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Preface 
The PV Fleet Data Initiative and other projects seek to develop algorithms for automated 
analysis of photovoltaic (PV) time series data.  This analysis can be used to extract statistical 
information and other parameters from the data, such as degradation rates, soiling loss 
information, tracker performance, clipping or curtailment, and system availability. Although 
there is a vast body of PV data available for application of these extraction algorithms, it is 
difficult to validate these algorithms, because the true parameters to be extracted are not known. 
Synthetic data has been widely used in the literature for algorithm validation, but this synthetic 
data is typically very bounded by the problem or topic at hand. The PV Fleet Data Initiative has 
demonstrated that real time series PV data almost always includes a host of data quality and 
physical problems that, in reality, any automated PV abstraction algorithm must handle 
appropriately. For this reason, this work describes the development of a complex synthetic PV 
time series data set that includes data quality and physical problems that have been experienced 
in real-world PV data. The quality and physical problems are documented in the synthetic data so 
that users can test the validity of various existing PV extraction algorithms as well as develop 
new algorithms to solve problems this data set can support. The synthetic dataset used in this 
report can be accessed on the Durable Module Materials Consortium Data Hub at 
https://doi.org/10.21948/1999772.  

https://doi.org/10.21948/1999772


iv 

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

List of Acronyms 
CDF cumulative distribution function 
GHI global horizontal irradiance  
GW gigawatts 
IAM incidence angle modifier 
ILR inverter loading ratio 
ISO International Organization for Standardization 
NREL National Renewable Energy Laboratory 
NSRDB National Solar Radiation Database 
PI performance index 
POA plane of array 
PSM3 Physical Solar Model version 3 
PV Fleets NREL PV Fleet Data Initiative 
PV photovoltaic 
QA quality assurance 
Rd rate of degradation 



v 

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

Table of Contents 
Introduction ................................................................................................................................................. 2 
1 Real-World Data .................................................................................................................................... 3 

1.1 Data Quality Issues ........................................................................................................................ 3 
1.2 Physical Data Issues ...................................................................................................................... 3 
1.3 Data Noise ..................................................................................................................................... 4 

2 Modeling and Methodology ................................................................................................................. 8 
2.1 Input Data ...................................................................................................................................... 8 
2.2 Modeling Flow .............................................................................................................................. 8 

2.2.1 Generation of 15-Minute PV Output Data ....................................................................... 8 
2.2.2 Generating a Performance Index (PI) ............................................................................... 8 

2.3 Soiling Losses ............................................................................................................................... 9 
2.3.1 Sawtooth Soiling Details ................................................................................................ 10 
2.3.2 Pollen Soiling Details ..................................................................................................... 10 

2.4 Artificial Noise ............................................................................................................................ 11 
2.4.1 Clear-Sky N15min Characterization .................................................................................. 11 
2.4.2 Cloudy-Sky N15min Characterization ............................................................................... 12 
2.4.3 Noise Generation ............................................................................................................ 13 

2.5 Model Variants ............................................................................................................................ 13 
2.6 Output Data ................................................................................................................................. 16 

2.6.1 Simulation Metadata File ............................................................................................... 16 
2.6.2 15-Minute Files .............................................................................................................. 17 
2.6.3 Daily Files ...................................................................................................................... 18 

3 Synthetic Data Results and Discussion ........................................................................................... 20 
4 Conclusions ........................................................................................................................................ 26 
References ................................................................................................................................................. 27 
 



vi 

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

List of Figures 
Figure 1. For site 5007, Ndaily (the difference between the blue and black signals) is relatively consistent 

across the time series. This site has regular rainfall (cloudier weather) across the time series 
(shown in green). ...................................................................................................................... 5 

Figure 2. For site 7306, Ndaily (the difference between the blue and black signals) is nearest to zero in late 
summer and fall, when little rainfall occurs and downward soiling trends can be seen in the 
data. By contrast, Ndaily reaches extremes (~−40%) in the winter and spring months, when 
rainfall is more likely to occur (cloudier weather). .................................................................. 5 

Figure 3. Compared to site 7306, site 7316 has a PI with less scatter and a lower overall Ndaily (the 
difference between the blue and black signals). Both sites are in the Southwest United States 
and have intermittent rainfall. Ndaily is closest to zero in the long dry soiling periods and 
typically has more negative extremes in the late winter and early spring, when rain is more 
common. ................................................................................................................................... 6 

Figure 4. Ndaily from 47 PV Fleets systems. .................................................................................................. 6 
Figure 5. N15min plotted against the base 10 logarithm of the standard deviation of the three 5-minute 

irradianUSDOE Office of Energy Efficiency and Renewable Energy (EERE), Renewable 
Power Office. Wind Energy Technologies Officece values within the 15-minute window and 
color coded by irradiance level. ............................................................................................... 7 

Figure 6. Locations of the 38 sites chosen for generating synthetic data using historical irradiance and 
weather data. ............................................................................................................................ 9 

Figure 7. The empirical pollen-based soiling profiles (with and without manual washing), assuming a 
maximum performance loss of 15% and a residual loss of 5%.............................................. 11 

Figure 8. Discretized daily clear-sky bias distributions for the four noise characterization systems. ........ 12 
Figure 9. Observed N15min for the PV Fleets 8241 system, partitioned by irradiance level and variability. 

Irradiance level varies across subfigures, with the irradiance range given in W/m2 as the title. 
Irradiance variability—quantified as the base 10 logarithm of the standard deviation of the 
three 5-minute values within each 15-minute period—varies within subfigures. .................. 13 

Figure 10. Seasonal impact on normalized insolation when there is misalignment between actual and 
desired insolation. All results are normalized to a tilt of 20 degrees. For example, the blue 
curve, which is at 0 tilt, represents a misalignment of 20 degrees, whereas the purple curve 
represents a misalignment of 5 degrees. ................................................................................ 16 

Figure 11. Distribution of degradation rates from the PV Fleets 2022 results. The dashed line indicates the 
median of −0.75% per year. ................................................................................................... 16 

Figure 12. Ndaily for time series data from all synthetic variants except those with GHI used as the 
irradiance sensor. ................................................................................................................... 20 

Figure 13. Typical time series plot associated with the data in Figure 12. This variant is as follows: 
inverter loading ratio (ILR) = 1.3, Rd = −0.80, fixed tilt of 10°, POA = 11°, string outages 
included, site is in the Southwest. .......................................................................................... 21 

Figure 14. Ndaily data matching Figure 12 while also including 20 synthetic variants where GHI was used 
as the irradiance for a tracking system. .................................................................................. 21 

Figure 15. Typical Ndaily for a tracking system where GHI has been mislabeled as POA. Variant details are 
ILR = 1, Rd = −1.29, tracking, POA = GHI, no string outages, site is in the Southwest, 
seasonality is ~6%. ................................................................................................................. 22 

Figure 16. Variant details are ILR = 1.3, Rd = −0.72, tracking, POA = GHI, no string outages, site is in 
the Southwest. This example shows minimal Ndaily during long soiling periods and more 
extreme Ndaily during the rainy season. ................................................................................... 22 

Figure 17. Variant details are ILR = 1.3, Rd = −0.57, fixed tilt = 25°, POA = 26°, no string outages, site is 
in the Southwest, seasonality = ~5%. This time series provides an example of how soiling 
trends make it difficult to distinguish the underlying seasonality. ......................................... 23 



vii 

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

Figure 18. Variant details are ILR = 1.3, Rd = −1.69, fixed tilt = 10°, POA = GHI, yes string outages, site 
is in the Southwest, seasonality = ~25%. This time series provides an example of winter 
seasonal decline coinciding with dry periods with varying degrees of soiling loss. This is an 
ideal test case for soiling algorithms that can account for both seasonality and soiling. ....... 23 

Figure 19. Variant details are ILR = 1, Rd = −0.60, fixed tilt = 10°, POA = GHI, no string outages, site is 
in the Southwest, seasonality = 25%. This time series provides an example where soiling 
occurs throughout the year but is the smaller signal compared to high seasonality............... 24 

Figure 20. Variant details are ILR = 1, Rd = −0.66, fixed tilt = 10°, POA = 11°, string outages included, 
site is in the Southeast, seasonality = ~0. This time series provides a typical example of a 
Southeastern site with no pollen soiling. Ndaily is slightly more extreme in the winter months, 
and there are few drops in the PI due to string outages. ......................................................... 24 

Figure 21. Variant details are ILR = 1, Rd = −1.66, fixed tilt = 25°, POA = 26°, pollen soiling included, 
string outages included, site is in the Southeast, seasonality = ~5%. This time series provides 
a typical example of the inclusion of the pollen soiling trend being implemented each spring, 
followed by a manual cleaning in the summer. ...................................................................... 25 

Figure 22. Variant details are ILR = 1, Rd = −2.61, fixed tilt = 25°, POA = 30°, pollen soiling included, 
string outages included, site is in the Southeast, seasonality = ~0. This time series shows 
how string outages can change coincide with other events (in this case pollen soiling) and 
can make the underlying signal more complex to interpret. .................................................. 25 

 

List of Tables 
Table 1. Pollen Soiling: Cubic Hermite Spline Anchor Point Definitions .................................................. 10 
Table 2. Systems Used for N15min Characterization ..................................................................................... 11 
Table 3. Model Variants for Synthetic Data Generation ............................................................................. 14 
Table 4. Criteria for Determining Statistical Variation in Model Variants ................................................. 15 
Table 5. Column Descriptions for the Simulation Metadata File ............................................................... 17 
Table 6. Column Descriptions for the 15-Minute Data Files ...................................................................... 18 
Table 7. Column Descriptions for the Daily Data Files .............................................................................. 19 



2 

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

Introduction 
As photovoltaic (PV) capacity has grown in recent decades, so has the body of time series data 
associated with these installations. As a result of this data growth, it has become unreasonable to 
expect that individual human analysts can examine each PV system’s time series data set to 
study performance or other system characteristics. For example, the National Renewable Energy 
Laboratory’s (NREL’s) PV Fleet Data Initiative (PV Fleets) has ingested 8.4 gigawatts (GW) of 
PV systems, resulting in more than 36.8 billion rows of time series data. This data set contains 
valuable information about the U.S. PV fleet, such as degradation rate statistics, tracker 
performance, soiling losses, system availability, and other factors. However, extracting this 
information requires the development of automated algorithms that have been validated against 
their intended purpose. Although much progress has been made in algorithm development and 
validation, one of the biggest challenges is the lack of ground truth data sets in the validation 
phase [1]–[5]. Where possible, NREL has employed expert analysts to label time series data with 
information like inverter clipping, cleaning events, and stuck tracker events, and has made these 
labeled data sets publicly available [6]–[9]. However, analyst-labeled data sets are not ideal, as 
they are time-consuming to create and are often not broadly used because they leave room for 
ambiguity and debate. For this reason, many works in the literature have created focused 
synthetic data sets geared toward validation of a specific algorithm or model. These synthetic 
data sets have been quite valuable, but the PV Fleets real-world data set indicates that these 
synthetic data are often oversimplified. Real-world data presents countless compounding 
challenges that automated algorithms must be able to navigate if valid information is to be 
extracted from large-scale PV time series data. Therefore, through this work, we seek to develop 
and publish a complex PV time series data set that includes both data quality and physical 
problems that have been experienced in the U.S. PV fleet through the PV Fleets project. The 
paper is divided as follows. First, a section on real-world data provides background on the 
challenges and physical problems found in the PV Fleets data set. Then, a section on modeling 
and methodology provides the process for generating the synthetic data set. Next, a results 
section provides representative examples of the synthetic data, and finally, brief conclusions are 
made. 

The synthetic dataset used in this report can be accessed on the Durable Module Materials 
Consortium Data Hub at https://doi.org/10.21948/1999772. 

  

https://doi.org/10.21948/1999772
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1 Real-World Data  
1.1 Data Quality Issues 
PV data is often considered through a perfect lens; in other words, the time series data for 
irradiance, power, temperature, and other parameters is measured without error and passed to an 
analyst fully intact. Furthermore, there is an assumption that what the data represent is clearly 
communicated, and that all the necessary metadata are available to develop an in-depth 
performance model for a given system. The reality is far from this, with countless problems 
being the norm and not the exception. In the PV Fleets project, significant efforts are made in the 
data ingestion step to validate individual data stream labels, units, time zone and timestamp 
conventions, and system metadata. Because problems are still likely, all data is then subjected to 
an automated quality assurance (QA) analysis, where data streams that don’t meet required 
thresholds are rejected for further analysis [10]. Some common problems are: (1) data is 
mislabeled (for example, plane of array (POA), irradiance, and global horizontal irradiance 
(GHI) are swapped), (2) units are incorrect or shift somewhere in the data stream, (3) daylight 
savings shifts are present although not expected, (4) time frequency changes or left versus right 
time labeling are unclear, (5) large unexpected shifts occur within an individual time series, (6) 
significant portions of the data are missing, and (7) system orientation (fixed azimuth, tilt, or 
tracking) is incorrect or missing. Although QA algorithms are intended to correct or remove the 
poorest data, problems will persist in data subjected to degradation, soiling, availability, or other 
desired analysis. We closely examined the daily performance index (PI) for 47 systems that 
passed QA and found that three challenges persisted: (1) entire days or periods with missing 
data, (2) residual seasonality in the PI that had an amplitude of a few percent to as high 40 
percent, and (3) obvious data shifts that still occurred on the order of tens of percent. Note that in 
this report, we use PI loosely to refer measured PV output divided my modeled PV output.  For 
PV Fleets data the PI is generated on an aggregated daily basis using the RdTools™ workflow 
while for synthetic data a PI is generated on a 15-minute basis using methods described in 
section 2. Analysis of the PV Fleets PI data showed that data was missing for a mean length of 
3.1 days per outage, with a standard deviation of 10.5 days, and there were a mean of 8.6 outages 
per year, with a standard deviation of 8.3 outages. Although residual seasonality can occur for a 
number of potentially compounding reasons, the most common reason is suspected to be due to 
misalignment between the array orientation and irradiance measurements (whether the 
misalignment is real or due to mislabeling of a data stream or array metadata). PI data shifts can 
also occur for a number of reasons, such as incorrect calibration, mis-entry of calibration 
coefficients, or physical reasons, such as string outages or plant curtailment. Although the PV 
Fleets data set does not contain sufficient information to identify the cause of such data shifts, 
their occurrence can have obvious impacts on degradation and soiling analysis, and therefore 
they are worth considering in synthetic data generation. 

1.2 Physical Data Issues  
Here, “physical data issues” mean physical occurrences that directly alter the performance of a 
PV system, either rapidly or over time. Physical issues can at times be difficult to distinguish 
from data quality issues. For example, seasonality in the PI signal can be due to a data quality 
issue, such as incorrect labeling of an irradiance sensor, or a physical issue, such as inaccurate 
alignment between the irradiance sensor and the array plane, seasonal shading, temperature 
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variation, or spectral effects. When creating a representative synthetic PV data set, it is not 
critical that all issues be successfully separated into data quality versus physical issues, but rather 
that common issues be included in the final time series. The following is a list of common 
physical issues seen in the PV Fleets data that were taken into consideration when generating 
synthetic data. Snow coverage of PV panels is another physical issue, but it is not included here 
because the current synthetic data set is for the southern United States, where snow is an 
infrequent issue. 

• Soiling in dry environments 

• Pollen or bio-soiling in rainy environments 

• String outages 

• Utility curtailment 

• AC inverter clipping 

• Permanent PV system degradation 

• Tracker stalls 

• Misalignment between array and irradiance sensor 

• System self-shading. 

1.3 Data Noise 
Noise is often considered a corruption or distortion to the underlying true data signal or 
measurement. In most synthetic PV data sets that have been reported in the literature, noise is 
either ignored or the noise affecting each data point is randomly sampled from a normal or 
skewed distribution [11]–[14]. The skewed distribution is justified in that real PV PI data shows 
noise biased to underperformance rather than overperformance. Observations from the PV Fleets 
data set suggest that what is being deemed noise is not random and that further consideration is 
needed to appropriately account for noise. When looking at PV Fleets data to quantify noise, we 
calculate it on a daily basis. Ndaily is the difference between the daily PI and the 14-day rolling 
median of the PI. This daily metric for noise allows us to account for trends in the data that may 
occur due to soiling losses or other unknown issues that would not be accounted for by a basic 
performance model. Figure 1 (system 5007), Figure 2 (system 7306), and Figure 3 (system 7316) 
show different time series plots of PI data (in blue), the 14-day rolling median of PI (in black), 
and daily rainfall (in green) for real PV systems. System 5007 is a site with regular rainfall, and 
it shows a PI that appears evenly scattered along the time series with a minor bias toward 
underperformance or negative Ndaily. System 7306 has intermittent rainfall; during long dry 
periods, there are downward soiling trends that have minimal Ndaily, whereas in late winter, when 
rain does occur, there is negative Ndaily (often reaching −40%). System 7316 also has intermittent 
rainfall, but Ndaily is significantly less than in system 7306 across the data set—although Ndaily of 
system 7316 is still the most negative in the late winter and early spring. Figure 4 shows the 
Ndaily for the 47 systems previously mentioned plotted against the normalized daily insolation 
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total. It is clear from this graph that the range of noise decreases as the daily insolation totals 
increase. 

 

Figure 1. For site 5007, Ndaily (the difference between the blue and black signals) is relatively 
consistent across the time series. This site has regular rainfall (cloudier weather) across the time 

series (shown in green). 

 

Figure 2. For site 7306, Ndaily (the difference between the blue and black signals) is nearest to zero 
in late summer and fall, when little rainfall occurs and downward soiling trends can be seen in the 
data. By contrast, Ndaily reaches extremes (~−40%) in the winter and spring months, when rainfall 

is more likely to occur (cloudier weather). 
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Figure 3. Compared to site 7306, site 7316 has a PI with less scatter and a lower overall Ndaily (the 
difference between the blue and black signals). Both sites are in the Southwest United States and 
have intermittent rainfall. Ndaily is closest to zero in the long dry soiling periods and typically has 

more negative extremes in the late winter and early spring, when rain is more common. 

 

Figure 4. Ndaily from 47 PV Fleets systems.  

In an effort to better understand the possible relationship between PI noise and insolation, one of 
NREL’s high-fidelity systems was examined against 5-minute National Solar Radiation Database 
(NSRDB) Physical Solar Model version 3 (PSM3) data [15]. Figure 5 plots noise for the 15-
minute normalized PV performance, N15min (where N15min is the deviation between the measured 
and modeled system performance for each 15-minute increment), versus irradiance level and 
variability. The irradiance level is quantified as the mean irradiance within the 15-minute 
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window, and the variability is quantified as the base 10 logarithm of the standard deviation of the 
irradiance values within the 15-minute window. Irradiances above 800–900 W/m2 show low 
variability within the 15-minute window and noise that is less than a few percent. On the other 
hand, at lower irradiances and high variability, the noise can be ±50%. The findings in Figure 4 
and Figure 5 laid the groundwork for generating noise within the synthetic data set based on both 
irradiance levels and irradiance variability, as described in Section 2.4. 

 

Figure 5. N15min plotted against the base 10 logarithm of the standard deviation of the three 5-
minute irradiance values within the 15-minute window and color coded by irradiance level. 
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2 Modeling and Methodology  
Modern PV performance modeling stands on the shoulders of decades of progress in model 
development and validation, resulting in sophisticated and accurate software tools for simulating 
realistic system performance time series. Some of the performance issues of interest in this work 
(soiling, clipping, curtailment) can be modeled directly with these tools. However, more exotic 
issues, like sensor misalignment, tracker failures, and pollen-based soiling, require custom 
modeling. Therefore, instead of using one of the many familiar PV modeling packages, we have 
developed a customized simulation workflow for this work, the details of which are described in 
the following sections. 

2.1 Input Data  
As our intent is to build a synthetic data set that captures real-world challenges, we connect each 
time series generation to a specific latitude and longitude. The 5-minute irradiance, temperature, 
and wind speed in NSRDB PSM3 version 3.2.2 serve as inputs to the PV model, and PRISM 
Climate Group (PRISM) [15], [16] daily rainfall is the primary input to the soiling loss 
modeling. The model code can be used for any location where input data are available, but the 
initial data set is based on 24 locations in the Southwest United States and 14 locations in the 
Southeast United States (see Figure 6; more explanation of the location choices is provided 
within the soiling losses subsection). The simulated data set spans the four years from 2018–
2021, the current extent of NSRDB’s 5-minute data set.  

2.2 Modeling Flow 

2.2.1 Generation of 15-Minute PV Output Data 
For each 5-minute data point, the following are calculated in the lead-up to “true” PV output: 
solar position, array orientation (if tracking and not in a stuck orientation), solar transposition to 
POA (using the Hay-Davies diffuse sky model), cell temperature with transience (using the 
Sandia PV Array Performance Model and the Prilliman model [17]), incidence angle modifier 
(IAM), losses (using a single-slab optical transmission model [18]), self-shading losses (using a 
simplified nonlinear [19] model), degradation losses (see model variants section), and DC PV 
power (using PVWatts® [18] while including the previously described DC losses). Soiling losses 
and string outages (see model variants section) are applied to the resulting 5-minute DC PV 
power before applying inverter clipping and efficiency losses per a generic inverter efficiency 
curve. If relevant, utility curtailment is applied to the AC inverter output, and the result of all 
these steps is the “true” 5-minute PV output. Five-minute data are then averaged to 15 minutes 
for the output data set. Artificial noise, as discussed in Section 2.4, is applied to each 15-minute 
data point based on the variability of the three 5-minute data points and the PSM3 evaluation of 
the data as clear sky. Finally, data outages are applied as sampled from normal distributions, with 
mean and standard deviations provided in Section 2.1. The 15-minute output data with noise and 
missing data periods represents the final synthetic PV system measured data stream.  

2.2.2 Generating a Performance Index (PI) 
A synthetic PI (synthetic generated power divided by modeled power) is generated for each 15-
minute data point, as prescribed by the RdTools sensor workflow [20], [21]. First, the synthetic 
power data are normalized, and both power and POA data are filtered for erroneous data. Note 
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that here, POA data is a 15-minute data stream generated through transposition of PSM3 data, 
and it can be misaligned with the PV array, as discussed further in the model variants section. 
Synthetic power data are filtered to remove inverter clipping per the RdTools logic clip filter. 
PVWatts inputs wind speed, ambient temperature, POA, location, and orientation information 
and outputs normalized modeled power, which enables the final synthetic PI calculation. Note 
that the synthetic PI calculation has no knowledge of string outages, POA misalignment, soiling, 
or other physical data issues; these issues can be included as described in the model variants 
section. 

2.3 Soiling Losses  
Typical PV soiling models assume that soiling follows a sawtooth pattern: linear soiling during 
dry periods followed by abrupt recovery or cleaning during rainfall events. These assumptions 
have been demonstrated for a number of PV systems in dry, dusty climates similar to the 
Southwest United States [2], [4], [5], [22]. Due to the frequency of rainfall in the eastern United 
States, sawtooth soiling models estimate near zero soiling losses in this region. By contrast, 
through work with system owner/operators per NREL’s PV Fleet project, it has become clear 
that there are systems in the Southeast United States that have soiled as high as 10% and are not 
recovering with regular rainfall. The current hypothesis is that sticky soiling due to pollen or 
other biological sources is deposited on PV panels in the spring but is persistent against rapid 
rainfall removal. For this reason, we consider two regions for soiling losses and both a sawtooth 
and a pollen soiling model. As previously mentioned, the initial data set is based on 24 locations 
in the Southwest United States and 14 locations in the Southeast United States (see Figure 6). A 
sawtooth soiling loss model is applied to all 38 locations, but pollen soiling is also applied to the 
Southeastern sites.  

 

Figure 6. Locations of the 38 sites chosen for generating synthetic data using historical irradiance 
and weather data. 
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2.3.1 Sawtooth Soiling Details 
Days where rainfall occurs per PRISM data (≥0.5 mm/day) are used to separate each location’s 
time series into dry soiling periods. Linear soiling rates for each dry period in the Southwest 
United States are selected from a chopped normal distribution (no positive rates) with a mean of 
−0.14%/day and a standard deviation of −0.11%/day. The parameters of this distribution are 
established based on a distribution of soiling rates from the Southwestern United States provided 
by NREL’s online soiling map [23]. Similarly, rates for the Southeastern United States are 
selected from a chopped normal distribution (no positive rates) with a mean of −0.05%/day and a 
standard deviation of −0.025%/day. For daily rainfall totals between 0.5 and 3 mm/day, the 
recovery or cleaning is not assumed to be perfect and is sampled from a range between 50% and 
100% recovery. For rainfall greater than 3 mm/day, 100% recovery is assumed. 

2.3.2 Pollen Soiling Details 
In the absence of published models for predicting the performance loss associated with pollen-
based soiling accumulation, we use a simple empirical model that produces a soiling profile 
qualitatively similar to what we have observed in performance data from real systems in the 
Southeastern United States. The empirical characteristics we seek to recreate are a rapid decline 
in performance over a few weeks followed by a gradual partial recovery over the subsequent 
months. For this purpose, we use a cubic Hermite spline fit to three anchor points: the date of 
soiling onset, the point of maximum performance loss, and the leveling off point of the gradual 
partial recovery. The choice of cubic Hermite spline was motivated by the ability to set the 
derivative of the resulting polynomial to zero at each of these three anchor points, making it 
possible to prevent the produced soiling ratio from exceeding 1.0 while maintaining a smooth 
curve. Our chosen anchor points, intended to produce a severe but plausible curve based on our 
experience, are defined in Table 1. The resulting profile, with and without a simulated manual 
cleaning on June 1, is shown in Figure 7. 

Table 1. Pollen Soiling: Cubic Hermite Spline Anchor Point Definitions 

Description Date Soiling Ratio [-] Derivative [1/day] 

Soiling onset March 1 1.0 0.0 

Maximum loss April 12 0.85 0.0 

Leveling off September 30 0.95 0.0 
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Figure 7. The empirical pollen-based soiling profiles (with and without manual washing), 
assuming a maximum performance loss of 15% and a residual loss of 5%. 

Because pollen soiling appears to be a highly localized phenomenon that does not affect all 
systems in the Southeastern United States, simulations in this region are chosen at random (with 
a 50% chance) to be affected by pollen soiling. Pollen soiling is never applied to locations in the 
Southwest. The “with wash” profile shown in Figure 7 is used for all simulations where pollen 
soiling is applied, with no year-to-year or site-to-site variation. 

2.4 Artificial Noise 
As noted in Section 1.3, the noise observed in realistic PI data sets varies between systems and 
depends on irradiance conditions. Additionally, it isn’t necessarily well-represented by Gaussian 
or other convenient distributions. In order to replicate these traits in the synthetic data sets, we 
calculate the empirical PI noise statistics observed in real system data sets in a way that preserves 
the relationship with irradiance conditions and the variation between systems. Table 2 lists the 
systems used for N15min characterization. 

Table 2. Systems Used for N15min Characterization 

System Name Region Year 

RTC NV Southwest 2021 

PV Fleets 7336 Southwest 2021 

NIST Ground Southeast 2018 

PV Fleets 8241 Southeast 2019 

These systems were chosen because their performance is mostly unaffected by the other 
performance effects (soiling, clipping, etc.) already included in our model. For each of these four 
systems, empirical noise (N15min) was defined as the relative difference between measured AC 
power and (noiseless) expected power, calculated using the approach described in Section 2.2.1. 
This noise was then divided into clear- and cloudy-sky subsets (using the location’s PSM3 sky 
classification for each timestamp) and characterized as described below. 

2.4.1 Clear-Sky N15min Characterization 
We observe that timestamp-by-timestamp PI deviation from a longer-term average is more stable 
in clear-sky conditions and might be better described as “bias” than “noise.” Therefore, we 
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evaluate clear-sky noise at the daily level rather than at the level of 15-minute timestamps. 
Taking the clear-sky subset of each day, and throwing out days without at least 10 remaining 
values, we calculate the median noise value for each day. This forms an overall distribution of 
clear-sky biases, which is characterized with a cumulative distribution function (CDF) by 
calculating its 1st, 10th, 20th, 40th, 50th, 60th, 80th, 90th, and 99th percentiles. Daily biases range 
from ±2% to ±5% depending on the system. Figure 8 shows the clear-sky bias CDFs for the four 
systems listed in Table 2. 

 

Figure 8. Discretized daily clear-sky bias distributions for the four noise characterization systems. 

2.4.2 Cloudy-Sky N15min Characterization 
In contrast to the clear-sky biases being evaluated at a daily scale, cloudy-sky noise is 
characterized for each 15-minute timestamp and partitioned according to irradiance level and 
variability. Irradiance level is quantified as the mean irradiance within the 15-minute window, 
and variability is quantified as the base 10 logarithm of the standard deviation of the irradiance 
values within the 15-minute window. The cloudy-sky noise values are then binned in two 
dimensions according to these irradiance statistics. Bins are taken in steps of 100 W/m2 for 
irradiance level and 0.5 for variability. Finally, within each bin, an approximate CDF is 
calculated using the same percentiles used for the clear-sky CDFs. This forms a two-dimensional 
lookup table that provides a noise CDF for any combination of irradiance level and variability. 
Figure 9 shows these distributions for one system. 
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Figure 9. Observed N15min for the PV Fleets 8241 system, partitioned by irradiance level and 
variability. Irradiance level varies across subfigures, with the irradiance range given in W/m2 as 

the title. Irradiance variability—quantified as the base 10 logarithm of the standard deviation of the 
three 5-minute values within each 15-minute period—varies within subfigures. 

2.4.3 Noise Generation 
The artificial noise applied to simulated data is generated by sampling the empirical clear- and 
cloudy-sky noise distributions for a system chosen randomly from Table 2 according to region. 
As mentioned earlier, clear-sky biases apply to the clear-sky portions of entire days, whereas 
cloudy-sky noise is sampled independently for each 15-minute timestamp according to the CDF 
corresponding to the timestamp’s irradiance level and variability. In the rare cases where a 
timestamp’s irradiance level or variability falls outside the ranges covered by the cloudy-sky 
CDF lookup table, the timestamp is assigned zero noise. 

This approach is limited in that it does not account for autocorrelation of noise during cloudy 
periods or seasonal variation in noise (outside of what can be captured with the base irradiance 
statistics). However, when the synthetic time series data were visually examined against PV 
Fleets data, the results were reasonable and showed improvement upon simply sampling from a 
normal distribution (for example, compare Figure 4 to Figure 12). Future work may include more 
methods for noise characterization and corresponding synthesis models. 

2.5 Model Variants 
To create both complexity and controls for testing within the synthetic data set, we generate a 
matrix of simulation variants as given in Table 3. For every variant in Table 3, the following are 
also applied per sampling from criteria in Table 4: (1) data outages, (2) utility curtailment, (3) 
dry soiling rates, and (4) permanent linear DC system degradation. Stuck tracking is also applied 
to all tracking variants, as applied per sampling in Table 4. Note that in the current model, all 
trackers are either stuck or tracking, whereas in real field scenarios, it is common for only a 
fraction of trackers to be stuck. This was done for simplicity; future variants may include such 
partially stuck trackers. All variants are given a ground coverage ratio of 0.4. Fixed-tilt systems 
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have one module in portrait, and self-shading occurs as dictated by the system geometry. 
Tracking systems are assumed to backtrack within a flat field, and therefore no self-shading 
occurs. Each variant for Southeastern sites is randomly selected (50% chance of selection) for 
application of pollen soiling in addition to dry soiling. Each variant is also randomly assigned 
one of the two regional systems for assigning artificial noise.  

Table 3. Model Variants for Synthetic Data Generation 

 

Orientation Variants 

East-West  
Single-Axis 
Tracking 

Fixed South 10° 
Tilt 

Fixed South 
25° Tilt 

  POA Misalignments in Tilt 

Electrical 
Builds 

String 
Outages 

   

DC/AC 
ratio = 
1.0 

 
 
Yes 

 
None 

None None 

POA + 1° POA + 1° 

 
GHI  

POA + 5° POA + 5° 

GHI GHI 

 
 
No 

 
None 

None None 

POA + 1° POA + 1° 

 
GHI 

POA + 5° POA + 5° 

GHI GHI 

DC/AC 
ratio = 
1.3 

 
 
Yes 

 
None 

None None 

POA + 1° POA + 1° 

 
GHI  

POA + 5° POA + 5° 

GHI GHI 

 
 
No 

 
None 

None None 

POA + 1° POA + 1° 

 
GHI 

POA + 5° POA + 5° 

GHI GHI 

The grey section of Table 3 demonstrates that there are 40 unique variants generated for each of 
the 38 sites. In Sections 1.1 and 1.2, we discussed that within the PV Fleets project, residual 
seasonality often occurs in the PI. Residual seasonality can occur for various reasons, but one of 
the most common is misalignment between the POA irradiance sensor and the PV array plane. 
Figure 10 shows that irradiance sensor misalignment of 1° can cause seasonal errors on the order 
of 2%; misalignment of 5° can produce as much as 8% error; and misalignment of 20° can result 
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in more than 30% error. The POA misalignments in Table 3 (“none” indicates 0° misalignment; 
POA + 1° is a 1° misalignment; POA + 5° is a 5° misalignment; and GHI means GHI was 
mislabeled as POA and therefore actual misalignment depends on the system orientation) are 
included as separate variants. This allows the POA misalignments to represent the range of PI 
seasonality observed in PV Fleets while also providing signals with minimal seasonality to serve 
as a baseline. Note that stuck trackers impact PV power output but do not impact POA 
misalignments (in other words the POA measurement is assumed to be on a tracker that is fully 
functional). 

Table 4. Criteria for Determining Statistical Variation in Model Variants 

Application Determination 

Data outages 

The number of data outages is randomly selected from a normal 
distribution with a mean of 8.6 outages per year and a standard 
deviation of 8.3 outages. The length of the outage is selected 
from a normal distribution with a mean length of 3.1 days per 
outage with a standard deviation of 10.5 days per outage. 

Soiling rates 

Soiling rates are randomly selected from a chopped normal 
distribution (no positive rates) for each dry period. For sites in 
the Southwest, the distribution mean is −0.14%/day and the 
standard deviation is −0.11%/day. For sites in the Southeast, the 
distribution mean is −0.05%/day and the standard deviation is 
−0.025%/day. 

Stuck trackers 
Trackers stall at horizontal four times within the data set and the 
stall lasts three days. The times of stalled tracker 
implementation are randomly selected. 

Utility curtailment 

AC capacity output is curtailed to 20% of the nominal AC output. 
Curtailment occurs 40 times in the entire data set for a 3-hour 
interval each time. The times of implementation are randomly 
selected.  

String outages 

There are three outages per data set, with a mean reduction in 
power of 10% and a mean length of 21 days of outage. Both the 
loss level and the length are randomly selected to be between 
0.5x and 2x of the mean. 

Linear degradation rate 
The linear degradation rate (Rd) is randomly selected from the 
PV Fleets published degradation cumulative distribution function 
(see Figure 11) [1]. 

Pollen Soiling 
The pollen soiling profile (as described in Section 2.3.2) is 
applied to all variants per site in the Southeast when randomly 
selected for application to that site. 
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Figure 10. Seasonal impact on normalized insolation when there is misalignment between actual 
and desired insolation. All results are normalized to a tilt of 20 degrees. For example, the blue 

curve, which is at 0 tilt, represents a misalignment of 20 degrees, whereas the purple curve 
represents a misalignment of 5 degrees. 

 

Figure 11. Distribution of degradation rates from the PV Fleets 2022 results. The dashed line 
indicates the median of −0.75% per year [1]. 

2.6 Output Data 

2.6.1 Simulation Metadata File 
The key inputs for each of the 1,520 simulation variants are recorded in a simulation metadata 
file. This file is tabular, with one row per simulation and columns as described in Table 5. 
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Table 5. Column Descriptions for the Simulation Metadata File 

Column Type Unit Description 

id_number numeric - Serial integer identifying the simulation; 
matches the time series data file name 

lat numeric decimal 
degrees 

Latitude coordinate of the simulation’s 
location 

lon numeric decimal 
degrees 

Longitude coordinate of the simulation’s 
location 

name char - Name of the simulation’s location 

is_dry boolean - 

Whether the simulation is treated as 
western or eastern for soiling and noise 
assumptions (if True, the system is treated 
as western) 

ilr numeric - Inverter loading ratio (aka DC/AC ratio) 

rd_percent_per_year numeric %/year Assumed degradation rate 

tracking boolean - 
Whether the simulated system is tracking 
or fixed tilt (if True, the system is treated 
as tracking) 

array_tilt numeric degrees For fixed-tilt systems, the array tilt from 
horizontal (blank when tracking is True) 

sensor_tilt numeric degrees 
For fixed-tilt systems, the irradiance 
sensor tilt from horizontal (blank when 
tracking is True) 

calendar_years list - List of calendar years spanned by the data 
set 

string_outages boolean - 
Whether the simulation includes any string 
outages (if True, string outages are 
included) 

pollen_soiling boolean - 
Whether the simulation includes the effect 
of pollen soiling (if True, pollen soiling is 
included) 

noise_parameters char - Name of the system from Table 2 used for 
artificial noise 

2.6.2 15-Minute Files  
The 15-minute simulated power time series—along with various auxiliary time series—is stored 
in wide time series CSV form. The first column is a time-zone-localized timestamp in 
International Organization for Standardization (ISO) 8601 format (except the “T” is replaced 
with a space). The data columns are described in Table 6. The synthetic PI with all challenges 
included for the given variant is calculated as “actual power” divided by “pexp (misaligned tilt).” 
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Table 6. Column Descriptions for the 15-Minute Data Files 

Column Type Unit Description 

actual power numeric W Inverter AC power including the complicating 
effects 

reference power numeric W Inverter AC power without the complicating 
effects 

pexp (array tilt) numeric W Simple RdTools-style expected power, 
assuming the correct irradiance sensor 
orientation 

pexp (misaligned 
tilt) 

numeric W Simple RdTools-style expected power, 
assuming the misaligned sensor orientation  

poa irradiance 
(array tilt) 

numeric W/m2 Plane-of-array irradiance, assuming the 
correct irradiance sensor orientation 

poa irradiance 
(misaligned tilt) 

numeric W/m2 Plane-of-array irradiance, assuming the 
misaligned irradiance sensor orientation 

ambient 
temperature 

numeric °C Ambient air temperature from PSM3 

ghi numeric W/m2 Global horizontal irradiance from PSM3 

wind speed numeric m/s Wind speed from PSM3 

data outage boolean - Missing data indicator (1 = missing, 0 = not 
missing) 

pollen soiling numeric - Soiling ratio for pollen-based soiling (1.0 = no 
soiling loss) 

conventional 
soiling 

numeric - Soiling ratio for sawtooth soiling (1.0 = no 
soiling loss) 

string outages numeric - Fraction of online DC capacity (1.0 = no string 
outage) 

curtailment numeric - Fraction of allowed AC capacity (1.0 = no 
curtailment) 

tracker stall boolean - Tracker stall indicator (1 = tracking, 0 = stall) 

clipping boolean - Inverter clipping indicator according to the 
geometric clipping filter (1 = clipping, 0 = not 
clipping) 

2.6.3 Daily Files 
For the convenience of analyses that operate on daily aggregated performance values, the 
simulated data sets are also provided at the daily scale, throwing out timestamps flagged as 
corresponding to inverter clipping. These files contain all the columns from the 15-minute files 
(taken as daily averages of the 15-minute values) plus some additional columns listed in Table 7. 
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Table 7. Column Descriptions for the Daily Data Files 

Column Type Unit Description 

poa insolation 
Wh/m2 (array tilt) 

numeric Wh/m2 Daily integrated POA irradiance, filtered to 
remove times determined as clipping, 
assuming the correct irradiance sensor 
orientation 

poa insolation 
Wh/m2 (misaligned 
tilt) 

numeric Wh/m2 Daily integrated POA irradiance, filtered to 
remove times determined as clipping, 
assuming a misaligned irradiance sensor 
orientation 

total rainfall mm numeric mm Daily rainfall from PRISM 
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3 Synthetic Data Results and Discussion 
We reviewed the graphical daily time series results from the 1,520 variants described in Table 3 
and found that the synthetic results were within expectations. In an attempt to compare the noise 
in the synthetic data with PV Fleets, Figure 12 plots synthetic Ndaily versus normalized 
cumulative daily insolation for all variants except those with GHI used as the irradiance sensor. 
In comparison to the 47 PV Fleets systems shown in Figure 4, the trend is similar for the 
majority of data points, but the PV Fleets data shows additional sparsely scattered data above 0.2 
and below −0.2. 

 

Figure 12. Ndaily for time series data from all synthetic variants except those with GHI used as the 
irradiance sensor. 

Figure 13 presents a representative synthetic time series for the variants embedded in Figure 12. 
Although the results are reasonable, compared to Figure 1 through Figure 3, the PI shows less 
scatter. This suggests that the noise applied to the 15-minute data may still underrepresent the 
level of noise typically seen in PV Fleets field data. 
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Figure 13. Typical time series plot associated with the data in Figure 12. This variant is as follows: 
inverter loading ratio (ILR) = 1.3, Rd = −0.80, fixed tilt of 10°, POA = 11°, string outages included, 

site is in the Southwest. 

Figure 14 plots the same data as Figure 12 but also includes 20 tracked systems that have GHI 
used as the irradiance sensor. Although these results show additional scatter, as is seen in the PV 
Fleets data set, we can make no claim that the scatter in Figure 4 is due to incorrect irradiance 
sensors. Figure 15 and Figure 16 are time series for some of the additional variants embedded in 
Figure 14. These time series show similar features to those in the PV Fleets data (Figure 1–
Figure 3)—for example, trends in Ndaily, seasonality, and soiling. 

 

Figure 14. Ndaily data from Figure 12 plus 20 synthetic variants where GHI was used as the 
irradiance for a tracking system. 
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Figure 15. Typical Ndaily for a tracking system where GHI has been mislabeled as POA. Variant 
details are ILR = 1, Rd = −1.29, tracking, POA = GHI, no string outages, site is in the Southwest, 

seasonality is ~6%. 

 

Figure 16. Variant details are ILR = 1.3, Rd = −0.72, tracking, POA = GHI, no string outages, site is 
in the Southwest. This example shows minimal Ndaily during long soiling periods and more 

extreme Ndaily during the rainy season. 

Figure 17–Figure 22 each show unique variants from the synthetic data set that cover both the 
Southwest and Southeast United States. Each figure caption provides the details of the variant as 
well as how that particular time series shows issues that can be valuable in algorithm 
development. The last two of these figures are examples of implementing pollen soiling as 
described in the modeling section. Pollen and other bio-soiling trends are currently under 
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investigation by the authors, and therefore the pollen model is expected to be updated as dictated 
by the evidence. 

 

Figure 17. Variant details are ILR = 1.3, Rd = −0.57, fixed tilt = 25°, POA = 26°, no string outages, 
site is in the Southwest, seasonality = ~5%. This time series provides an example of how soiling 

trends make it difficult to distinguish the underlying seasonality. 

 

Figure 18. Variant details are ILR = 1.3, Rd = −1.69, fixed tilt = 10°, POA = GHI, yes string outages, 
site is in the Southwest, seasonality = ~25%. This time series provides an example of winter 

seasonal decline coinciding with dry periods with varying degrees of soiling loss. This is an ideal 
test case for soiling algorithms that can account for both seasonality and soiling. 
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Figure 19. Variant details are ILR = 1, Rd = −0.60, fixed tilt = 10°, POA = GHI, no string outages, site 
is in the Southwest, seasonality = 25%. This time series provides an example where soiling occurs 

throughout the year but is the smaller signal compared to high seasonality. 

 

Figure 20. Variant details are ILR = 1, Rd = −0.66, fixed tilt = 10°, POA = 11°, string outages 
included, site is in the Southeast, seasonality = ~0. This time series provides a typical example of 
a Southeastern site with no pollen soiling. Ndaily is slightly more extreme in the winter months, and 

there are a few drops in the PI due to string outages. 
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Figure 21. Variant details are ILR = 1, Rd = −1.66, fixed tilt = 25°, POA = 26°, pollen soiling 
included, string outages included, site is in the Southeast, seasonality = ~5%. This time series 

provides a typical example of the pollen soiling trend being implemented each spring, followed by 
a manual cleaning in the summer. 

 

Figure 22. Variant details are ILR = 1, Rd = −2.61, fixed tilt = 25°, POA = 30°, pollen soiling 
included, string outages included, site is in the Southeast, seasonality = ~0. This time series 

shows how string outages can coincide with other events (in this case pollen soiling) and can 
make the underlying signal more complex to interpret.  
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4 Conclusions 
Years of work with gigawatts of PV Fleets time series data have demonstrated the countless 
ways that PV field data can have data quality (QA) issues or physical occurrences that directly 
alter the performance of a PV system either rapidly or over time (physical issues). Both QA and 
physical issues hinder efforts to develop algorithms to extract important PV characteristics—
such as degradation rates, soiling losses, tracker availability, or other key metrics—because these 
issues are not included in the metadata. Synthetic PV time series data can be a key asset in both 
algorithm development and validation if the synthetic data sufficiently includes real-world QA 
and physical issues that each algorithm might encounter. In this work, we have demonstrated a 
model flow to generate synthetic data with a wide range of QA and physical issues, while relying 
on historic weather and irradiance data from 38 locations spread across the southern United 
States. We have made available 1,520 variants of synthetic time series PV data and a metadata 
file provides all the associated problems with each variant. This allows the data user to work 
with a subset of variants that are relevant to the algorithm under development. The authors note 
that several physical issues, such as snow on PV panels, partially stuck trackers, and pollen 
soiling, are either not included in the current variants or will need to be improved with future 
research. As time and research allow, we expect to publish addendums to this work to improve 
the model flow and expand on the available synthetic data. 
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