lateral boundary meteorological conditions. CAM-Chem model 
outputs provided the initial and lateral chemical conditions. Anthropogenic emissions for 
both area and point sources were obtained from the 12-km 2018 U.S. Environmental 
Protection Agency National Emissions Inventory (2018 NEI). Biogenic emissions were 
calculated online using the Model of Emissions of Gases and Aerosols from Nature 
(MEGAN) module (Guenther et al. 2006). 

Biomass burning emissions were calculated using FINNv2.5 (Wiedinmyer et al. 2011). 
FINNv2.5 is based on fire counts derived from the MODIS. The hourly emissions are 
allocated using the standard Western Regional Air Partnership (WRAP) diurnal profile. 
For the enhanced wildfire scenario, FINN emissions were scaled and used to simulate 
AOD using WRF-Chem. 

2.2 2020 Wildfire Scenario 
First, we investigated the trend of wildfire activity over the United States from 2000–2020, 
as shown in Figure 6. There is significant interannual variability in the fire area burned; 
however, three of the largest fire years in the last 20 years occurred between 2015–2020, 
with the total burn area exceeding 10 million acres. It is also noteworthy that these same 
years are the largest fire years when considering fires larger than 10,000 acres, with 
approximately 200 fires occurring in 2015 and 2017 each but only 125 fires burning more 
than 10 million acres in 2020. This also highlights that 2020 was a somewhat unique year, 
considering that fewer fires contributed to a larger area burned. Given various studies 
that have indicated that future years are going to experience larger and more severe fires 
under climate change, considering 2020 as a base simulation year is likely to provide 
good insight into future wildfire impacts on atmospheric aerosol loading, which impacts 
solar resource availability. Further, a comparison among all states shows that California 
is the leading state where the burn area exceeded 1 million acres for 7 years from 2000–
2020. Focusing on California, Figure 7 shows the yearly total fire detections for California 
during 2000–2020. The total fire detection for 2008, 2017, and 2018 show comparable 
values of approximately 20,000–25,000. The total fire detection in California in 2020 was 
much higher than that in 2017 and 2018 by a factor of 2–3, highlighting the potential of 
the impact of wildfire on solar radiation in California in 2020. Therefore, in this study, we 

 
10 See https://rda.ucar.edu/datasets/ds609.0/.  

https://rda.ucar.edu/datasets/ds609.0/
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focused on the impact of wildfire activity on the solar resource and the solar market in 
California in 2020.  

 
Figure 6. Yearly totals of wildfire events and acres burned between 2000–2020 as reported in the 
USGS and NIFC data sets. The top row shows the data for all reported fires, whereas the bottom 

row includes only fires that burned more than 10,000 acres. 

 
Figure 7. Total number of fire detections in California during 2000–2020. 

2.3 Background AOD Scenario 
To distinguish the background AOD and fire-affected AOD, MERRA-2 AOD data at a 
resolution of 0.5° × 0.625° during 2018 and 2020 were used to derive the map of the 
background AOD threshold. The threshold is determined as the median of the Gaussian 
mode (𝑚𝑚𝑚𝑚) + 3 ×  standard deviation (𝑠𝑠𝑠𝑠𝑠𝑠) and is calculated for each grid. Figure 8a 
shows the probability density function of AOD at the NEON-SJER site during 2018−2020 
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as an example of determining the threshold. The AOD distribution (green shading) shows 
a right skewed distribution, where the high AOD is probably mainly attributed to wildfire 
smoke aerosols. First, we generated a smoothed nonparametric density distribution using 
Gaussian kernel (estimate mode; red solid line) and the AOD value of the peak of the 
estimate mode. With the assumption that the background AOD distribution is a normal 
distribution, a Gaussian mode of background AOD (cyan line) was empirically generated 
that best matched the original AOD data (green shading). Here, with the distance between 
zero and the AOD value at the peak of the estimate mode as 3 × std, the created 
Gaussian distribution covers the original AOD data most; thus, the threshold is 
determined as 𝑚𝑚𝑚𝑚 + 3 ×  𝑠𝑠𝑠𝑠𝑠𝑠 (blue line). Figure 8b shows the map of the background 
AOD threshold. The background AOD threshold is higher over the coastal area, Joaquin 
Valley, and Los Angeles, which might have more local pollutants than southeastern and 
northeastern California. Finally, to create the background AOD data set, the fire-affected 
AOD, identified as AOD values greater than the threshold, were replaced with 𝑚𝑚𝑚𝑚. The 
background AOD data set at a resolution of 0.5° × 0.625° were then used for simulating 
the solar radiation for the no wildfire scenario using NREL’s PSM. 

 
Figure 8. (a) Probability density function of AOD at the NEON-SJER site during 2018–2020. The 

median of all AOD data is indicated by the black solid line. (b) Map of background AOD threshold 

2.4 Enhanced Wildfire Scenario 

2.4.1 Projection of Wildfire Activity Based on Literature Review 
Given drier and warmer weather conditions under an anthropogenic changing climate, 
wildfire activity is expected to increase in magnitude, length, and frequency (Westerling 
2016; Abatzoglou and Williams 2016). With the input of simulated future meteorology from 
climate models, several studies have projected the fire activity over the western United 
States using statistical models (Spracklen et al. 2009; Yue et al. 2013; Yue, Mickley, and 
Logan 2014) or climate models coupled with land models (Ford et al. 2018; Li et al. 2020). 
Quantifying the increase of future fire severity and intensity, however, remains 
challenging due to complex and nonlinear interactions among weather, vegetation, and 
human activity (Brown, Hall, and Westerling 2004; Flannigan et al. 2009). There could be 
significant spatial variability with some areas of no change or even decreases in areas 
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burned and occurrences due to the differences in vegetation types. Additionally, the 
projected fire metrics are controlled by the selection of scenarios of future climate, 
including the Special Report on Emission Scenarios (SRES) and Representative 
Concentration Pathway (RCP) scenarios, and the predicted meteorology by climate 
models. Because modeling future climates and the impacts on fire-burned areas and 
consequent impacts on AOD is outside the scope of this study, here, we review previous 
studies and summarize the projected fire metrics, specifically around year 2050, and 
percentage increase relative to the present day. The consensus of the percentage 
increase of fire metrics, specifically the area burned and fire emissions, will be applied to 
the projected change in AOD and used to simulate their impact on the solar resource.  

Most previous studies investigated wildfire projections for the future climate based on 
statistical models or physical land-based models. Statistical models regress the 
meteorological fields (e.g., temperature, wind speed, precipitation, relative humidity) to 
fire metrics (e.g., area burned, fire frequency, fire index) (Spracklen et al. 2009; 
Westerling et al. 2011; Yue et al. 2013; Yue, Mickley, and Logan 2014). Because wildfire 
events happen irregularly in space and time, statistical models for wildfire usually 
aggregate fire occurrences over space and/or time to provide some statistical smoothing 
of noisy data of the area burned. Further, because fire activity is closely related to the 
climate region and vegetation type, Spracklen et al. (2009) and Yue et al. (2013) divided 
the western United States into six ecoregions and built up the statistical model for each. 
California is covered by three main ecoregions, including the Pacific Northwest, California 
Coastal Shrub, and Desert Southwest. Spracklen et al. (2009) projected the area burned 
across the western United States to increase by 54% on average in the mid-21st century 
(Pacific Northwest: 78%; California Coastal Shrub: 38%). Yue et al. (2013) built their fire 
prediction model based on regression and parameterization. With an ensemble of 15 
climate model runs from Coupled Model Intercomparison Project Phase 3 (CMIP3), Yue 
et al. (2013) showed that the area burned over the Pacific Northwest will increase by a 
factor of 42% (regression) or 156% (parameter). Over the California Coastal Shrub, the 
area burned will increase by a factor of 24% (regression). Considering the impact of 
elevation, population, fuel load, and the Santa Ana winds, Yue, Mickley, and Logan (2014) 
reported that the area burned will likely double in southwestern California and increase 
by 35% in the Sierra Nevada and 10% in central western California by the midcentury. 
Westerling et al. (2011) projected that the area burned over California under the SRES 
A2 and B1 scenarios will increase by ranges from 7%–41% in 2050. Instead of area 
burned, Barbero et al. (2015) projected an increase in the annual-mean number of very 
large fires (VLFs) by 62% over Mediterranean California and 300% over Western 
Cordillera during 2041–2070 under the RCP 8.5 scenario relative to present-day very 
large fires. Considering the anthropogenic influence (anthropogenic ignition and 
suppression), Mann et al. (2016) reported that the expected burned area will increase by 
2%–5% over California by 2050. They also pointed out that previous findings of 
substantially increased numbers of fires and areas burned over California could be tied 
to omitted variable bias from the exclusion of human influences. 

For studies based on land models, the Community Land Model (CLM) is widely used to 
simulate fire activity; it accounts for agricultural, deforestation, peat, and landscape fires, 
and it estimates the area burned and fire emissions using information about climate, 
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vegetation, land cover-land use changes, gross domestic product, and population density. 
By using climate models coupled with land models, area burned, or fire emissions can be 
derived at the climate model’s grid cell resolution. Val Martin et al. (2015) used a global 
coupled chemistry–climate–land model called the Community Earth System Model 
(CESM) and CLM to project the future fire activity under RCP 4.5 and RCP 8.5 with 
climate, emissions, population, and land use changes. They reported increases in 
emissions in the western United States by approximately 100% in RCP 4.5 and 50% in 
RCP 8.5 by 2050. Pierce, Martin, and Heald (2017) used CESM-CLM with fire 
parametrization to project the area burned and showed that the area burned over the 
contiguous United States (CONUS) is expected to increase by 67% (RCP 4.5) and 50% 
(RCP 8.5). Following Pierce, Martin, and Heald (2017), Ford et al. (2018) investigated the 
change in the surface particulate matter (PM2.5) for the early, mid, and late 21st century 
with both climate and population changes using CESM-CLM at a 0.9° × 1.25° horizontal 
resolution. They reported that smoke PM2.5 emissions are expected to increase by 126% 
(RCP 4.5) and 54% (RCP 8.5) relative to present-day (2000–2010) smoke emissions over 
CONUS; however, the majority of the projected increase in smoke emissions is for the 
eastern United States (85% RCP 8.5, 220% RCP 4.5), not the western United States 
(40% RCP 8.5, 45% RCP 4.5). This is probably due to strong afforestation (more fuel) 
over the southeastern United States in the RCP 4.5 scenario and the increase in 
agricultural burning in the southeastern United States in the RCP 8.5 scenario. Because 
a reduction in the emissions of anthropogenic PM2.5 is also considered, PM2.5 
concentrations are simulated to decrease in CONUS (total PM2.5 decreases by 3% in RCP 
8.5 and 34% in RCP 4.5 by 2100), but increasing fire-related PM2.5 (fire-related PM2.5 is 
projected to increase by 55% in RCP 4.5 and 190% in RCP 8.5 by 2100) are projected to 
offset these benefits and cause increases in total PM2.5 in some regions. Li et al. (2020) 
used a dynamic vegetation model that includes a process-based representation of fire 
(LPJ-LMfire) with a global model (GEOS-Chem) to project fire emissions over the western 
United States under RCP 4.5 and RCP 8.5 and showed that emissions of smoke aerosols 
are expected to increase by 81% (RCP 4.5) and 86% (RCP 8.5) by 2050 relative to 
present-day emissions. 

Overall, a literature review of previous studies on the projection of fire metrics under 
anthropogenic climate change is summarized in Table 3 and Figure 9. The projected 
relative increases of area burned and smoke emissions range from 2%–240% and 40%–
100%, respectively, by 2050 among studies with different approaches and climate 
scenarios. Here, we chose the median (165%) among the reported increase ratios from 
the literature review as the increase ratio to scale the fire emission FINN data. 
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Figure 9. Summary of scatterplot of projected relative increase of area burned to present-day area 
burned from previous studies: Spracklen et al (2009): S2009; Westerling et al. (2011): W2011; Yue 

et al. (2013), Yue, Mickley, and Logan (2014): Y2013, Y2014; Val Martin et al. (2015): V2015; Mann et 
al. (2016): M2016; Pierce, Martin, Heald (2017): P2017; Ford et al. (2018): F2018; Littell et al. (2018): 
L2018; Li et al. (2020): L2020. Median increase (65%), which is the value used in this analysis, is 

also shown as a green circle. 
Table 3. Review of Fire Predictions in the United States Under Future Climate Projections 

VLF indicates very large fire; PNW: Pacific Northwest (ecoregion); CAS: California Shrub (ecoregion) 

Reference Method 
Region, Scenarios, 
and Present/Future 

Time Slice 

Fire Metric and 
Percentage Increase 
Relative to Present 

Day 

Smoke PM and 
Percentage Increase 
Relative to Present 

Day 

Spracklen et 
al. (2009) Statistical model 

Western United States, 
A1B,  

1996–2005/2046–2055 

Area burned: 38% 
(PNW3), 78% (CAS4) 

 

Westerling et 
al. (2011) Statistical model California, A2 and B1, 

1961–1990/2036-2065 
Area burned:  

A1: 21%, B2: 23% 
 

Yue et al. 
(2013) 

Statistical model + 
GEOS-Chem 

Western United States, 
A1B,  

1986–2000/ 
2051– 2065 

Area burned: 63%–
169% 

Emissions of smoke 
aerosol: 

 150%–170% 

Smoke PM 
concentration:  

43%–55% 

Yue, Mickley, 
and Logan 

(2014) 
Statistical model California, A1B,  

1981–2000/2046–2065 
Area burned:  
10%–100% 

 

Barbero et al. 
(2015) Statistical model CONUS, RCP 8.5, 

1971–2000/2041–2070 

VLF1: 
62% (Mediterranean 

California);  
300% (Western 

Cordillera) 

 

Val Martin et 
al. (2015) CLM-CESM 

Western United States, 
RCP 4.5 and RCP 8.5,  

2000/2050 

Smoke PM emissions: 
RCP 4.5: 100% 

Total PM2.5 
concentrations: 
RCP 4.5: 22% 
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Reference Method 
Region, Scenarios, 
and Present/Future 

Time Slice 

Fire Metric and 
Percentage Increase 
Relative to Present 

Day 

Smoke PM and 
Percentage Increase 
Relative to Present 

Day 
RCP 8.5: 50% RCP 8.5: 63% 

Liu et al.  
(2016) 

Statistical model + 
GEOS-Chem 

Western United States, 
A1B,  

2004–2009/2046–2051 
 Smoke PM 

concentration: 160% 

Liu and 
Wimberly 

(2016) 
Statistical model 

Western United States, 
SRES A2, A1B, and 

B2, 1981–2010/ 
2071–2100 

Area burned: 
28%–116% 

 

Mann et al. 
(2016) 

Statistical model 
(+ human 
influence) 

California, SRES A2, 
1976–2000/2026–2050 

Area burned: 
2%–5% 

 

Pierce, 
Martin, and 

Heald (2017) 
CLM + CESM 

CONUS,  
RCP 4.5 and RCP 8.5, 
1995–2005/2040–2050 

Area burned: 
RCP 4.5: 67% 
RCP 8.5: 50% 

Total PM2:5 
concentrations: 
RCP 4.5: 146% 
RCP 8.5: 85% 

Ford et al. 
(2018) CLM + CESM 

CONUS,  
RCP 4.5 and RCP 8.5,  
2000–2010/2040–2050 

Smoke PM emissions: 
RCP 4.5: 126% 
RCP 8.5: 54% 

Total PM2:5 
concentrations: 
RCP 4.5: 113% 
RCP 8.5: 27% 

Littell et al. 
(2018) 

Statistical model + 
climate model 

Western United States, 
SRES A1B, 1980–
2006/2030–2059 

Area burned: 
43%–240% 

 

Li et al. 
(2020) 

LPJ-LMfire + 
GEOS-Chem 

Western United States, 
RCP 4.5 and RCP 8.5,  

2010/2050 

Smoke PM emissions: 
RCP 4.5: 81% 
RCP 8.5: 86% 

Smoke PM 
concentrations 

by 2100: 
RCP 4.5: 53% 

RCP 8.5: 109% 

Liu et al. 
(2022) 

Empirical fire 
model + climate 

model 

Western United States, 
RCP 8.5,  

2001–2010/2050–2059 

Fire emissions: 
~50% 

 

Dong et al. 
(2022) 

Machine learning 
model (random 

forest) 

Southern California, 
RCP 4.5 and RCP 8.5, 
1970–1999/2070–2099 

Large fire probability: 
RCP 4.5: 39% 
RCP 8.5: 62% 

 

2.4.2 AOD Data Set Creation Using WRF-Chem Modeling and MERRA-2 AOD 
Because wildfire activity in 2020 is considered as the baseline year in this study, the 
enhanced fire emission FINN data was generated by applying the relative increase ratio 
to the original FINN in 2020. Therefore, we conducted two experiments at a resolution of 
12 km using the original FINN (2020 wildfire) and enhanced FINN (enhanced wildfire) 
from June–November 2020. Note that we focused on wildfires in 2020, and only the area 
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burned was intensified. The locations and periods of wildfires remained the same as those 
in 2020.  

The WRF-Chem simulated AOD for the 2020 wildfires were evaluated against the 
AERONET AOD observations and compared with the NSRDB AOD. For the WRF-Chem 
AOD, elevated AOD during August and September were captured, but the magnitude of 
the AOD was underestimated by approximately 1–2 when compared with the AERONET 
AOD. This could be a result of the coarse resolution of WRF-Chem in the spatial (12-km) 
and temporal (hourly) resolutions. Further, FINN, which is derived from satellite 
measurements of fire detections, could miss or underestimate wildfire emissions when 
there are clouds or thick smoke overlying the wildfires. In general, WRF-Chem can 
appropriately capture the major wildfire emission and represent the aerosol distribution.   

Comparisons between the monthly spatial distributions of WRF-Chem AOD for the 2020 
wildfire and enhanced wildfire scenarios are shown in Figure 10. During the low fire 
activity months (June and July), the spatial patterns of the AOD of the 2020 wildfire and 
enhanced wildfire conditions are similar, with AOD at most locations less than 0.5. For 
the high fire activity months (August–October), the enhanced AOD can be observed over 
Northern California and the San Joaquin Valley under the enhanced wildfire scenario. 
Especially during September, when an extreme wildfire event occurred, the AOD 
significantly increased, from approximately 0.5–1 to 1–2, over Northern California for the 
enhanced wildfire scenario. Because smoke aerosols emitted from wildfires can be 
transported by winds, intensified smoke aerosols lead to an increase in AOD over the 
San Joaquin Valley and most of the coastal area over Central California. 

 
Figure 10. Monthly spatial distribution of AOD simulated by using WRF-Chem for the 2020 wildfire 

and enhanced wildfire scenarios. 

Based on the two WRF-Chem simulations, we then derived the AOD increment map, 
defined as the difference between the enhanced wildfire AOD and the 2020 wildfire AOD. 
Because smoke aerosols emitted by wildfires can be transported by wind, the distribution 
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of the aerosols changes throughout the simulation period. To appropriately represent the 
impact of transported smoke aerosols on solar radiation, photovoltaic (PV) generation, 
and market prices, the AOD increment map was derived at a temporal resolution of 1 
hour. However, due to the nonlinear effect of meteorology and chemical reactions, large 
differences of negative and positive AOD values between the 2020 wildfire and enhanced 
wildfire scenarios was found in the AOD map. This is probably because of the aerosol 
radiation effects on meteorology (especially for the boundary layer structure) and the 
distribution of aerosols, as well as the nonlinear impact of chemical reactions on the 
production of smoke aerosols. Therefore, we excluded the negative values of AOD 
increments to prevent generating negative value of AOD. Besides, we applied an upper 
limit of 10 to the AOD to prevent adding extreme large AOD increments to the NSRDB 
AOD. Finally, the AOD increments were applied to the 2020 NSRDB AOD to create the 
enhanced wildfire AOD data sets at the NSRDB resolution. Then, the enhanced wildfire 
AOD data set was used to simulated solar radiation using NREL’s PSM. 
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3 Wildfire Impact on Aerosol Loading and Solar 
Radiation 

3.1 Impacts During the 2020 Wildfire Scenario 
To quantify the impact of wildfire activity on aerosol loading and solar radiation, we 
compared the differences of the simulated AOD and solar radiation between the no 
wildfire and 2020 wildfire scenarios while focusing on high fire activity months (August, 
September, and October). Figure 11 shows the box/whisker plots of the monthly AOD 
over California for the no wildfire and 2020 wildfire scenarios. The monthly mean AOD is 
approximately 0.06 during August and October for the no wildfire scenario. With the 
smoke aerosols emitted from wildfires, the AOD increases by 0.14–0.46 in the 2020 
wildfire scenario. The AOD increases the most in September, with a monthly mean AOD 
of 0.53. Further, the distribution of the AOD is wider under the 2020 wildfire scenario than 
under the no wildfire scenario, indicating a larger variation of the spatial distribution of 
AOD over California.  

 
Figure 11. Box/whisker plot of monthly AOD over all grid cells in California for the no wildfire and 

2020 wildfire scenarios. For each box, the middle line, green dot, and upper and lower hinges 
represent the median, mean, and 25th (Q1) and 75th (Q3) percentiles, respectively. The whiskers 

extend to 1.5 times the interquartile range (Q3–Q1), which is equal to 2.7 times the standard 
deviation. The difference in the monthly mean AOD between the two scenarios is also shown (red 

font). 

Regarding the wildfire impact on solar radiation, comparisons of GHI, clear-sky GHI, 
DNI, and clear-sky DNI between the no wildfire and 2020 wildfire scenarios are shown in 
Figure 12. Note that the solar radiation data selected for analysis included only the period 
from 10 a.m.–6 p.m. local time (Pacific Daylight Time [PDT]). Clear-sky GHI and clear-
sky DNI are also shown to exclude the impact of clouds and to highlight the aerosol impact 
on solar radiation. Because GHI consists of DNI and DHI, solar radiation scattered by 
atmospheric aerosols can increase DHI and then contribute to GHI. Therefore, wildfire-
caused changes in AOD showed a moderate impact on monthly GHI and lead to a 
reduction in monthly GHI by 2.9%–6.9%. The aerosol impact on clear-sky GHI was 
slightly stronger than that on GHI and caused a reduction in clear-sky GHI by 3.3%–7.9%. 
The largest reduction in GHI and clear-sky GHI occurred in September, when the AOD 
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increased the most. Because DNI is more sensitive to the attenuation effect of 
atmospheric aerosols, the aerosol impact on DNI was more significant than that on GHI. 
The enhanced aerosol loading led to a reduction in the monthly mean DNI and clear-sky 
DNI by 73–188 Wm-2 (9.3%–22.7%) and by 85–221 Wm-2 (10.1%–24.9%) over California, 
respectively. Overall, with the intense aerosol loading under the 2020 wildfire scenario, 
GHI and DNI can be reduced by up to approximately 7% and 23%, respectively. This 
profound reduction of the available solar radiation can potentially influence solar PV 
generation, grid stability, and market price. 

Multiple factors, including locations of wildfires, injection height, and synoptic wind fields, 
can affect the distribution of smoke aerosols emitted from wildfires and thus its impact on 
solar radiation. Figure 13 shows the spatial pattern of the differences in the monthly AOD 
and DNI between the 2020 wildfire and no wildfire scenarios from August to October. 
Because most of the large wildfires occurred over Northern California, a profound monthly 
AOD difference can be found over Northern California, with increases of AOD greater 
than one during August and September. A considerable AOD increase can be also 
observed over the Central Valley in September and October, possibly due to nearby 
wildfires and the transport of smoke aerosols to areas downwind from Northern California. 
Further, the geographic impact of the valley can restrict the dispersion of atmospheric 
aerosols and lead to an accumulation of aerosols and high AOD. The wildfire activities 
show a moderate impact on the increase of AOD over Southern California and 
southeastern California, which are relatively far from the location of large wildfires. 
Regarding the wildfire impact on DNI, a significant decrease in DNI can be found over the 
areas with large increases in AOD; this corresponds to a monthly reduction in DNI by up 
to 200 Wm-2. Note that the exponential attenuation effect of AOD on DNI could lead to a 
pronounced impact on the reduction in DNI, which occurred in areas with moderate AOD 
changes. For instance, with an increase in the monthly AOD of 0.4–0.5 over the Los 
Angeles metropolitan area, the magnitude of the DNI reduction is comparable (150–200 
Wm-2) to that over the source region, where AOD increased by more than one due to 
wildfire impacts. 
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Figure 12. Box/whisker plots of monthly solar radiation, including (a) GHI and (b) clear-sky GHI, (c) 

DNI, and (d) clear-sky DNI, over all grid cells in California for the no wildfire and 2020 wildfire 
scenarios. The relative difference in the monthly mean solar radiation between the two scenarios 

is also shown. The green dot indicates the monthly mean value of the solar radiation.   
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Figure 13. Spatial pattern of the difference in the monthly AOD and monthly DNI between the 2020 
wildfire and the no wildfire scenarios from August–October. DNI was selected only for the period 

from 10 a.m.–6 p.m. local time (PDT). 

To study the profound spatial variation of wildfire impact, we further focused on eight 
selected subregions, as shown in Figure 14, to better quantify the wildfire impact on 
aerosol loading and solar radiation availability. In addition, we analyzed the wildfire impact 
at a shorter time interval (daily) because atmospheric aerosols could be transported by 
wind and exhibit large variations in daily aerosol loading. Figure 15 shows the box/whisker 
plot of the difference in the domain-averaged daily AOD and DNI between the 2020 
wildfire and no wildfire scenarios for the eight subregions from August–October. As shown 
in Figure 15, the extensive range between the upper and lower whiskers of the differences 
between the AOD and DNI indicate distinct daily variations in aerosol loading and its 
impact on DNI. During August and September, the upper whiskers show daily AOD 
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increases of approximately 1.0–1.8 for subregions near the source and coastal areas 
(Northern California, Bay Area, Northern/Southern Central Valley, and Central Coast) 
during the days with severe wildfire impacts. This enhanced AOD can lead to significant 
reductions in the daily DNI by up to 300–500 Wm-2 (approximately 30–50%). This large 
sudden decrease in the available solar radiation can affect solar PV production and 
introduce uncertainties and vulnerabilities to electric grid stability. In the southern part of 
California, Los Angeles is also under the considerable influence of AOD and DNI impacts 
in September due to the transport of smoke aerosols. Overall, the impact of enhanced 
fire activity on DNI could be stronger on shorter (daily) timescales and in smaller domains, 
and the impacts can significantly vary by subregion.  

 
Figure 14. Map of eight focused subregions in California.  

The map is adapted from the California electricity demand forecast zone map (total of 25 zones). Accessed June 29, 
2023. https://cecgis-caenergy.opendata.arcgis.com/datasets/86fef50f6f344fabbe545e58aec83edd/explore. 

https://cecgis-caenergy.opendata.arcgis.com/datasets/86fef50f6f344fabbe545e58aec83edd/explore
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Figure 15. Box/whisker plots of domain-averaged differences in daily AOD and DNI between the 

2020 wildfire and no wildfire scenarios for eight subregions from August–October. The green dot 
indicates the average of the daily AOD difference and DNI difference. DNI was selected only for 

the period from 10 a.m.–6 p.m. local time (PDT) to calculate the daily DNI.  
NCA: Northern California; BA: Bay Area; NCV: Northern Central Valley; SCV: Southern Central Valley; CC: Central 

Coast; ECA: Eastern California; LA: Los Angeles; SCA: Southern California 

3.2 Impacts During the Enhanced Wildfire Scenario 
The spatial pattern of the monthly difference in the AOD and DNI between the enhanced 
wildfire scenario and the 2020 wildfire scenario is shown in Figure 16. Because most large 
wildfires in 2020 occurred over Northern California, enhanced AOD can be found over 
Northern California in the enhanced wildfire scenario, especially in September. The result 
shows that AOD increases by approximately 1–1.5 over the source region (Northern 
California). Further, these smoke aerosols can be transported by synoptic winds and lead 
to an increase in AOD of approximately 0.2–0.5 over downwind areas, such as San 
Joaquin Valley, Bay Area, and even the coastal areas near Los Angeles. This enhanced 
AOD can lead to reductions in DNI across the state; the reduction in the monthly DNI is 
up to 100 Wm-2 over the source region and approximately 30–70 Wm-2 over downwind 
areas. A pronounced enhanced wildfire impact on the reduction in DNI was observed not 
only over Northern California but also southwestern California, where the AOD difference 
is relatively low. This is because of the exponential attenuation effect of AOD on DNI that 
smoke impact on the reduction of solar irradiance could be even comparable over source 
and downwind area. 
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Figure 16. Spatial pattern showing the difference in monthly AOD and monthly DNI between the 

2020 wildfire and no wildfire scenarios from August–October. DNI was selected only for the period 
from 10 a.m.–6 p.m. local time (PDT). 

To quantify the impact of enhanced wildfire activity on AOD and solar radiation, Figure 17 
shows the box and whisker plots of monthly AOD and clear-sky GHI over all grid cells in 
California for the no wildfire, 2020 wildfire, and enhanced wildfire scenarios. Because PV 
panels can generate solar energy using not only DNI but also GHI, here, we focused on 
clear-sky GHI. (The wildfire intensity index based on clear-sky GHI is defined and used 
in the next section for market analysis.)  Compared to the background AOD, wildfires lead 
to an increase in the monthly mean AOD by approximately 0.2–0.7 for the enhanced 
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wildfire scenarios. Compared to the 2020 wildfire AOD, AOD for the enhanced wildfire 
case increases by approximately 11%–28% and shows a larger spread of AOD values. 
The enhanced AOD is expected to cause a reduction in solar radiation. For the clear-sky 
GHI, the reductions in clear-sky GHI under the 2020 wildfire and enhanced wildfire 
conditions are comparable. Compared to no wildfire condition, wildfire impact leads to 
reduction in clear-sky GHI by 3.4–7.9% in the 2020 scenario and 3.9–9.3% in the 
enhanced wildfire scenario over California. The enhanced wildfire scenario impact on GHI 
is less significant than that on AOD, which is probably due to the exponential attenuation 
effect of AOD on solar radiation (GHI = GHIinitial e-AOD). Because the AOD in 2020 is 
already high over California, the statewide impact of the enhanced wildfire activity is only 
moderate. 

 
Figure 17. Box/whisker plots of monthly AOD and clear-sky GHI over all grid cells in California for 

the no wildfire, 2020 wildfire, and enhanced wildfire scenarios. The relative differences in the 
monthly mean AOD and clear-sky GHI are also shown. The green dot indicates the monthly mean 
values. Note that clear-sky GHI were selected only for the period from 10 a.m.–6 p.m. local time 

(PDT).  
Because the wildfire impact on AOD and solar radiation exhibits large spatial and 
temporal variability, we further analyzed its impact by focusing on a smaller domain and 
a shorted period. Two regions were selected as examples: one near the source area 
(Greater Bay area) and a downwind area (Los Angeles metropolitan area) (Figure 14). 
Figure 18 shows the box and whisker plots of the daily clear-sky GHI over all grid cells 
for the Greater Bay and Los Angeles metropolitan areas in California for the no wildfire, 
2020 wildfire, and enhanced wildfire scenarios during the wildfire episode (September 
10–September 14). First, for the 2020 wildfire scenario, compared to the no wildfire 
condition, the impact of the 2020 wildfire leads to a decrease in clear-sky GHI by up to 
23% (near the source) and 19% (downwind). The impact of the enhanced wildfire activity 
further intensifies the reduction in clear-sky GHI; it has a stronger impact near the source 
area, which leads to a reduction by up to 30% (near the source), and it has a moderate 
impact on the downwind area. Compared to the monthly statewide wildfire impact, the 
daily zone-level wildfire impact on solar radiation is much more significant. This impact 
could be even stronger for shorter periods (e.g., hourly), and this sudden reduction of 
solar radiation could introduce uncertainties and vulnerabilities to grid stability. 
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Figure 18. Box/whisker plots of daily clear-sky GHI over all grid cells for the Greater Bay and Los 
Angeles metropolitan areas in California for the no wildfire, 2020 wildfire, and enhanced wildfire 
scenarios. The relative differences in the monthly mean AOD and clear-sky GHI are also shown. 
The green dot indicates the monthly mean values. Note that clear-sky GHI were selected only for 

the period from 10 a.m.–6 p.m. local time (PDT). 

  



 

29 

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

4 Market Impact Analysis: Real-World Data Mining 
With the bulk grid increasingly relying on solar generation, wildfires could introduce 
significant variability and uncertainty of energy availability and make the power system 
more vulnerable to reliability issues and market price volatility. To make informed 
decisions on reserve planning, generation scheduling, and reliability investments to 
mitigate the influences of wildfires, the first step is to understand how wildfires have 
historically impacted the electricity market. Therefore, as the first part of our wildfire 
market impact study, we present a historical wildfire market impact analysis leveraging 
real-world historical data. 

4.1 Data Preparation 
The process of conducting the historical wildfire-market impact analysis heavily relies on 
the availability of relevant data. As such, we dedicate a subsection to discuss the data 
preparation and properties. We collected three types of real-world data sets to support 
the analysis: meteorological, wildfire, and market data sets, as described in sections 
4.1.1, 4.1.2 and 4.1.3, respectively. 

4.1.1 Solar Irradiance and AOD Data 
The solar irradiance data are provided by the NSRDB,11 which was developed at NREL. 
The database offers a variety of solar radiation data—including GHI, DNI, and DHI—at 
high resolutions in both time (15-minute intervals) and space (2 km × 2 km), incorporating 
satellite measurements, ground-based measurements, and model-based data. Details 
can be found in Section 2.1.3. 

4.1.2 Wildfire-Relevant Data 
Table 4 summarizes the wildfire-relevant data sets used in the analysis according to data 
type, data source, spatial precision, temporal precision, and magnitude measure/unit. 
Two types of wildfire-relevant data—wildfire records and clear-sky GHI—were applied to 
serve as direct and indirect measures of the wildfire, respectively. 

Table 4. Wildfire-Relevant Data Sets 

Data Type Data Source Spatial Precision Temporal 
Precision 

Magnitude 
Measure/unit 

Wildfire 
records 

Fire agencies: NIFC, 
DOD, LRA, USF, 

NPS, BLMa 

Latitude and 
longitude of the fire 
perimeter centroid 

Start date and end 
date Burn area (acres) 

Clear-sky 
GHI NSRDB 2-km x 2-km grid 15 min (Wm-2) 

NIFC: National Interagency Fire Center, DOD: U.S. Department of Defense, LRA: Local responsibility areas, USF: 
U.S. Forest Service, NPS: U.S. National Park Service, BLM: U.S. Bureau of Land Management 

 

 
11 See https://nsrdb.nrel.gov.  

https://nsrdb.nrel.gov/
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As described in Section 2.1.1, wildfire records were obtained from NIFC and USGS. For 
the analysis on the impact of wildfire activity on market price, we focused on the period 
from 2017–2020. 

Figure 19 shows the monthly burn areas across 4 years (2017–2020), calculated based 
on the historical wildfire records. Then we filtered out months with burn areas that 
exceeded 0.2 million acres, as listed in Table 5. According to Figure 19 and Table 5, most 
wildfires in California occurred during the second half of the year, and the months with 
greater wildfire impact slightly vary across years. 

 
Figure 19. Monthly burn areas 

Table 5. Months With Burn Areas Greater Than 0.2 Million Acres 

Year Months with Burn Areas Greater Than 0.2 Million 
Acres 

2017 July, August, October, December 

2018 July, August, September, November 

2019 No month exceeded the threshold 

2020 August, September, October, November 

The wildfire records provided by fire agencies allow for the identification and quantification 
of historical wildfires, but they have limitations in terms of their spatial and temporal 
resolutions. Specifically, only fire perimeters are identified, without details on the shape 
of the burn areas. Also, they provide only the start and end dates of the fires and lack 
information on how the wild intensity evolves over time. To address these limitations, we 
used the solar irradiance data from the NSRDB as an indirect measure for the location 
and intensity of historical wildfires, given that the AOD caused by wildfire smoke directly 
affects the solar irradiance.  

4.1.3 Market Data  
CAISO’s Open-Access Same-time Information System (OASIS) database provides 
access to all the market-relevant historical data necessary for this study. Within this 
database, five types of data have been identified as significant for this analysis. Table 6 
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summarizes their properties from the perspectives of data type, data source, spatial 
precision, temporal precision, and magnitude measure/unit.  

Table 6. Market-Relevant Data Sets 

Data Type Data 
Source Spatial Precision Temporal 

Precision 
Magnitude 

Measure/Unit 

Real-time PV generation 

CAISO 
OASIS 

System level 5 min MW 

Real-time operating 
reserve System level 5 min MW 

Day-ahead reserve 
requirement Zone level 1 hour MW 

Energy locational 
marginal price (LMP) Node level 

1 hour  
(day ahead) 

5 min (real time) 
$/MW 

The market data encompass different spatial resolutions, ranging from the system level 
to the zone level, to the node level. They are available in two distinct time frames: day 
ahead and real time. The day-ahead market data are provided at an hourly precision, 
whereas the real-time market data offer a higher level of granularity, with 5-minute 
precision. 

4.2 Impact Analysis 

4.2.1 Impact on PV Generation 
The impacts of wildfire activity on solar generation are quantified at a monthly resolution 
and the system level using the wildfire record data and CAISO OASIS data. Figure 20 
illustrates the monthly solar generation (blue areas) and curtailment (orange areas), 
which sum to the monthly net solar generation, as well as their relationships with respect 
to the rescaled 2019 baselines (green lines). The purple dashed lines show the months 
with burn areas exceeding 0.2 million acres. Note that 2019 was selected as the baseline 
year because it is the smallest fire year among the four. The rescaled baselines were 
created by scaling up/down the actual 2019 PV generation to match the peak generation 
in each year to diminish the influence of varying PV installation capacity. The blue bars 
on the bottom of the subfigures indicate the difference between the net PV generation 
and its rescaled 2019 baseline in each month. According to Figure 20, three observations 
can be made:  

• Up to 10% monthly PV reductions are observed. 
• Across the four years, the differences between the actual PV generation and the 

2019 baselines are the most significant in 2020.   
• Within each year, the largest negative differences are associated with months 

with burn areas exceeding 0.2 million acres.  
Both observations indicate the impact of wildfire on suppressing PV generation. We made 
monthly instead of daily comparisons because we assumed that the monthly wildfire-free 
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PV generation profiles remained relatively constant across years, whereas that was not 
the case for the daily wildfire-free PV generation profiles.  

 
Figure 20. Monthly solar generation profiles. Purple dashed lines highlight the months with burn 

areas greater than 0.2 million acres. 

4.2.2 Impact on Operating Reserve 
Similar system-level monthly comparisons were made between the wildfire activity and 
the operating reserve. Figure 21 illustrates the monthly day-ahead minimum operating 
reserve requirement and the monthly real-time available operating reserve for the same 
4 years from 2017–2020. The green bars on the bottom of the subfigures calculate the 
gaps between the real-time operating reserves and the day-ahead reserve 
requirements.   
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Figure 21. Monthly operating reserve profiles. Purple dashed lines highlight the months with burn 

areas greater than 0.2 million acres. 
According to Figure 21, several observations can be made:  

• Across the four years, 2020 and 2019 had the highest and lowest demand for 
system reserves.   

• Within each year, months with burn areas exceeding 0.2 million acres had on 
average 50% less operating reserve surplus than other months.   

Both observations indicate that wildfires could increase pressure on system operation by 
increasing the day-ahead reserve requirement and reducing the real-time available 
operating reserve surplus.  

4.2.3 Impact on Market Price 
We conducted a correlation analysis between wildfires and prices at both the system level 
and the zone level considering the higher spatial resolution of price data compared to PV 
generation and reserve data. Although price information is available at the node level, 
wildfire impact is typically regional due to smoke dispersion. As shown in Figure 14, in 
our study, we partitioned the California region into eight zones: Northern California, Bay 
Area, Northern Central Valley, Southern Central Valley, Los Angles, Eastern California, 
Southern California, and Central Coast. 

Figure 22 shows the wildfire-price impact at the system level. It plots the ratios between 
the monthly averaged market price and the yearly averaged market price for 2017–2020. 
Table 7 summarizes the months when the monthly averaged market price exceeded the 
yearly average market price. The years 2017, 2018, and 2020 (years with greater burned 
areas) experienced increases in prices in the second half of the years, which coincided 
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with periods of greater wildfire influences; however, the year 2019 (the year with less burn 
areas) is an exception. In addition, Table 7 indicates that months with higher market prices 
highly overlap with months with greater wildfire burn areas. Specifically, 11 of 12 months 
with burn areas exceeding 0.2 million acres, highlighted in bold in Table 7, contributed to 
higher-than-average market prices.    

 
Figure 22. Ratios between monthly and yearly averaged prices. The black dashed line indicates 

where the monthly averaged price meets the yearly averaged price. 
Table 7. Months With Higher-Than-Average Market Prices 

Year Months With Burn Areas Exceeding 0.2 Millions Acres 

2017 July, August, November, December 

2018 July, August, September, October, November, December 

2019 January, February, March, November 

2020 August, September, October, November, December 

The monthly system-level analysis presented here provides limited information given the 
low data resolution. To leverage the market price data available at higher spatial and 
temporal resolutions, we further designed a wildfire-price correlation analysis based on 
the meteorological data provided by the NSRDB. Specifically, we calculated the 
differences between the clear-sky GHI, which represents the total amount of solar 
radiation received on a horizontal surface under cloud-free conditions, of the wildfire and 
no wildfire scenarios to represent the wildfire intensity in different areas, as given in Eq. 
(1).  

𝑊𝑊𝑊𝑊 = 𝐺𝐺𝐺𝐺𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 − 𝐺𝐺𝐺𝐺𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 (1) 

 
Figure 23 presents a comparison between the daily total burn area profile, estimated by 
assuming an evenly distributed burn area between the start and end dates of the 
wildfire record, and the daily average wildfire index profile, calculated using the clear-
sky GHI, across the 3 months. The two profiles exhibit similar patterns, with the highest 
values of both the wildfire index and burn area observed from August 15, 2020, to 
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September 15, 2020, followed by the median values observed after September 15, 
2020, and the lowest values being observed before August 15, 2020.  

 
Figure 23. Daily total burn area versus daily averaged wildfire index 

Figure 23 illustrates the correlation coefficients between the wildfire index and the market 
price for the 3 months with the highest wildfire impact in 2022. Three different approaches 
were applied to process the data:  

1. Hourly averages: Averaged GHI differences (across each zone and at the hourly 
resolution) were calculated to quantify the wildfire intensity. 

2. Daily averages: Averaged GHI differences (across each zone and at the daily 
resolution) were calculated to quantify the wildfire intensity. 

3. Normalized hourly averages: The GHI were divided by the cosine value of the solar 
zenith angle to remove the impact of solar zenith angle before calculating the 
hourly averaged GHI difference.  

4. Normalized daily averages: The GHI were divided by the cosine value of the solar 
zenith angle to remove the impact of solar zenith angle before calculating the daily 
averaged GHI difference.  
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(a) Hourly average 

 

(b) Daily average 
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(c) Normalized hourly average 

 

(d) Normalized daily average 

Figure 24. Pearson correlations between the wildfire index and market prices in different zones 

Figure 24 shows that there is a correlation between wildfires and market price at the zone 
level, especially during August. Because the system relies less on solar generation from 
August to October (with 25.95%, 23.33%, and 22.60% of the load served by solar 
generation in August, September, and October 2020, respectively), these correlations 
gradually decrease. During the month with the most significant correlation (August), 
higher correlation coefficients are found in zones with greater solar capacity, namely, the 
Southern Central Valley, the Los Angeles metropolitan area, and the Eastern California. 
When comparing different approaches for processing the data, note that stronger 
correlations are present when daily averages are compared. This is because the hourly 
averages of clear-sky GHI combine the influence of the time of the day, thereby not 
eliminating its impact on solar irradiation. In addition to that, normalization of the solar 
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irradiance based on solar angle does not have a significant impact on the wildfire-price 
correlation. 

4.3 Limitations of Real-World Data Mining 
Several challenges arise when conducting a wildfire-market price impact analysis solely 
based on real-world data: 

1. The available wildfire records offer limited insight into the wildfire’s market impact 
due to their low spatial and temporal resolutions, restricting our ability to examine 
the wildfire-market price impact at a high resolution. 

2. Isolating the specific impact of wildfires on market prices using real-world data is a 
significant challenge because wildfire impact is only one of many operational 
factors that influence market prices. Unless data sets encompassing all relevant 
influencers—such as transmission contingency, generation outage, and load 
forecast—are identified and accessible, it would be highly challenging to discern 
the portion of market price variation solely attributed to wildfires. 
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5 Market Impact Analysis: PLEXOS Simulation 
Due to the limitations associated with real-world data mining, as discussed in Section 4.3, 
we conducted additional market impact analysis using PLEXOS. This approach offers 
several advantages: 

1. Simulation data can be obtained at flexible spatial and temporal resolutions, which 
can enable more detailed examinations of the impact analysis.  

2. Simulations provide the opportunity to control and compare other influential 
factors, allowing researchers to isolate and evaluate the specific influence of 
wildfires on various market variables.  

3. By using configurable system models and inputs, researchers can effectively 
investigate the effects of increasing occurrences and intensities of wildfires and 
their effects on PV penetration on the market, uncovering future trends. Such a 
futuristic analysis serves as valuable information for policymakers, businesses, 
and stakeholders, facilitating the development of strategies to mitigate risks, 
enhance resilience, and optimize decision-making processes. 

5.1 Data Preparation 

Using the widely adopted PLEXOS software, the developed simulation model 
encompasses the entire Western Electricity Coordinating Council (WECC) region. In this 
section, we present comprehensive information regarding the inputs that were 
incorporated into the model, which encompass various aspects such as power sector 
infrastructure, renewable generation profiles, demand profiles, and reserve requirements. 

5.1.1 Power Sector Infrastructure 

Figure 25 illustrates the process taken for generating the PV metadata using three NREL 
in-house software tools: the Regional Energy Deployment System (ReEDS™), the 
Renewable Energy Potential (reV) model, and the Distributed Generation Market Demand 
(dGen™) model. Initially, ReEDS makes electricity sector investment decisions based on 
system and unit constraints and the projected energy and ancillary service demands at 
the balancing authority level. Specifically, the least-cost resource mix, the locations for 
the thermal and renewable resource deployment, as well as the transmission 
infrastructure expansion to accommodate those installations are generated as the 
outputs, based on which reV is further applied to translate the building authority-level 
capacities into nodal capacities given specific generator locations. dGen, on the other 
hand, is used to simulate customer adoption of distributed rooftop solar panels 
considering the technical, financial, and geographic factors that drive the market potential.  

Both ReEDS and dGen provide a variety of scenarios that reflect the diverse assumptions 
made in technology cost, thermal generator retirements, policy regulations, demand 
growth, and vehicle electrification. Table 8 summarizes the assumptions made in our 
study for creating the two power sector infrastructure plans. Note that we selected two 
power sector infrastructures to represent different levels of renewable penetration: the 
infrastructure years 2024 and 2036 with solar penetration levels of 32% and 36%, 
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respectively. Figure 26 shows the modeled PV locations and capacities for both 
infrastructure plans in the California region. 

 

Figure 25. Steps for creating the PV metadata 
Table 8. Assumptions for Each Power Sector Infrastructure Plan 

Infrastructure 
Year 

Generator Cost 
and Performance 

Assumption 

Renewable 
Energy Resource 

Supply Curves 
 

Distributed 
Generation 

Assumptions 

Solar Penetration 
Levels in 
California 

2024 
2019 ATB Mid-

Case (Cole et al. 
2019) 

2019 Standard 
Scenarios Mid-

Case 
(Vimmerstedt et al. 

2019) 

dGen Mid-Cost RE 
adoption (Sigrin et 

al. 2016) 
32% 

2036 
2019 ATB Low for 

PV and Wind 
(Cole et al. 2019) 

dGen Low-Cost 
RE adoption 

(Sigrin et al. 2016) 
36% 

 

  
Infrastructure year 2024 Infrastructure year 2036 

Figure 26. Distributions of utility-scale PV and distributed PV capacities for two infrastructure 
years. Size of the circles represent nameplate capacity 

5.1.2 Renewable Generation Profiles 

Using the power sector infrastructure plans and AOD profiles produced for different 
wildfire scenarios (explained in Section 2), we generated time-series data for PV 
generation. These data encompass the no wildfire scenario, the 2020 wildfire scenario, 
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and the enhanced wildfire scenario spanning two infrastructure years. To accomplish this, 
we used the System Advisor Model (SAM), a techno-economic renewable adaption model 
developed at NREL. SAM allowed us to create comprehensive PV generation profiles for 
both utility-scale and distributed PV plants at the nodal level considering the plants’ 
locations and capacity metadata. Note that because the AOD scenarios are generated 
covering the California region only, the PLEXOS model was created for the whole WECC 
footprint. For utility-scale and distributed PV located outside California, NSRDB 2020 
observed data were applied to create the PV generation profiles, and they remained the 
same for all six wildfire scenarios. 

For the wind generation profiles, we remain use wind profiles from the existing project4 
that generated based on 2012’s weather data, given that wildfire’s impact on wind 
generations is not the focus of this study. 

5.1.3 Demand Profiles 

To capture the correlations between load and renewable generation driven by the 
underlying weather time-series pattern in 2020, we collected building authority-level 2020 
load profiles from the WECC Anchor Dataset (ADS) and applied load projection factors 
from the U.S. Energy Information Administration Annual Energy Outlook data set to scale 
up the loads to reflect the demand growth in infrastructure years 2024 and 2036.   

5.1.4 Reserve Requirements 

Operating reserves are critical for maintaining balance between the system supply and 
demand and for restoring system stability after disturbances. Operating reserves are 
either self-scheduled or competitively procured by CAISO from qualified scheduling 
coordinators in the day-ahead and real-time markets. CAISO determines the reserve 
requirement to meet the North American Electric Reliability Corporation and WECC 
reliability standards, which are traditionally calculated as percentages of the applicable 
CAISO forecast of CAISO demand for the day-ahead and real-time markets at the 
regional level. With increasing integrations of renewable generation, which introduce 
considerable amounts of variabilities and uncertainties, a new operating requirement is 
proposed that relies on not only the load forecast but also the renewable forecast. In our 
study, we simulated only the real-time market; therefore, the operating reserve 
requirement was designed to address only the real-time variability and uncertainty. We 
followed the approach proposed in an existing study and calculated the regional-level 
reserve requirements based on PV forecasting errors associated with hourly PV 
forecasting.  

In the developed production cost model, regional-level reserve requirements are defined 
to cover the uncertainty (forecasting error) in wind and solar generation (Ibanez et al. 
2013). Such requirements are determined based on sub-hourly variability of the PV and 
wind generation. For the wind reserve requirement, because the short-term variability of 
wind is low, a persistence forecast is applied to predict the wind generation and analyze 
the wind forecasting errors. For the PV reserve requirement, because the variability of PV 
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can be modeled by the clear-sky GHI, a Solar Power Index (SPI) persistence forecast is 
applied to predict the PV generation and to analyze the PV forecasting errors. The 
regulation reserve requirements are based on 10-minute persistence forecasts and 
confidence intervals that cover 95% of the forecast errors. The total operating reserve 
requirement that jointly considers uncertainties in load, PV, and wind can then be 
calculated as: 

𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = �(1%𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿)2 + (𝑅𝑅𝑅𝑅𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤)2 + (𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃)2 (2) 

where 𝑅𝑅𝑅𝑅𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 and 𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃 represent the reserves required by wind and PV, and 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 is the 
system-level load. 

Note that only regulation-up reserves (caused by down ramps from wind/PV) were 
simulated in this study because we assumed that excessive energy from wind and PV 
could be curtailed if there was a need for regulation down.  

5.1.5 Clear-Sky GHI Profiles 
Because we analyzed only the wildfire impact to solar irradiance in this study, differences 
between clear-sky GHI in a wildfire scenario (i.e., 2020 wildfire or enhanced wildfire) and 
a no wildfire scenario were applied to quantify the intensity of wildfires, the same as the 
wildfire indexes introduced in Eq. (1) in Section 4.  

5.2 Impact Analysis 

5.2.1 Impact on PV Generation 
The dotted line plots in Figure 27 compare the monthly PV generation profiles created 
based on the AOD conditions under the three wildfire scenarios with PV plant metadata 
(i.e., location and capacity) for two infrastructure years. The bar plots on the bottom 
indicate the PV generation drop given the 2020 wildfire and enhanced wildfire scenarios.  

Figure 27 displays dotted line plots that compare the monthly PV generation profiles 
generated using AOD profiles for three wildfire scenarios with PV plant metadata (i.e., 
location and capacity) for two infrastructure years. The bar plots at the bottom of the figure 
depict the extent of PV generation reduction caused by the 2020 wildfire and enhanced 
wildfire scenarios. Specific values of the PV generation decreases are shown in Table 9 
and Table 10. 
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(a) Infrastructure year 2024 (b) Infrastructure year 2036 

Figure 27. Average hourly PV generation profiles for two infrastructure years 

Table 9. Average Hourly PV Generation Reductions for Infrastructure Year 2024 

Scenario 
Reduction in generation (MW) 

June July August September October 

2020 Wildfire 10.8  7.8  263.2  443.9  115.1  

Enhanced 
Wildfire 

12.2  10.3  280.1  519.9  136.8  

Table 10. Average Hourly PV Generation Reductions for Infrastructure Year 2036 

Scenario 
Reduction in generation (MW) 

June July August September October 

2020 Wildfire 18.6  12.6  477.9  809.1  216.9  

Enhanced 
Wildfire 

21.4  17.0  510.7  947.7  257.5  

The outcome indicates that the 2020 wildfires resulted in a decrease of up to 7.7% in 
monthly PV generation, with September experiencing the most significant reduction. 
Additional reductions of 0.4% and 1.3% were attributed to the enhanced wildfire and 
increased PV deployment scenarios, respectively. 
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5.2.2 Impact on Operating Reserve 

  

  

  

  

(a) Infrastructure year 2024 (b) Infrastructure year 2036 

Figure 28. Percentiles (95% and 5%) for system PV forecasting errors for two infrastructure 
years 

The area plots in Figure 28 compare the 90% confidence intervals of the solar forecasting 
errors across three wildfire scenarios in two infrastructure years. The dashed and solid 
lines indicate the 5th and 95th percentiles, respectively. We found that wider confidence 
intervals are observed as the wildfire becomes more severe, indicating higher uncertainty. 
Although there is a significant difference between the scenarios without wildfire and those 
with the 2020 wildfire, the disparity is relatively small when comparing the enhanced 
wildfire scenario to the 2020 wildfire scenario. 
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(a) 2024 (b) 2024 

Figure 29. Monthly averaged reserve requirement 

Using the 95th percentile as the standard for the regulation-up requirement, we computed 
the average regulation-up requirement across three wildfire scenarios in two 
infrastructure years. These results are visualized in the bar plots in Figure 29. Despite the 
relatively small effects of wildfire on PV generation (8%–9% reduction), we observed 
more substantial impacts on the PV reserve requirements. Specifically, the 2020 wildfire 
and enhanced wildfire scenarios lead to an increase in the monthly PV reserve 
requirements by as much as 53% and 64%, respectively. 

5.2.3 Impact on Market Price 
Table 11 and Table 12 provide a summary of market price statistics, including the mean, 
standard deviation, and the percentage of time when the market price exceeded 
$100/MW (P [price > $100/MW]). These statistics are presented for three wildfire 
scenarios in two infrastructure years. The findings indicate that wildfires could potentially 
increase the market price, on average, while introducing more price volatility and price 
spikes. A more pronounced effect is observed on increasing the variability of prices rather 
than increasing the average price.  

Table 11. Market Price Statistics for Infrastructure Year 2024 

Statistic 
Scenario 

No Wildfire 2020 Wildfire Enhanced 
Wildfire 

Mean  39.27 $/MW 39.57 $/MW 39.62 $/MW 

Standard deviation 17.20 $/MW 20.57 $/MW 22.15 $/MW 

P [price > $100/MW] 0.16% 0.19% 0.20% 
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Table 12. Market Price Statistics for Infrastructure Year 2036 

Statistic 
Scenario 

No Wildfire 2020 Wildfire Enhanced 
Wildfire 

Mean 72.83 $/MW 75.80 $/MW 76.17 $/MW 

Standard deviation 256.07 $/MW 263.50 $/MW 264.94 $/MW 

P [price > $100/MW] 5.59% 5.82% 5.82% 

In addition, we examined the impact of wildfire location on market price. To achieve this, 
two wildfire indexes were introduced to quantify the system-wide wildfire impact, and 
comparing the differences between them allowed us to gauge variations in wildfire 
distribution. These indexes were the averaged wildfire intensity and the weighted wildfire 
intensity. The averaged wildfire intensity, as given in Eq. (3), is calculated by taking the 
simple average of the clear-sky GHI differences between two wildfire scenarios across all 
transmission nodes. The weighted wildfire intensity, as given in Eq. (4), is determined by 
taking the weighted average of the GHI differences based on the PV installation capacity 
at each transmission node. 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = ∑ (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝐺𝐺𝐺𝐺𝐼𝐼𝑛𝑛
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛- 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝐺𝐺𝐺𝐺𝐼𝐼𝑛𝑛

2020𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) 𝑛𝑛∈𝑁𝑁
|𝑁𝑁|

 (3) 

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡𝑡𝑡𝑡𝑡 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = ∑ (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝐺𝐺𝐺𝐺𝐼𝐼𝑛𝑛
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛- 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝐺𝐺𝐺𝐺𝐼𝐼𝑛𝑛

2020𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤)∙𝐶𝐶𝑛𝑛𝑛𝑛∈𝑁𝑁
∑ 𝐶𝐶𝑛𝑛𝑛𝑛∈𝑁𝑁

 (4) 

The three plots in the lower section of Figure 30 illustrate the wildfire intensity, energy 
price, and load variations under the three wildfire scenarios in infrastructure year 2024. 
The blue and pink areas represent the comparison of day-to-day averaged and weighted 
variations in wildfire intensity. The dotted gray and orange curves represent the daily 
averaged prices for the no wildfire and 2020 wildfire scenarios, respectively. Additionally, 
the gray area plots capture the system-level load variation along with the price and wildfire 
intensity. 

To understand how the location of wildfires, with respect to the PV installation capacity 
distribution, influences the market price, we selected two days that had comparable 
system loads and averaged wildfire intensities but different weighted wildfire intensities, 
as indicated by the green and purple frames. In the upper section of Figure 30, a price 
change and a wildfire map are plotted for each day to display the geographic distributions 
of the price changes and the wildfire intensities under the 2020 wildfire scenario. A 
comparison of the two wildfire maps reveals that the day with a relatively lower weighted 
wildfire intensity experienced more intense wildfires in Northern California, whereas the 
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day with a relatively higher weighted wildfire intensity experienced wildfires predominantly 
in the south, where there is a higher PV installation capacity. Moreover, comparing the 
two price change maps indicates that a more pronounced increase in price occurs when 
wildfires are in closer proximity to areas with dense PV installations. 

Using the aforementioned wildfire intensity indexes, we conducted further analysis to 
quantify the correlations between wildfires and price at both the system level and node 
level. Table 13 presents a comparison of the Pearson correlations between the averaged 
prices and the averaged/weighted wildfire intensities considering daily resolution and 
system-level measurements. The results show that in the year 2036, with higher PV 
penetration, and when using the weighted wildfire intensity index, stronger correlations 
between wildfires and price are observed. Figure 31 depicts the distributions of wildfire-
price correlations for the influence of the 2020 wildfires and enhanced wildfires in two 
infrastructure years. The figure indicates that as PV penetration increases, the influence 
of wildfires on price becomes more widespread. Note that the enhancement of wildfires 
does not affect the distributions of wildfire-price correlations. 

 
Figure 30. Wildfire intensity, energy price, and load variations under three wildfire scenarios in 

infrastructure year 2024 
Table 13. System-Level Wildfire-Price Correlations Under Three Wildfire Scenarios in Two 

Infrastructure Years 

𝑹𝑹𝟐𝟐 
Weighted 
Wildfire 
Intensity 

Averaged 
Wildfire 
Intensity 

2024 (2020 wildfire) 0.20 0.16 

2024 (enhanced 
wildfire) 0.18 0.15 

2036 (2020 wildfire) 0.40 0.35 

2036 (enhanced 
wildfire) 0.46 0.39 
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(a) 2024 (2020 wildfire) (b) 2036 (2020 wildfire) 

  

(c) 2024 (enhanced wildfire) (d) 2036 (enhanced wildfire) 

Figure 31. Node-level wildfire-price correlations 
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6 Conclusions and Future Work 
Wildfire activity over North America has been observed to exhibit an increasing trend 
during the past decades and is projected to increase under a changing climate with 
warmer and drier conditions. Wildfires can emit considerable amounts of smoke aerosols 
in the atmosphere, which not only lead to air quality issues but also significantly reduce 
solar radiation. Sudden large reductions of the solar resource could affect solar 
generation and reserves, introducing uncertainties in power generation and market price 
and increasing the vulnerability of solar power plants. This effect is expected to become 
more important with increasing trends in wildfires and higher levels of solar deployment. 
Therefore, this project investigated and quantified wildfire-caused changes in 
atmospheric aerosol loading and thus on the solar resource, solar generation, reserve, 
and market price based on an analysis of historical data and numerical experiments. We 
conducted simulations of solar radiation using NREL’s PSM and NSRDB, and of solar 
generation, reserve, and market price using PLEXOS under various wildfire scenarios 
(background AOD, 2020 wildfire, and enhanced wildfire) and two solar penetration 
scenarios (based on projected penetration in 2024 and 2036).     

For the development of the AOD and solar radiation data sets, an evaluation of the 
NSRDB and PSM showed that the NSRDB can well capture both the AOD and solar 
radiation during the high fire activity period in 2020. This indicates that using the PSM 
and the NSRDB is an appropriate approach to study wildfire impacts on the solar 
resource. To quantify the wildfire impacts, comparisons between the 2020 wildfire and 
background AOD scenarios showed that the monthly AOD increased by 0.14–0.46 
(140%-460%) in the 2020 wildfire scenario, where the background AOD is approximately 
0.10. The enhanced AOD levels lead to a reduction in monthly GHI and DNI by 
approximately 3%–7% and 9%–23%, respectively, during August–October 2020. 
Accounting for the projected increase in the burn areas in California, simulations 
suggested increases in the monthly AOD over California and more moderate decreases 
in the monthly clear-sky DNI. Given the limited scope of our study, however, our analysis 
does not capture the full variability (wildfire location, size, time of year, aerosol indirect 
effects), which can be equally important. Further, the impact of enhanced fire activity on 
clear-sky DNI could be greater on shorter (daily) timescales, and the impacts can 
significantly vary by region. 

According to our wildfire-market price analysis, the 2020 wildfires resulted in monthly 
reductions of up to 5% in PV generation and an increase of 53% in monthly operating 
reserve requirements. With escalating wildfire activity, these numbers could potentially 
increase to reductions of up to 6% in PV generation and an increase of up to 64% in the 
operating reserve requirement. Compared to the average GHI differences, weighted GHI 
differences proved to be a better indicator for assessing the system-level impacts of 
wildfires on market price. Generally, nodes with higher PV installation capacities 
demonstrate a greater impact on the correlation between wildfires and price than nodes 
in closer proximity to the wildfire centroid. As the trend of increasing PV deployment 
continues, it is expected that the wildfire impacts on market price will become more severe 
and widespread. Beyond the 2020 wildfire scenario, no significant additional market 
impact resulting from the modeled wildfire enhancement has been observed. This finding 



 

50 

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

suggests that the severity of the 2020 wildfire alone is substantial enough, indicating that 
2020 could serve as a valuable fire year to be further investigated. 

For future work, there are several avenues for improving the analysis conducted here. 
The wildfire scenarios were focused on fires in California alone, although wildfire smoke 
effects on AOD can occur at large downwind distances. Additionally, future fire scenarios 
(“enhanced fire” scenario of this study) can be made more realistic by accounting for 
simulated impacts of climate change, which were not included here due to limited scope 
of this analysis. Similarly, power sector analysis can also be improved.  First, 
incorporating more realistic profiles for other sectors—such as wind, thermal outages, 
and hydropower—would provide a more comprehensive understanding of the system 
dynamics. Currently, our production cost model (PLEXOS) supports only real-time 
simulations, neglecting day-ahead scheduling and load, solar, and wind forecasts. To 
address this limitation, an extension of the production cost model to enable day-
ahead/real-time simulations could be developed. This would involve creating day-ahead 
forecasts for load, wind, and solar, allowing for an analysis of the impact of day-ahead 
forecasting errors on market operation under various wildfire scenarios. Additionally, 
investigating the potential benefits of different designs of operating reserve requirements 
in mitigating the risks introduced by wildfires could be an intriguing research topic. This 
analysis could focus on examining how varying reserve requirements can help reduce 
real-time risks, such as price spikes and reserve shortages resulting from wildfires. Such 
an investigation would provide valuable insights into optimizing reserve strategies to 
enhance system reliability and resilience in the face of wildfire-induced challenges. 
Moreover, although the western United States is where most fires occur, the atmospheric 
transport of smoke can also affect other parts of the country, as seen in the summer of 
2023 with the fires in Canada significantly affecting the air quality and AOD in parts of 
eastern United States.12 Future analysis can be more comprehensive by including all of 
North America to understand the impacts in a scenario with simultaneous fires in several 
regions. This analysis focused on only California, but the fire impact on solar generation 
and the subsequent impact is likely to be observed in other regions of the United States 
as well as outside the United States (including Europe, Southeast Asia, and Australia) 
where large fires recurrence has been becoming more frequent. 

  

 
12 See “Smoke Causes U.S. Solar Power Generation To Plunge By 50%”: https://oilprice.com/Alternative-
Energy/Solar-Energy/Smoke-Causes-US-Solar-Power-Generation-To-Plunge-By-50.html. Accessed June 10, 2023. 

https://oilprice.com/Alternative-Energy/Solar-Energy/Smoke-Causes-US-Solar-Power-Generation-To-Plunge-By-50.html
https://oilprice.com/Alternative-Energy/Solar-Energy/Smoke-Causes-US-Solar-Power-Generation-To-Plunge-By-50.html
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