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Why DynaShape?

Grid-following
• IBRs follow grid voltage
• Large transient, PLL delay

DynaShape

• IBRs “shape” the grid to 
desired system behavior

The existing controls do NOT 
leverage full potential of IBRs for 

operating future grids.

We need a new system level control 
design philosophy. 

• “Dyna-Shape” System level view:

Local control 
design

Desired 
system 

behavior
• Beyond the limitation of synchronous 

generators

Local control 
design

System 
analysis

Nadir

Rate of change of frequency

Nadir

Rate of change of frequency

Nadir

Rate of change of frequency

Grid-forming

• IBRs mimic synchronous 
generators

• Typical oscillatory 
behavior-leading to power 
losses on lines

• “State-of-the art” Device level focus:



NREL    |    4

�
nominal frequency

RoCoF (max rate of change of frequency)

frequency nadir

energy unbalance

restoration time

�
nominal frequency

secondary control

�
nominal frequency

RoCoF (max rate of change of frequency)

frequency nadir

energy imbalance

restoration time

�
nominal frequency

secondary control
energy imbalance

frequency nadir

Typical power system metrics considered for post-disturbance stability analysis

What we aim to achieve?

• Develop “grid-shaping” inverter control for 
IBR-integrated systems, that does not hinge 
on synchronous machine emulation.

• Design controller that achieves “desirable” 
grid behavior. 

Additional features:

• Interoperability with various inverters, 
synchronous generators, and other legacy 
devices

• Adaptive control modify the control by 
analyzing the impact of “incorrect 
knowledge” of network parameters on system 
performance.

�
nominal frequency

RoCoF (max rate of change of frequency)

frequency nadir

energy unbalance

restoration time

�
nominal frequency

secondary control

�
nominal frequency

RoCoF (max rate of change of frequency)

frequency nadir

energy imbalance

restoration time

�
nominal frequency

secondary control
energy imbalance

frequency nadir
target response

Target response for post-disturbance stability analysis
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Approach followed

Individual IBR: 
Pi(s) 

Closed-loop 
Individual IBR: 

Gi(s) 

Grid response: 
G(s) 

Network
Machine emulation 
controller: VMi(s) 

Standard: Forward design

Individual IBR:
P†

i(s)

Closed-loop 
Individual IBR: 

G†
i(s) 

Design 
controller: Ci(s)

Grid response: 
G†(s)

Network

DynaShape: Reverse design

Step 1Step 2

Step 3
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1

Dynamic shaping of the grid frequency response
shaping using grid-forming IBRs

Bala Kameshwar Poolla, Yashen Lin, Andrey Bernstein, Enrique Mallada, Dominic Groß

Abstract—-

Index Terms—Grid-forming converters, frequency-shaping,

I. INTRODUCTION

II. SYSTEM MODELING

The focus of this work is to investigate shaping the dynamic
response of the frequency of a low-inertia multi-machine/
multi-converter power system. For brevity of the presentation,
we will consider a two-bus system (see Figure 1) contain-
ing a synchronous machine (SM) that models the aggregate
frequency dynamics of a conventional multi-machine power
system [citation] and a grid-forming voltage source converter
(VSC).

The aggregate response of the power system frequency
deviation !sm to a load perturbation p` is modeled by swing
equation dynamics with first-order turbine/governor model
[citation]

2H !̇sm =� ↵` !sm + pm � p` + pvsc, (1a)
⌧ ṗm =� pm � ↵g !sm, (1b)

where pm denotes the deviation of the mechanical power
generated by the turbine from its setpoint, and pvsc models
the power flowing from the VSC to the synchronous machine.
Further, H is the equivalent inertia constant of the machine,
↵g denotes the aggregate speed governor gain (i.e., inverse
frequency droop constant), ↵g denotes the aggregate frequency
sensitivity of load, and ⌧ is the aggregate turbine time constant.
The transfer function from machine’s overall electrical power
injection psm = p` � pvsc to the machine frequency

!sm(s) = G!sm, psm(s) (pvsc(s)� p`(s)) (2)
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is given by

G!sm, psm(s) =
⌧ s+ 1

2H⌧ s2 + (2H + ↵`⌧) s+ (↵` + ↵g)
. (3)

Next, consider a voltage source converter connected to the
aggregate frequency dynamics (1) through a lossless trans-
mission line with susceptance b as depicted in Figure 1.
Furthermore, let ✓vsc denote the voltage phase angle at the IBR
bus. Then, using the DC power flow approximation [citation]
the converter power contribution pvsc(s) is given by

pvsc(s) = b
�
✓vsc(s)� ✓sm(s)

�
=

b

s

�
!vsc(s)� !sm(s)

�
. (4)

The combination of the synchronous machine and the IBR can
be interpreted as the VSC in feedback with the synchronous
machine as shown in Figure 2. To this end, let the transfer
function

!vsc(s) = G!vsc, pvsc(s) pvsc(s), (5)
represent the dynamics of the grid-forming VSC. Using (4) to
close the loop between (5) and (2), results in the closed-loop
transfer function

!sm(s) = G
cl
!vsc, p`

(s) p`(s), (6)
from the load perturbation p` to the aggregate frequency !sm.
The goal of this work is to shape the response G

cl
!vsc, p`

(s)
through the IBR action to improve the system frequency
response. In Section III, we will discuss the control objectives
in more detail and design the desired response G

cl
!vsc, p`

(s).
Subsequently, in Section IV, we will delve into the specifics
of how to realize the desired response with a grid-forming
VSC.

psm

b

pvsc

✓sm ✓vsc

p`

!sm !vsc

Fig. 1. Interconnection of a synchronous machine and grid-forming VSC.

III. PROBLEM FORMULATION

In this section, we consider the synchronous machine-IBR
system as described in Section II. Such systems have been
previously considered in [1] and have been shown to improve
the frequency response (in terms of the frequency nadir and the
rate of change of frequency (RoCoF)) in the event of system
faults. In [1], the target transfer function of the overall system

LEARNING COHERENT CLUSTERS IN WEAKLY-CONNECTED NETWORK SYSTEMS

Figure 2: Functional illustration of Algorithm 1.

work graph is sampled from a weighted stochastic block model (Ahn et al., 2018). Lastly, we verify
our theoretical findings through numerical simulations.

3. Structure-Preserving Network Reduction via Spectral Clustering

Our algorithm roots in the recent analysis (Min et al., 2021; Min and Mallada, 2022) showing that
the network transfer matrix Tyu(s) is approximately low rank for networks with Laplacian matri-
ces satisfying some spectral property. Such a low-rank approximation is generally not structure-
preserving, for which we use its closest structure-preserving approximation, obtained by spectral
clustering on graph Laplacian L and a refinement process on its eigenvectors Vk, as our final reduc-
tion model for the original Tyu(s).

3.1. Low-rank Approximation of Network Transfer Matrix

Given the network Laplacian L and its first k smallest eigenvalues (in a diagonal matrix) ⇤k =
diag{�i(L)}ki=1 and the associated eigenvectors Vk =

⇥
v1(L) v2(L) · · · vk(L)

⇤
(we also refer it

as Laplacian spectral embedding), we define the following rank-k transfer matrix

Tk(s) = Vk(V
T

k G�1(s)Vk + f(s)⇤k)
�1V T

k , (3)

and we have the following result:

Theorem 1 For s0 2 C that is not a pole of f(s) and has these two quantities

kTk(s0)k := M1, and max
1in

|g�1
i

(s0)| := M2 ,

5

The problem can be studied under multiple 
settings:

• Single IBR device coupled with an 
aggregate synchronous machine under 
both grid-forming and grid-following 
implementations.

• Star/Delta connected IBR devices with 
an aggregate synchronous machine at 
the point of common coupling.

• Large-scale networks with multiple IBR 
devices and synchronous machines. 
Such networks can be aggregated and 
reduced to coherent clusters.

One IBR (Grid forming)-aggregated synchronous 
machine

Multi-IBR, multi-machine network (Source: Enrique Mallada)

Analysis
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Simulations Step1
• Grid Response Characteristics G†(s) : 

Frequency Nadir, Rate of change of Frequency 
(RoCoF), peak IBR power injection, among 
others.

• First-order overall response of the system:
– Improves frequency nadir

– Fails to reduce peak IBR power injection

• Consider a second-order response instead to 
reduce peak power.

• We evaluate/provide a pareto-front for peak 
IBR power v/s maximum frequency violation 
and determine the corresponding IBR transfer 
function.

• Grid operator decides an acceptable (nadir, 
peak power) set-point.

• Subsequently, we delve into physically 
realizing the transfer functions.

Nadir

Nadir

3
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Fig. 2. Peak IBR power injection for a step load disturbance as a function
of the effective time constant.
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Fig. 3. Frequency nadir for a 1 p.u. load step as a function of the effective
time constant.
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Fig. 4. Pareto front for peak IBR power for a 1 p.u. load step v/s the frequency
nadir

of a standalone synchronous machine. Furthermore, as future
grids will have a significant proportion of IBR integration,
the conventional notion of strict bounds on the frequency
nadir will no longer be applicable, thus enabling us to design
controllers with a lower peak power injection at the expense
of a relatively higher frequency violation.

IV. IBR IMPLEMENTATION OF CONTROLLERS

In this section, we delve into the implementation of the
frequency control discussed in the previous section. In partic-
ular, we investigate grid-forming devices, which we believe
will form the backbone of future grids.
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Fig. 5. The frequency response for a load step as a function of the effective
time constant %.
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Fig. 6. The power injection from the IBR for a load step as a function of
the effective time constant %.

A. Grid-Forming converters

Consider a single machine-single grid-forming IBR system
as in Figure 1. Let ✓, pm (resp. ✓c, pc) denote the angle, power
injection of the synchronous machine (resp. grid-forming
converter) and p` denote the load served by the system. The
line admittance (which may be time-varying, e.g., depending
on the state of the tap changing transformers, etc.,) between
the IBR and the machine is captured by the admittance b. For
this system, the synchronous machine dynamics are given by

m !̇ =� ↵` ! + pm + pc � p` (14a)
⌧ ṗm =� pm � ↵g ! (14b)

where !(s) is the frequency at the generator node and ⌧ is
the turbine time constant. For converter angle ✓c and generator
angle ✓, the converter power injection pc(s) is such that

pc(s) =b (✓c � ✓) (15a)
!c(s) =�Gc(s) pc(s), (15b)

where !c(s) is the frequency of the converter and Gc(s),
the converter controller which maps its frequency and power
injection. We wish to design this control transfer function
Gc(s) in order to realize the target function h(s) of the
overall system. On combining (15a), the relation between the
generator frequency ! and the converter power pc(s) is

pc(s) =
1

s

b
+Gc(s)

!(s). (16)

No IBR

First-order response
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Simulations Step2

4

system. The line admittance (which may be time-varying, e.g.,
depending on the state of the tap changing transformers, etc.,)
between the IBR and the machine is captured by the admit-
tance b. For this system, the synchronous machine dynamics
are given by

m !̇sm =� ↵` !sm + pm + pvsc � p` (11a)
⌧ ṗm =� pm � ↵g !sm (11b)

where !sm(s) is the frequency at the generator node and ⌧ is
the turbine time constant. For converter angle ✓c and generator
angle ✓sm, the converter power injection pvsc(s) is such that

pvsc(s) =b (✓vsc � ✓sm) (12a)
!vsc(s) =G!vsc, pvsc(s) pvsc(s), (12b)

where !c(s) is the frequency of the converter and G!vsc, pvsc(s),
the converter controller which maps its frequency and power
injection. We wish to design this control transfer function
G!vsc, pvsc(s) in order to realize the target function G

cl
!vsc, p`

(s)
of the overall system. On combining (12a), the relation be-
tween the generator frequency !sm and the converter power
pvsc(s) is

pvsc(s) =
1

s

b
+G!vsc, pvsc(s)

!sm(s). (13)

We recall from (8) the desired IBR injection for achieving
the target response G

cl
!vsc, p`

(s). On comapring with (13), we
obtain

s

b
+G!vsc, pvsc(s)

!
=

(s ⌧ + 1)(s ⇢+ 1)

↵g s (⌧ � ⇢)
.

We note that the right hand side terms of the above expres-
sion can be realised through a Proportional-Integral-Derivative
(PID) type controller G!vsc, pvsc(s), i.e.,

G!vsc, pvsc(s) = kp +
ki

s
+ kd s. (14)

On comparing the coefficients, the corresponding gains are

kd =
⌧ ⇢

↵g(⌧ � ⇢)
� 1

b
, kp =

⌧ + ⇢

↵g(⌧ � ⇢)
, ki =

1

↵g(⌧ � ⇢)
.

1
2H s+ ↵`

�↵g

⌧ s+ 1

Gpvsc,!sm

�↵g

⇢ s+ 1

!sm

pm

pvsc

p`

G!sm, psm(s)

�
+

+
+

Fig. 8. The net effect of the grid-forming IBR on the overall system response.

We note that stability of the controller G!vsc, pvsc(s) entails
that kp � 0, ki � 0, and kd � 0. This choice also restricts the
allowable values of the effective time-constant, i.e.,

⇢ 2 [
↵g ⌧

b ⌧ + ↵g
, ⌧). (15)

However, we note that the lower bound for the differential
gain can be reduced further, i.e., b kd � �1 with the exception

that such a controller has right-half plane zeros. This choice
while improving the allowable range of ⇢, i.e.,

⇢ 2 [0, ⌧). (16)
may however, also result in an unstable control design, es-
pecially in the absence of knowledge of b or an estimate
thereof, with reasonable certainly as kd is now a function of
the admittance b. We shall investigate these scenarios in the
next section.

V. EFFECT OF IMPERFECT NETWORK PARAMETERS

In the preceding discussions, we have assumed that the
network admittance is known with a fair degree of certainty.
However, it was also mentioned that there might arise situ-
ations, where the network admittance is either unknown and
cannot be estimated, or is time-varying []. For such scenarios,
determining the robustness v/s performance trade-offs is a
critical analysis to perform and merits a detailed discussion.
To this end, let the true network admittance be btrue, and the
PID gains be functions of/derived from the estimate b̂, then
the dynamics translate to
!sm(s)

pvsc(s)
=

s

btrue
+G!vsc, pvsc(s) =

⇢
⌧ ⇢

↵g (⌧ � ⇢)
+

b̂� btrue

b̂ btrue

�
s

+
⌧ + ⇢

↵g (⌧ � ⇢)
+

1

↵g (⌧ � ⇢)s
.
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Fig. 9. The frequency response for ⇢ = 0.7s and estimated b̂ as a factor of
true admittance.

Thus, a mismatch in the admittance values results in a
transfer function different from the target G

cl
!vsc, p`

(s). This
in turn, impacts the frequency response to a load step. In
Figure 11, we consider the response to a 1 p.u. load step under
two scenarios (a) when the value of the admittance is known,
(b) when there is a difference between the estimate and the
actual value of the admittance (we consider the estimate to be
b̂ = 1.05 btrue). Note that the mismatch results in a significant
variation from the desired trajectory, resulting in a much higher
frequency nadir.

By carrying out a similar analysis as in the previous section,
the stability of the overall transfer function also modifies
the set of allowable avlues for the effective time constant
depending on the magnitude of the mismatch in admittance,

• Consider a single IBR device coupled with 
an aggregate synchronous machine 
setting.

• Design the IBR response, such that overall 
design behaves as a synchronous machine 
with faster turbine dynamics ρ.

• Re-write the dynamics with IBR modeled 
as a feedback.

2

G!sm, psm(s)

G!vsc, pvsc(s)

b

s

!sm

!vsc

pvsc

p`
�

+

+
�

Gpvsc,!sm(s)

Fig. 2. The synchronous machine and IBR system viewed as a feedback
system.

G
cl
!vsc, p`

(s) is a first-order system. As first-order responses
do not exhibit overshoots, the post-fault frequency nadir and
the steady-state settling frequency are identical. This results
in the corresponding IBR response (in terms of the power
injection pvsc(s)) to exhibit a high peak (in order to reduce
the nadir). These peak power injections are expensive and
often detrimental to the health of the storage devices driving
the IBRs []. Thus it is critical to minimize them, without
potentially degrading the frequency response of the overall
system too much.

In this section, we examine if the quality of power injections
from the IBRs can be improved by choosing an alternate
set of target transfer functions G

cl
!vsc, p`

(s). As future power
grids will comprise of a significant share of IBRs (with faster
dynamics), they can withstand larger frequency dips (higher
frequency nadir) [], at the cost of lower peak power injections.
In the following, we investigate if a target second-order system
responses meet our performance requirements.

A. Generator matching transfer function
As we wish to improve the frequency response of the

modified system, we proceed by considering the standalone
synchronous machine transfer function G!sm, psm(s). As we
desire to design a second-order transfer function for our target
response G

cl
!vsc, p`

(s), we consider a modified G!sm, psm(s) with
an equivalent turbine time constant ⇢, i.e.,

G
cl
!vsc, p`

(s)
!
=

1 + s ⇢

2H⇢ s2 + (↵`⇢+ 2H) s+ (↵` + ↵g)
. (7)

Such a choice of the target response translates to the net
effect of the IBR on the system, being a response which is
much faster than the standalone system. Furthermore, IBRs
being power electronic devices unhindered by the relatively
slow mechanical dynamics of conventional generators suitably
justify this preference.

Remark 1. (Target second-order response). In our analysis,
we consider the target Gcl

!vsc, p`
(s) to be a slight modification

of the original system response G!sm, psm(s). Such a choice
is reasonable as the IBR devices do not provide high levels
of inertia [], and we wish to retain the same steady-state
frequency as before. These requirements effectively prevent
us from modifying the H , ↵ terms. However, generic transfer
functions (parameterized by poles, damping ratio, and zeros)

can also considered and tuned appropriately to obtain the
requisite peak IBR power injection. •

In general, we can design controllers for IBRs which
contribute realizable power injections. In order to order to
obtain a net response G

cl
!vsc, p`

(s) for the overall system, the
power injection from the IBR, pvsc(s) needs to be

pvsc(s)
!
=

↵g s (⌧ � ⇢)

(s ⌧ + 1)(s ⇢+ 1)
!sm(s), (8)

where !sm(s) is the frequency of the synchronous machine.
In terms of the load disturbance p`(s), the above relation in
conjunction with (6) translates to

pvsc(s) =
↵g s (⌧ � ⇢)

(s ⌧ + 1)(s ⇢+ 1)
G

cl
!vsc, p`

(s) p`(s), (9)

where the target response G
cl
!vsc, p`

(s) is given by (7). We note
from (9) that the transfer function is third-order due to stable
pole-zero cancellation.

Remark 2. (IBR power injection). While we limit ourselves
to grid-forming converters in this paper, the results in this
section are agnostic to the IBR implementation. As long as
an IBR injects the power specified by (9), the overall system
response will match the target Gcl

!vsc, p`
(s). •

B. Minimizing Peak IBR power injections
We recall from the discussion above that the objective in

exploring higher-order transfer functions was to minimize the
peak power injected by the IBR devices while limiting the
aggregate system frequency excursion in response to load
perturbations, i.e.,

min
⇢

|pvsc|1

s.t. |!sm|1  !̄sm, (10)
where | · |1 = supt | · (t)| denotes the absolute peak value and
pvsc(t) is the power injected by the IBR in response to a step
change in the load p`.

Remark 3. (Optimal effective time-constant). The optimiza-
tion problem in (10) is only interesting when the constraint
on frequency nadir is considered. The unconstrained problem
admits a trivial solution ⇢ = ⌧ , i.e., there is no power injection
from the IBR and thus we end up with the original standalone
synchronous machine system. •

However, (10) is not always a computationally easy problem
to solve. The authors in [2] provide a mathematical closed-
form relation for the frequency nadir for the under-damped
condition in terms of the system parameters.

In Figure 3 and Figure 4, we plot the time evolution of
generator frequency and IBR power injection after a 1 p.u.
load step for varying overall effective time constant ⇢. We
note that as the time-constant is reduced, the corresponding
frequency nadir decreases as a result of higher IBR power
injection.

Another numerical observation for this specific problem
formulation, is that the objective is monotone in the decision
variable (⇢) and thus the solution to the minimization problem
(10) can also be determined graphically. To this end, we
compute and plot specifically, the peak power injection from

Network

2

G!sm, psm(s)

G!vsc, pvsc(s)

b
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!vsc

pvsc

p`
�
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+
�

Gpvsc,!sm(s)

Fig. 2. The synchronous machine and IBR system viewed as a feedback
system.

G
cl
!vsc, p`

(s) is a first-order system. As first-order responses
do not exhibit overshoots, the post-fault frequency nadir and
the steady-state settling frequency are identical. This results
in the corresponding IBR response (in terms of the power
injection pvsc(s)) to exhibit a high peak (in order to reduce
the nadir). These peak power injections are expensive and
often detrimental to the health of the storage devices driving
the IBRs []. Thus it is critical to minimize them, without
potentially degrading the frequency response of the overall
system too much.

In this section, we examine if the quality of power injections
from the IBRs can be improved by choosing an alternate
set of target transfer functions G

cl
!vsc, p`

(s). As future power
grids will comprise of a significant share of IBRs (with faster
dynamics), they can withstand larger frequency dips (higher
frequency nadir) [], at the cost of lower peak power injections.
In the following, we investigate if a target second-order system
responses meet our performance requirements.

A. Generator matching transfer function
As we wish to improve the frequency response of the

modified system, we proceed by considering the standalone
synchronous machine transfer function G!sm, psm(s). As we
desire to design a second-order transfer function for our target
response G

cl
!vsc, p`

(s), we consider a modified G!sm, psm(s) with
an equivalent turbine time constant ⇢, i.e.,

G
cl
!vsc, p`

(s)
!
=

1 + s ⇢

2H⇢ s2 + (↵`⇢+ 2H) s+ (↵` + ↵g)
. (7)

Such a choice of the target response translates to the net
effect of the IBR on the system, being a response which is
much faster than the standalone system. Furthermore, IBRs
being power electronic devices unhindered by the relatively
slow mechanical dynamics of conventional generators suitably
justify this preference.

Remark 1. (Target second-order response). In our analysis,
we consider the target Gcl

!vsc, p`
(s) to be a slight modification

of the original system response G!sm, psm(s). Such a choice
is reasonable as the IBR devices do not provide high levels
of inertia [], and we wish to retain the same steady-state
frequency as before. These requirements effectively prevent
us from modifying the H , ↵ terms. However, generic transfer
functions (parameterized by poles, damping ratio, and zeros)

can also considered and tuned appropriately to obtain the
requisite peak IBR power injection. •

In general, we can design controllers for IBRs which
contribute realizable power injections. In order to order to
obtain a net response G

cl
!vsc, p`

(s) for the overall system, the
power injection from the IBR, pvsc(s) needs to be

pvsc(s)
!
=

↵g s (⌧ � ⇢)

(s ⌧ + 1)(s ⇢+ 1)
!sm(s), (8)

where !sm(s) is the frequency of the synchronous machine.
In terms of the load disturbance p`(s), the above relation in
conjunction with (6) translates to

pvsc(s) =
↵g s (⌧ � ⇢)

(s ⌧ + 1)(s ⇢+ 1)
G

cl
!vsc, p`

(s) p`(s), (9)

where the target response G
cl
!vsc, p`

(s) is given by (7). We note
from (9) that the transfer function is third-order due to stable
pole-zero cancellation.

Remark 2. (IBR power injection). While we limit ourselves
to grid-forming converters in this paper, the results in this
section are agnostic to the IBR implementation. As long as
an IBR injects the power specified by (9), the overall system
response will match the target Gcl

!vsc, p`
(s). •

B. Minimizing Peak IBR power injections
We recall from the discussion above that the objective in

exploring higher-order transfer functions was to minimize the
peak power injected by the IBR devices while limiting the
aggregate system frequency excursion in response to load
perturbations, i.e.,

min
⇢

|pvsc|1

s.t. |!sm|1  !̄sm, (10)
where | · |1 = supt | · (t)| denotes the absolute peak value and
pvsc(t) is the power injected by the IBR in response to a step
change in the load p`.

Remark 3. (Optimal effective time-constant). The optimiza-
tion problem in (10) is only interesting when the constraint
on frequency nadir is considered. The unconstrained problem
admits a trivial solution ⇢ = ⌧ , i.e., there is no power injection
from the IBR and thus we end up with the original standalone
synchronous machine system. •

However, (10) is not always a computationally easy problem
to solve. The authors in [2] provide a mathematical closed-
form relation for the frequency nadir for the under-damped
condition in terms of the system parameters.

In Figure 3 and Figure 4, we plot the time evolution of
generator frequency and IBR power injection after a 1 p.u.
load step for varying overall effective time constant ⇢. We
note that as the time-constant is reduced, the corresponding
frequency nadir decreases as a result of higher IBR power
injection.

Another numerical observation for this specific problem
formulation, is that the objective is monotone in the decision
variable (⇢) and thus the solution to the minimization problem
(10) can also be determined graphically. To this end, we
compute and plot specifically, the peak power injection from
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where | · |1 = supt | · (t)| denotes the absolute peak value and
pvsc(t) is the power injected by the IBR in response to a step
change in the load p`.

Remark 3. (Optimal effective time-constant). The optimiza-
tion problem in (10) is only interesting when the constraint
on frequency nadir is considered. The unconstrained problem
admits a trivial solution ⇢ = ⌧ , i.e., there is no power injection
from the IBR and thus we end up with the original standalone
synchronous machine system. •

However, (10) is not always a computationally easy problem
to solve. The authors in [2] provide a mathematical closed-
form relation for the frequency nadir for the under-damped
condition in terms of the system parameters.

In Figure 3 and Figure 4, we plot the time evolution of
generator frequency and IBR power injection after a 1 p.u.
load step for varying overall effective time constant ⇢. We
note that as the time-constant is reduced, the corresponding
frequency nadir decreases as a result of higher IBR power
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Another numerical observation for this specific problem
formulation, is that the objective is monotone in the decision
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Dynamic shaping of the grid frequency response
shaping using grid-forming IBRs

Bala Kameshwar Poolla, Yashen Lin, Andrey Bernstein, Enrique Mallada, Dominic Groß

Abstract—-

Index Terms—Grid-forming converters, frequency-shaping,

I. INTRODUCTION

II. SYSTEM MODELING

The focus of this work is to investigate shaping the dynamic
response of the frequency of a low-inertia multi-machine/
multi-converter power system. For brevity of the presentation,
we will consider a two-bus system (see Figure 1) contain-
ing a synchronous machine (SM) that models the aggregate
frequency dynamics of a conventional multi-machine power
system [citation] and a grid-forming voltage source converter
(VSC).

The aggregate response of the power system frequency
deviation !sm to a load perturbation p` is modeled by swing
equation dynamics with first-order turbine/governor model
[citation]

2H !̇sm =� ↵` !sm + pm � p` + pvsc, (1a)
⌧ ṗm =� pm � ↵g !sm, (1b)

where pm denotes the deviation of the mechanical power
generated by the turbine from its setpoint, and pvsc models
the power flowing from the VSC to the synchronous machine.
Further, H is the equivalent inertia constant of the machine,
↵g denotes the aggregate speed governor gain (i.e., inverse
frequency droop constant), ↵g denotes the aggregate frequency
sensitivity of load, and ⌧ is the aggregate turbine time constant.
The transfer function from machine’s overall electrical power
injection psm = p` � pvsc to the machine frequency

!sm(s) = G!sm, psm(s) (pvsc(s)� p`(s)) (2)
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is given by

G!sm, psm(s) =
⌧ s+ 1

2H⌧ s2 + (2H + ↵`⌧) s+ (↵` + ↵g)
. (3)

Next, consider a voltage source converter connected to the
aggregate frequency dynamics (1) through a lossless trans-
mission line with susceptance b as depicted in Figure 1.
Furthermore, let ✓vsc denote the voltage phase angle at the IBR
bus. Then, using the DC power flow approximation [citation]
the converter power contribution pvsc(s) is given by

pvsc(s) = b
�
✓vsc(s)� ✓sm(s)

�
=

b

s

�
!vsc(s)� !sm(s)

�
. (4)

The combination of the synchronous machine and the IBR can
be interpreted as the VSC in feedback with the synchronous
machine as shown in Figure 2. To this end, let the transfer
function

!vsc(s) = G!vsc, pvsc(s) pvsc(s), (5)
represent the dynamics of the grid-forming VSC. Using (4) to
close the loop between (5) and (2), results in the closed-loop
transfer function

!sm(s) = G
cl
!vsc, p`

(s) p`(s), (6)
from the load perturbation p` to the aggregate frequency !sm.
The goal of this work is to shape the response G

cl
!vsc, p`

(s)
through the IBR action to improve the system frequency
response. In Section III, we will discuss the control objectives
in more detail and design the desired response G

cl
!vsc, p`

(s).
Subsequently, in Section IV, we will delve into the specifics
of how to realize the desired response with a grid-forming
VSC.

psm

b

pvsc

✓sm ✓vsc

p`

!sm !vsc

Fig. 1. Interconnection of a synchronous machine and grid-forming VSC.

III. PROBLEM FORMULATION

In this section, we consider the synchronous machine-IBR
system as described in Section II. Such systems have been
previously considered in [1] and have been shown to improve
the frequency response (in terms of the frequency nadir and the
rate of change of frequency (RoCoF)) in the event of system
faults. In [1], the target transfer function of the overall system

Grid-forming implementations

Preliminary investigation hints at greater flexibility for grid-
forming IBRs.

psm
b1

b2 ✓vsi,2

pvsi,2

!vsi,2

b3

✓vsi,3

pvsi,3

!vsi,3

pvsi,1

✓sm

✓vsi,1

p`
!sm !vsi,1

Analogous results for multi-component star system
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G
cl?
!sm, p`

(s), we consider a candidate transfer function in the
form of (3) with an effective turbine time constant ⇢ 2 U

G
cl?
!sm, p`

(s) := �
s ⇢+ 1

2H⇢ s2 + (↵`⇢+ 2H) s+ (↵` + ↵g)
. (9)

Such a choice of the target response translates to the IBR
speeding up the response of the turbine/governor system of the
SG, i.e., an overall system response that is much faster than the
original (aggregate) power system (1). This choice is justified
by the fact that SGs provide significant (but slow) frequency
control, whereas IBRs can provide a fast frequency response
but often cannot sustain this response over long periods of
time due to limited flexibility and energy storage.

Remark 1. (Target second-order response). In our analysis,
we consider the target G

cl?
!sm, p`

(s) to be a modification of
the original system response G!sm, psm(s). Such a choice is
reasonable as the IBR devices cannot provide significant
levels of inertia without significantly oversizing the IBR [13].
Moreover, we aim to control the post-disturbance steady-
state power injection of the IBR to zero. These requirements
effectively prevent us from modifying the inertia constant
H , load damping ↵`, and governor gain ↵g . Considering
more generic target transfer functions (parameterized by poles,
damping ratio, and zeros) that allow specifying objectives
beyond minimizing nadir and peak power injection are seen
as an interesting area for future work. •

In general, we can design controllers for IBRs to realize a
wide range of power injections. In order to obtain an overall
system response G

cl
!sm, p`

(s) = G
cl?
!sm, p`

(s), the power injection
from the IBR, pvsi(s) has to satisfy

pvsi(s)
!
= �

↵g s (⌧ � ⇢)

(s ⌧ + 1)(s ⇢+ 1)
!sm(s), (10)

where !sm(s) is the frequency of the synchronous machine
(1). In terms of the load disturbance p`(s), the above relation
in conjunction with (7) translates to

pvsi(s) = �
↵g s (⌧ � ⇢)

(s ⌧ + 1)(s ⇢+ 1)
G

cl?
!sm, p`

(s) p`(s), (11)

where the target response G
cl?
!sm, p`

(s) is given by (9). We note
from (11) that the transfer function is third-order due to stable
pole-zero cancellation.

Remark 2. (IBR power injection). While we limit ourselves
to grid-forming inverters in this paper, the results in this
section are agnostic to the IBR implementation. As long as
an IBR injects the power specified by (11), the overall system
response will match the target Gcl?

!sm, p`
(s). •

B. Minimizing Peak IBR power injections

We recall from the discussion above that the main motiva-
tion for exploring higher-order target transfer functions is to
minimize the peak power injected by the IBR devices while
limiting the aggregate system frequency excursion in response
to load perturbations, i.e.,

min
⇢

|pvsi|1

s.t. |!sm|1  !̄sm, (12)

where | · |1 = supt | · (t)| denotes the absolute peak value and
pvsi(t) is the power injected by the IBR in response to a step
perturbation in the load p`.

Remark 3. (Optimal effective time constant). The opti-
mization problem in (12) is trivial when the constraint on
frequency nadir is removed. Specifically, the unconstrained
problem admits a trivial solution ⇢ = ⌧ , i.e., there is no power
injection from the IBR and thus we have the original frequency
dynamics (1). •

While [11] provides a closed-form relation for the frequency
nadir of an under-damped SG of (1), exact solutions to the
problem (12) are generally intractable both analytically and
computationally. Thus, we resort to gridding the parameter
space. Figure 3 and Figure 4 depict the response of the SG
frequency and IBR power injection to a 1 p.u. load step for
different overall effective time constants ⇢. We note that as
the effective time constant ⇢ is reduced, the corresponding
frequency nadir decreases due to higher IBR power injection.
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Fig. 4. The power injection from the IBR for a 1 p.u. load step for different
values of ⇢.

Another observation for the specific system parameters
used2, is that the objective is monotone in the decision variable
(⇢) and thus the solution to the minimization problem (12) can
also be determined graphically. To this end, we compute and
plot specifically, the peak power injection from IBRs for step
load perturbations in Figure 5 as a function of ⇢.

2We use the single machine-single IBR system from [9] for our simulations.
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mization problem in (12) is trivial when the constraint on
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problem admits a trivial solution ⇢ = ⌧ , i.e., there is no power
injection from the IBR and thus we have the original frequency
dynamics (1). •

While [11] provides a closed-form relation for the frequency
nadir of an under-damped SG of (1), exact solutions to the
problem (12) are generally intractable both analytically and
computationally. Thus, we resort to gridding the parameter
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Another observation for the specific system parameters
used2, is that the objective is monotone in the decision variable
(⇢) and thus the solution to the minimization problem (12) can
also be determined graphically. To this end, we compute and
plot specifically, the peak power injection from IBRs for step
load perturbations in Figure 5 as a function of ⇢.

2We use the single machine-single IBR system from [9] for our simulations.

• Grid Response Characteristics G†(s) : 
Frequency Nadir, Rate of change of Frequency 
(RoCoF), peak IBR power injection, among 
others.

• First-order overall response of the system:
– Improves frequency nadir

– Fails to reduce peak IBR power injection

IBR power injection for a 1 p.u. load step 

Frequency response for a 1 p.u. load step 
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Fig. 2. Peak IBR power injection for a step load disturbance as a function
of the effective time constant.
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Fig. 4. Pareto front for peak IBR power for a 1 p.u. load step v/s the frequency
nadir

of a standalone synchronous machine. Furthermore, as future
grids will have a significant proportion of IBR integration,
the conventional notion of strict bounds on the frequency
nadir will no longer be applicable, thus enabling us to design
controllers with a lower peak power injection at the expense
of a relatively higher frequency violation.

IV. IBR IMPLEMENTATION OF CONTROLLERS

In this section, we delve into the implementation of the
frequency control discussed in the previous section. In partic-
ular, we investigate grid-forming devices, which we believe
will form the backbone of future grids.
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Fig. 5. The frequency response for a load step as a function of the effective
time constant %.
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Fig. 6. The power injection from the IBR for a load step as a function of
the effective time constant %.

A. Grid-Forming converters

Consider a single machine-single grid-forming IBR system
as in Figure 1. Let ✓, pm (resp. ✓c, pc) denote the angle, power
injection of the synchronous machine (resp. grid-forming
converter) and p` denote the load served by the system. The
line admittance (which may be time-varying, e.g., depending
on the state of the tap changing transformers, etc.,) between
the IBR and the machine is captured by the admittance b. For
this system, the synchronous machine dynamics are given by

m !̇ =� ↵` ! + pm + pc � p` (14a)
⌧ ṗm =� pm � ↵g ! (14b)

where !(s) is the frequency at the generator node and ⌧ is
the turbine time constant. For converter angle ✓c and generator
angle ✓, the converter power injection pc(s) is such that

pc(s) =b (✓c � ✓) (15a)
!c(s) =�Gc(s) pc(s), (15b)

where !c(s) is the frequency of the converter and Gc(s),
the converter controller which maps its frequency and power
injection. We wish to design this control transfer function
Gc(s) in order to realize the target function h(s) of the
overall system. On combining (15a), the relation between the
generator frequency ! and the converter power pc(s) is

pc(s) =
1

s

b
+Gc(s)

!(s). (16)

No IBR

First-order response
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Adaptive Control
• Major drawback: controller requires knowledge 

of the changing network parameters (line 
admittance).

• Solution: Adaptive/robust design quantifying the 
worst-case behavior for incorrect estimates of 
parameters.

• Characteristics: Stable controller, the design is 
amenable to incorporate new estimates of the 
network parameters.
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B. Two-bus system case study

We revisit the two-bus system to illustrate that the impact of
incorrect estimates as predicted by Theorem 2. In Figure 9, we
consider the frequency response to a 1 p.u. load perturbation
under two scenarios (i) b̂ = b, (ii) b̂ 6= b. We note that the
mismatch results in a significant variation from the desired
trajectory, resulting in a much higher frequency nadir.
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Next, we analyze the impact of the effective turbine constant
⇢ on the sensitivity. We recall from Theorem 2 that increasing
⇢ results in a lower sensitivity and decreases the mismatch

between the actual and target dynamics. This is illustrated in
Figure 10 for varying values of ⇢.

Finally, we consider the effect of larger mismatch errors for
a fixed ⇢. From Theorem 2, the relative mismatch between
G

cl
!sm, p`

(s) and G
cl?
!sm, p`

(s) scales inversely with b around � =
0. However, this trend is observed even for large mismatch
values of � (i.e., c > 1.05) as illustrated in Figure 11.

VI. CONCLUSIONS

We analyzed the problem of frequency control for weakly
coupled low-inertia power systems equipped with SGs, IBRs
and propose a grid-forming frequency shaping control with a
second-order target behaviour. While relaxing several existing
assumptions in the literature, the proposed approach allowed
a trade-off between the IBR peak power injection and SG
frequency nadir. Furthermore, we highlighted the significant
role of the network parameters and analyzed the effect on
the closed-loop system behaviour due to imperfect knowledge
of these parameters. We aim to fully leverage the flexibility
offered by the frequency shaping control and compare other
inverter implementations as future work.
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What comes next?

• Analyze large-scale multi-IBR/multi-machine systems

• Is a more generic target performance achievable? 
– Which transfer functions to shape? 

– Frequency @ nodes of interest?
• Sources behind the IBR: Wind/PV

– Incorporate detailed models of sources 

– Leverage their inherent characteristics
• Effect of line-dynamics, non-linear/EMT simulations

• Coordination with other services from IBRs?
– Capacity constraints

• Hardware Performance Evaluation

–  Hardware-in-loop Test-bed implementation/evaluation of controls with heterogeneous IBRs
–  Real-world demonstration for large-scale systems with partners
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Conclusions

• “DynaShape” aims to advance foundational science in control of IBR-integrated power systems.

• Develop controls which do not replicate synchronous machine dynamics in weakly-coupled grids.
• Three-step structured approach for designing controls

• Suitable for adaptation to larger networks through clustering/aggregation

• Aligns with the missions of OE and EERE. 

– OE Microgrids program developed strategy white papers on interconnected microgrids with IBRs. 

– Universal interoperability for grid-forming inverters (UNIFI)
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