

Follow-Up from the PhotovoltaicReliability Workshop (PVRW):Cost Modeling Capabilities ToEvaluate Trends in PV Technologies

Jarett Zuboy, Michael Woodhouse, and Brittany Smith

Monday, May 8, 2023 DuraMAT Webinar

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy under Contract No. DE-AC36-08GO28308. Funding was provided as part of the Durable Module Materials Consortium 2 (DuraMAT 2) funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Solar Energy Technologies Office, agreement number 38259.

Presentation Overview

1 Results from PVRW: audience polls (Jarett)

- 2 Demonstration of Detailed Cost Analysis Models (DCAM) for technology evaluations (Mike)
- 3 Simplified PV-LCOE calculator for reliability & cost tradeoffs in developing solar technologies (Brittany)

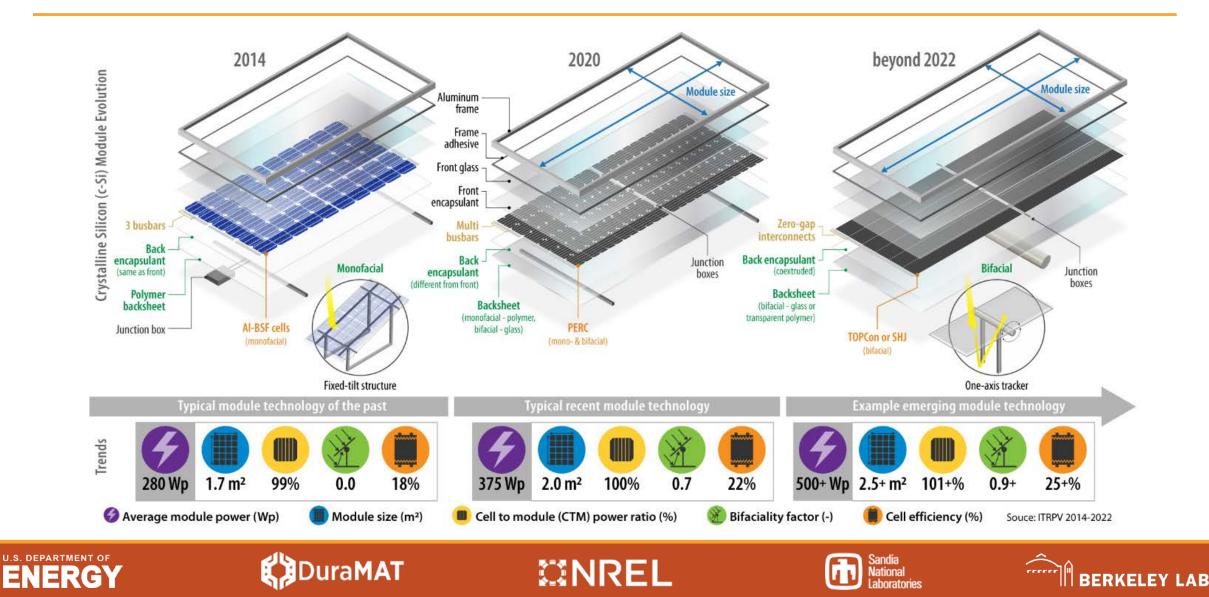
4 Questions and discussion (All)

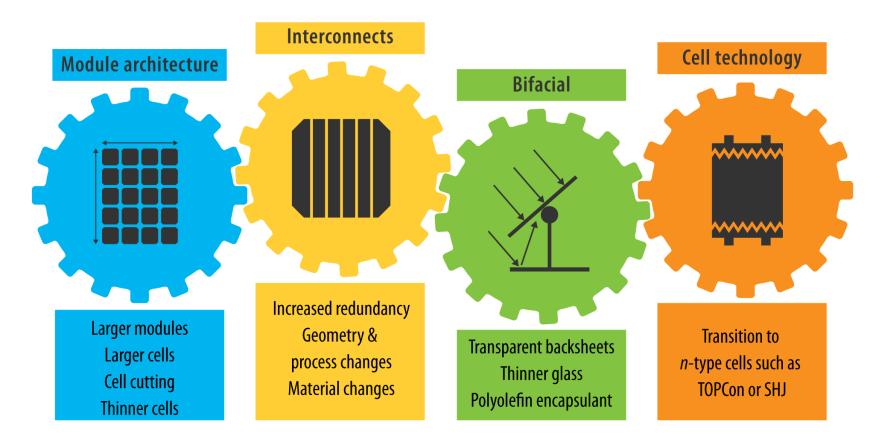
Polling Results

Goals of the DuraMAT Technology Scouting Report

- Track technology changes that could affect PV module reliability
- Assess changes in module reliability risks over time
- Identify the need for new research related to reliability

"PV moves pretty fast. If you don't stop and look around once in a while, you could miss it." – Inspired by Ferris Bueller's Day Off

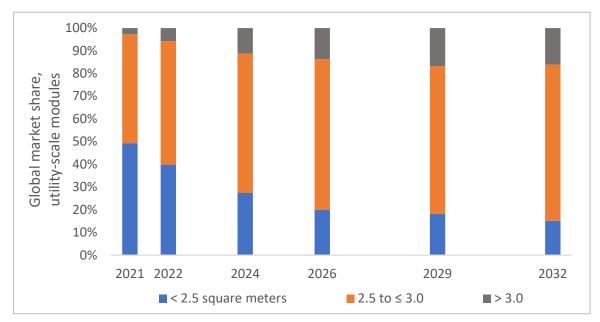




Crystalline-silicon PV module technology changes

6

Categories of technology change



Example—larger modules

Historical (2021) and projected (2022-2032) ITRPV data on utility-scale module size

U.S. DEPARTMENT OF

Drivers & Benefits

wafer/cell size

· larger cells allow for larger module sizes

increased power output

larger active area

• improved cell-to-module (CTM) power ratio: $CTM = \frac{P_{module}}{P_{cell} \cdot n_{cell}}$

Potential Risks

potentially more frequent cell breakage due to

• weather (wind & hail), or shipping, handling, and installation

increased weight

- OSHA handling issues with very large modules; 100-lb modules may be the practical limit
- implications for mounting structure design and cost

increase in electrical current

• electrical BOS (wire size, fusing, bypass diode) must be adapted

new testing equipment necessary to accommodate large modules

 such as dynamic mechanical loading (DML) to assess hail damage and inform insurance coverage Product & Services Subscribe Submit a paper Browse Rankings Blog ⊅ Contact

Getting Ahead of the Curve: Assessment of New Photovoltaic Module Reliability <u>Risks Associated with Projected Technological Changes</u>

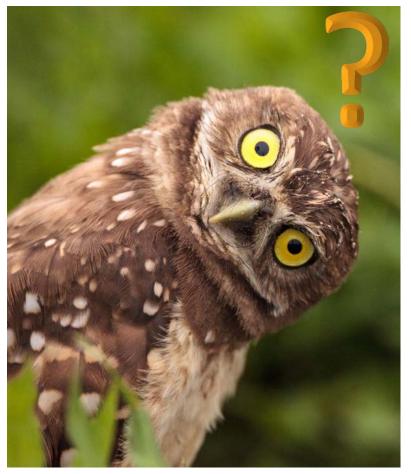
Number of pages: 34 • Posted: 21 Nov 2022

Jarett Zuboy, Martin Springer, Elizabeth Palmiotti, Joseph Karas, Brittany Smith, Michael Woodhouse and Teresa Barnes National Renewable Energy Laboratory, National Renewable Energy Laboratory, Sandia National Laboratories, Albuquerque, National Renewable Energy Laboratory, National Renewable Energy Laboratory, National Renewable Energy Laboratory and National Renewable Energy Laboratory

Keywords: Solar, photovoltaic, PV, module, technology, reliability, durability, degradation, interconnection, ...

	Create account	Sign in
Downloads 198		
	https://papers.ssrn.com/sol	I3/pa

pers.cfm?abstract_id=4273054



Q

Audience polling at the 2023 Photovoltaic Reliability Workshop

- What are the biggest challenges to module reliability over the next several years?
- Which module technologies may proliferate in the U.S. as domestic manufacturing increases under the IRA?
- What important module technology trends and reliability implications did we miss?

Microsoft PowerPoint stock image

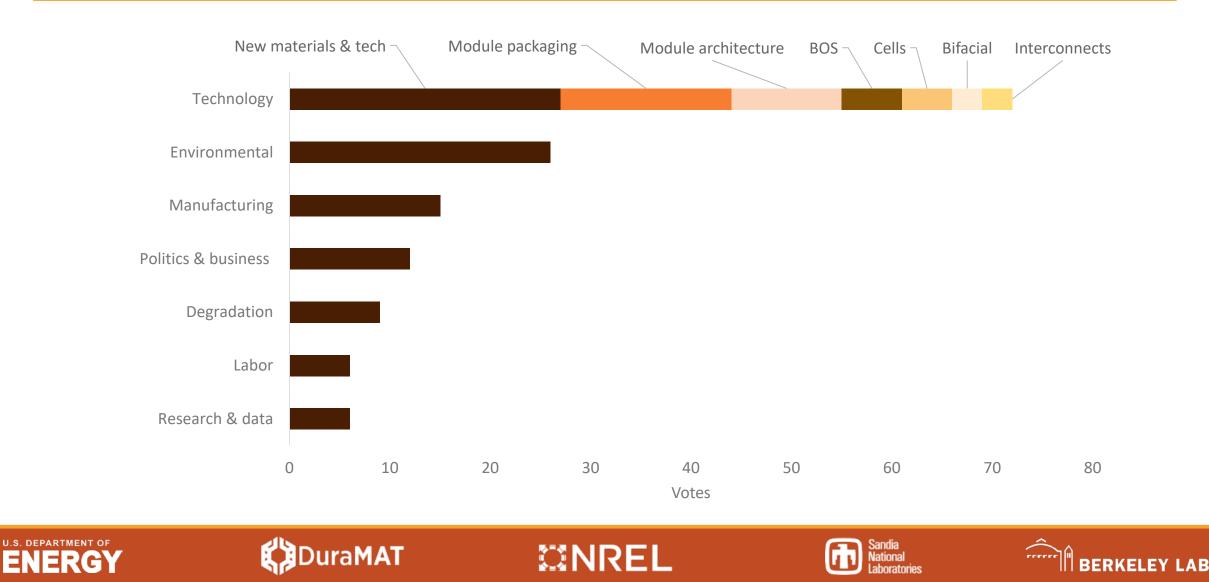
0	What are the big	gest challer	nges to mod	ule reliabilit	y over the n	ext several ye	ears?
	Wordcloud Poll 🗹 1	65 responses	路 90 particip	ants			
		Derate or	n Bificial ex	xtreme weath	ner		
		extreme we	ather events	module fra	ames	materials	
		Mfg defects		te change			
	Thin gla	wind		escence	Hail	handling	
		Severe wea	ather hor	nesty	Thinner gla	ass	
	Politics	new tech	big flop	py module	es degrada	Size	
		Recycling	Workfo	rce training			
		Quality	perovskite re	eliability	large modu	les	
			non glas	s substrates			

.....

11

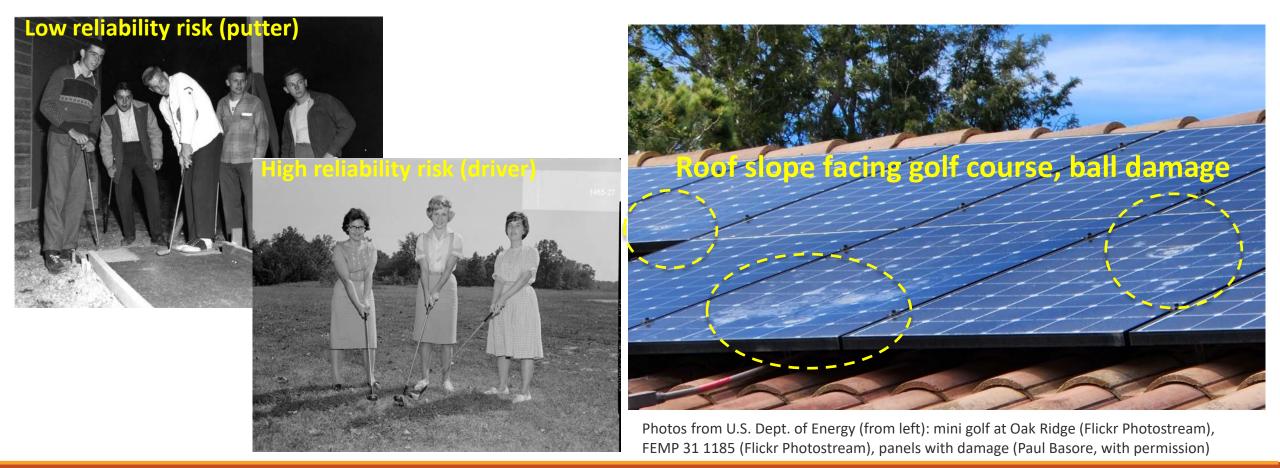
BERKELEY LAB

New materials & technology (27)	Environmental (26)	Module packaging (17)	Manufacturing (15)	Politics & business (12)	Module architecture (11)	Degradation (9)
 New materials & technology (11) Obsolescence (6) Bill of materials (4) Extending lifetimes (3) Recycling (3) 	 Extreme weather (10) Climate change (6) Hail (4) Soiling (3) Wind (2) Environmental impacts (1) 	 Glass (incl. thinner & heat- strengthened) (8) Encapsulants (4) Module frames (3) Backsheets (2) 	 Quality control (8) New manufacturers (7) 	 Honesty (4) Politics (4) Supply chain (2) Cost pressure (1) Corporate secrecy (1) 	 Larger modules (10) Changes in format (1) 	 Cracks (3) Degradation (3) Diode failures (1) Underperformance (1) UV stability (1)
Balance of system (BOS) (6)	Labor (6)	Research & data (6)	Cell technology (5)	Bifacial (3)	Interconnects (3)	
 Connectors (2) High-voltage systems (1) Integrated applications (1) Mounting interfaces (1) Racking (1) 	 Handling & installation (4) Workforce training (2) 	 Lack of data (3) Accelerated testing (1) Research on thin film (1) Understanding wear-out (1) 	 Perovskites (3) Non-glass substrates (1) Tandems (1) 	 Degradation of bifacial (2) Hot spots in bifacial (1) 	 Cold solder joints (1) New interconnects (1) Open solder (1) 	


Sandia lational

12

BERKELEY LAB



ouraMAT

13

Honorable mentions: "golf," "no time machine," "half-baked modules," "don't know!"

U.S. DEPARTMENT OF

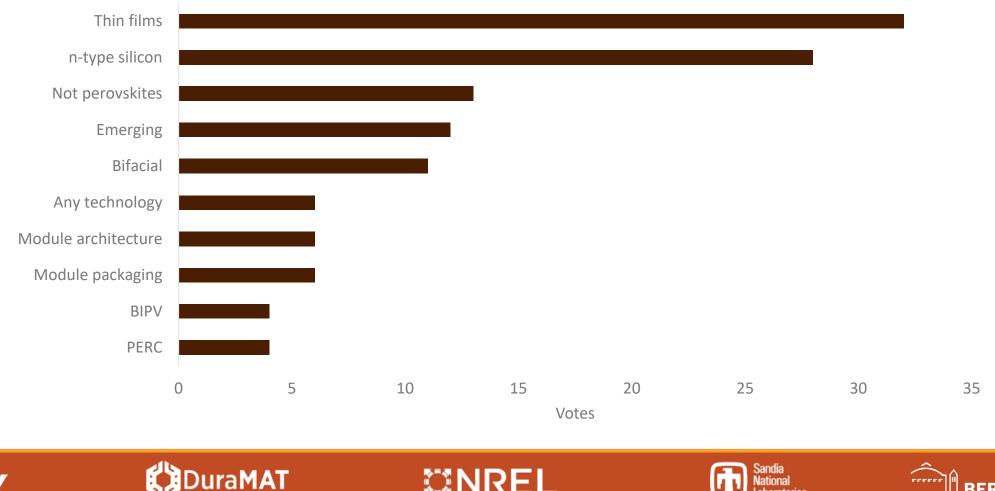
Which module technologies may proliferate in the U.S. as domestic manufacturing increases under the IRA?

Which module technologies may proliferate in the U.S. as domestic manufacturing increases under the IRA?

U.S. DEPARTMENT OF

Which module technologies may proliferate in the U.S. as domestic manufacturing increases under the IRA?

Thin films (32)	n-type silicon (28)	Not perovskites (13)	Emerging (12)	Bifacial (11)	Any technology (6)	Module architecture (6)
 Cadmium telluride (CdTe) (25) Thin films (7) 	 Tunnel oxide passivated contact (TOPCon) (19) Silicon heterojunction (SHJ) (9) 	 Not perovskites (13) 	 Perovskites (8) Tandems (4) 	 Bifacial (5) Bifacial passivated emitter and rear cell (PERC) (4) Bifacial TOPCon & CdTe (2) 	 Available technologies (4) All technologies (1) Silicon (1) 	 Larger modules (5) Custom sizes (1)
Module packaging (6)	Building-integrated PV (BIPV) (4)	PERC (4)				
 Steel frames (4) Frameless modules (1) Untempered glass (1) 	• BIPV (4)	• PERC (4)				



16

BERKELEY LAB

Which module technologies may proliferate in the U.S. as domestic manufacturing increases under the IRA?

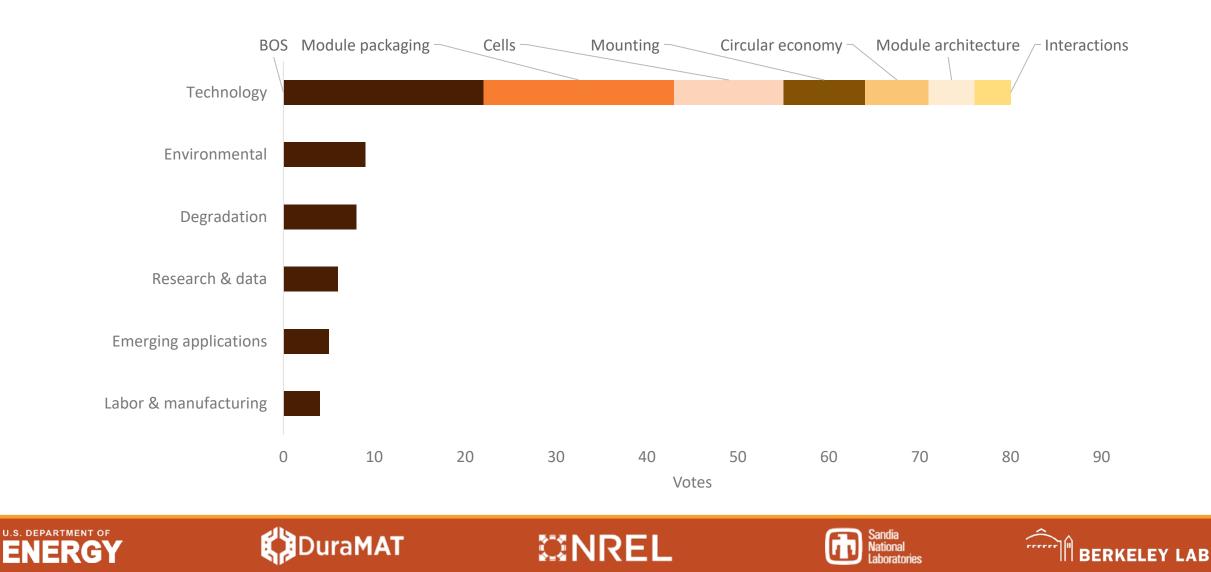
ationa

BERKELEY LAB

What important module technology trends and reliability implications did we miss?

What important module technology trends and reliability implications did we miss? 115 responses 374 participants Wordcloud Poll digital recycle passport circular design **BOM Interactions** Soiling **Performance Modeling** perovskies floatavoltaics **PVSyst modeling** Diodes safety perovskites frames Storage **Racking interaction** Connectors **Glass coatings** module size **Junction boxes** IBC Module mounting inverters Shading Mounting systems Climate CdTe mismatch trackers for large module VIPV

 \bigcirc



What important module technology trends and reliability implications did we miss?

Balance of system (22)	Module packaging (21)	Cell technology (12)	Environmental (9)	Mounting (9)	Degradation (8)	Circular economy (7)
 Connectors (incl. high current) (18) Combiner boxes (1) Electronics (1) High-voltage systems (1) Inverters (1) 	 Junction box (8) Frames (incl. thickness, new materials) (4) Glass coatings (3) Diodes (2) Glass (design, thinning) (2) Anti-reflective coating (1) Backsheets (1) 	 Perovskites (5) CdTe (3) Interdigitated back contact (IBC) (2) Non-glass substrates (1) Perovskite-Si tandems (1) 	 Climate (3) Extreme weather (1) Geography (1) Hail impact (1) Mechanical loading (1) Northern climates (1) Soiling (1) 	 Mounting systems (4) Racking interaction (3) 2-axis tracking (1) Trackers for large modules (1) 	 Shading (4) Hot spots/current mismatch (2) Corrosion (1) Leakage current (1) 	 Design for recyclability (4) End of life (1) Recycling (1) Reducing complexity (1)
Research & data (6)	Emerging applications (5)	Module architecture (5)	Interactions (4)	Labor & manufacturing (4)		
 PVSyst modeling (4) Performance modeling (2) 	 Storage (2) Floatovoltaics (1) Integrated solutions (1) Vehicle-integrated PV (1) 	 Module floppiness (2) Bumpers for big floppy modules (1) High-current modules (1) Module size (1) 	 Bill of material (BOM) interactions (3) Interaction of new technologies (1) 	 Installation practices (2) Safety (1) Domestic manufacturing (1) 		
U.S. DEPARTMENT OF	() Dural	MAT		Sandia National Laboratori	es Â	ERKELEY LAB 19

What important module technology trends and reliability implications did we miss?

3

20

Summary—ranked categories across all questions

	1.	Technology (274)		
Biggest challenges + Proliferating under IRA + Trends we missed		 Module packaging Thin films BOS n-type silicon New materials & technology 	 6. Module architectur 7. Cells 8. Bifacial 9. Not perovskites 10. Emerging 11. Mounting 	re12. Circular economy 13. Any technology 14. BIPV 15. Interactions 16. PERC 17. Interconnects
	2.	Environmental (35)		

Biggest challenges +Trends we missed

- 3. Labor & manufacturing (25)
- 4. Degradation (17)
- 5. Politics & business (12)
- 6. Research & data (12)
- 7. Emerging applications (5)

Summary—top 5 individual responses to each question

Biggest reliability challenges

- New materials & technology (11)
- Extreme weather (10)
- Larger modules* (10)
- Glass, incl. thinner & heatstrengthened (8)
- Quality control (8)

Proliferating under IRA

- CdTe (25)
- TOPCon (19)
- Not perovskites (13)
- SHJ (9)
- Perovskites (8)
- Thin films* (7)

Important trends we missed

- Connectors (18)
- Junction boxes (8)
- Perovskites (5)
- Design for recyclability* (4)
- Frames* (4)
- Mounting systems* (4)
- PVSyst modeling* (4)
- Shading* (4)

* "Big floppy modules" are categorized under larger modules, but floppiness may encompass other characteristics such as glass thickness.

* Added a 6th place since "not perovskites" is not a technology per se.

* Tied for 5th place.

Summary—individual responses on more than one list

- CdTe (28)
- Connectors (20)
- Larger (possibly floppier*) modules (16)
- Perovskites (16)
- Bifacial (14)

U.S. DEPARTMENT OF

IINIIKO

- Extreme weather (11)
- Frames (11)
- Glass (11)
- New manufacturers (8)

CINRE

- Installation (6)
- Tandems (6)
- Hail (5)

ura**MAT**

• Mounting (5)

- Racking (4)
- Recycling (4)
- Soiling (4)
- Backsheets (3)
- Diodes (3)
- High-voltage systems (2)
- Integrated applications (2)

23

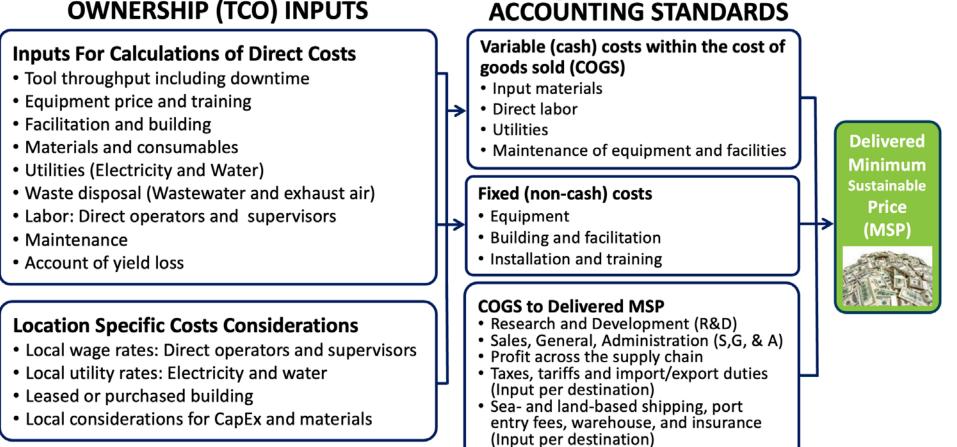
RERKELEY

• Non-glass substrates (2)

* Includes 9 votes for variations of "big floppy modules."

Cartoon from Wes Andrews, Climatoonist, with permission

DCAM Demo



Detailed Cost Analysis Model (DCAM): https://dcam.openei.org/

- Free, public, user-friendly online tool
- Enables bottom-up modeling of PV costs:
 - Manufacturing of ingots, wafers, and cells
 - Assembly of modules
 - Installation of PV systems
- Leverages NREL component and system cost benchmark research
- Can be used to analyze cost impacts of technology choices

Manufacturing Cost Modeling Structure in DCAM

TOTAL COST OF OWNERSHIP (TCO) INPUTS

Source of figure: NREL. Please see: https://www.nrel.gov/docs/fy19osti/72134.pdf

U.S. DEPARTMENT OF

GAAP AND IFRS

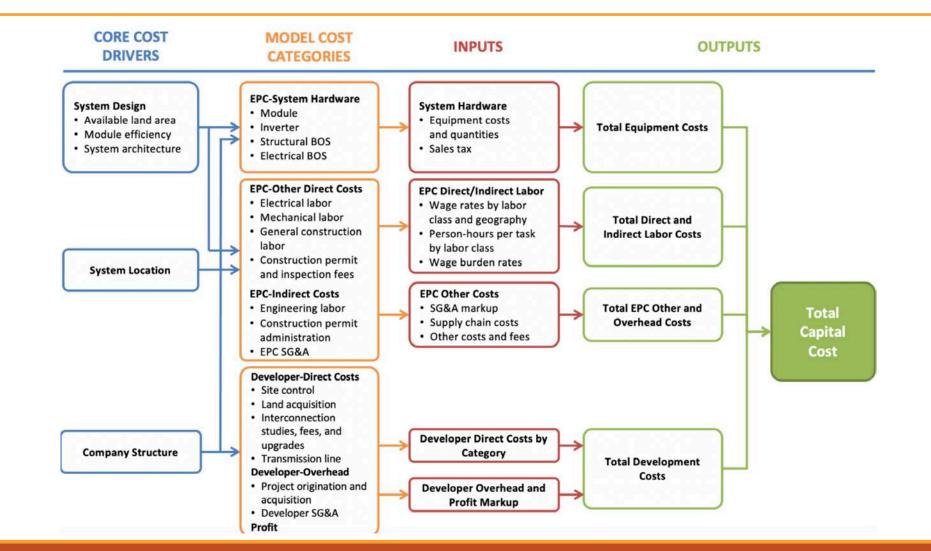
Manufacturing Cost Modeling Structure in DCAM

	 Direct Cost of Goods Sold Materials Labor and Utilities Maintenance Equipment and Facilities 	 Overhead and Profit Research and Development (R&D) Sales, General and administration (S, G, &A) Gross and Operating Profit Other Revenues and Losses (Not Included)
--	--	---

3. Taxes and Trade Duties

- Sales, value-added or other taxes
- Customs or other import duties
- Anti-dumping and countervailing duties (AD/CVD)
- Input per source and destination

U.S. DEPARTMENT OF


4. Shipping and Delivery

- Sea shipping: Modules per container and shipping container costs
- Land shipping: Miles from port to destination and cost per mile/kilometer
- Insurance, entry bond, shipping fees
- Warehouse
- Input per source and destination

Delivered Minimum Sustainable Price (MSP)

╋

System Cost Modeling Structure in DCAM

U.S. DEPARTMENT OF

DuraMAT

INREL

BERKELEY LAB 29

Detailed Cost Analysis Model (DCAM): Demonstration

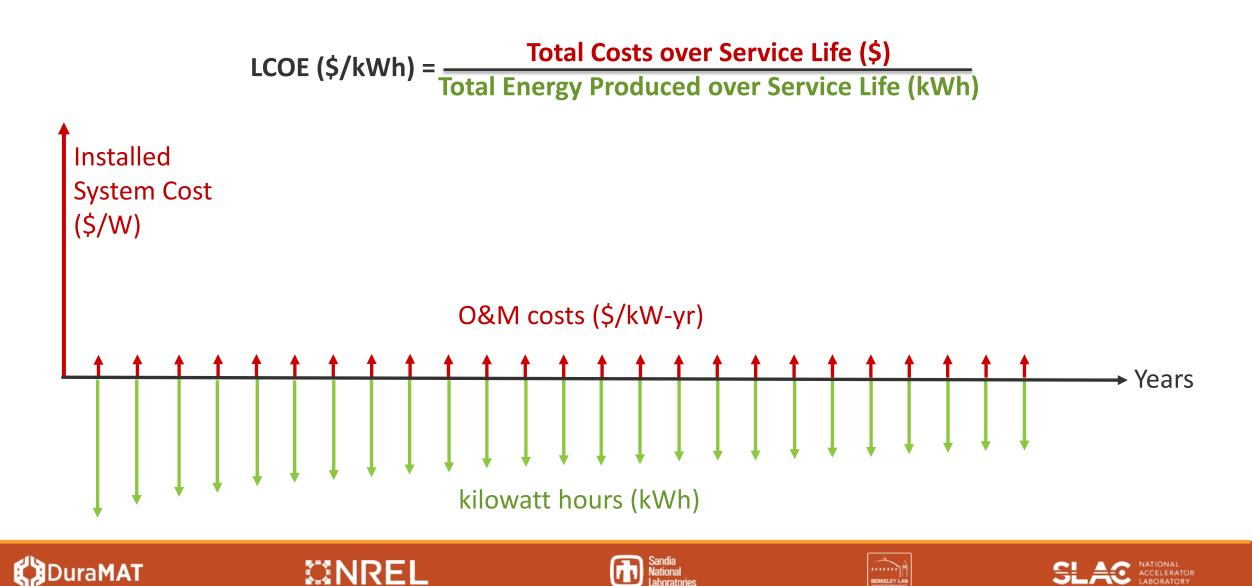
Save 🕞 Calculate						
Search	Inputs Advanced Inputs Output					
NPUTS				× OUTPUT		
ystem Description +add note				Utility-PV MSP Results (\$/W	/dc)	
/ear	2022	0		MSP - Minimum Sustainable Price		
roject Location	United States	~		Project Size (MWDC)	5	
is Type	One-Axis	~		Axis Type	One-Axis	
oject Size	5		MWDC	EPC/Developer Net Profit	0.0893	
tem VDC	1500		VDC	Contingency	0.0292	
				Developer Overhead	0.111	
nsmission Line	2.7		miles	Transmission Line	0	
minal to Real USD Factor	0.952	0		Permitting Fee	0.0419	
				Interconnection Fee	0.0217	
				Sales Tax	0.0419	
				EPC Overhead	0.0898	
odules + add note				Installation Labor & Equipment	0.133	
dule Efficiency	20.3	0	%	Electrical BOS	0.143	
dule Width	40.32	0	inches	Structural BOS	0.151	
dule Length	76.68		inches	Inverter	0.0397	
dule Power	405		w	Module	0.314	
dule Weight	47.84	0	lbs	Total Utility + PV System Cost	1.21	
dule Price	0.33		\$/W			

rerere

30

BERKELEY LAB

Simplified, Instant, Online PV LCOE Calculator



Simplified PV-LCOE Calculator: pvlcoe.nrel.gov

- PV technology-specific
- Editable preset fields, targeting research applications
- Instant comparison of proposed changes to a baseline system

System Advisor Model (SAM): <u>sam.nrel.gov</u>

- + Different financial models
- Detailed options for module and system designs
- + Can model solar + storage

- May be more challenging for new users to navigate
- Difficult to quickly evaluate research directions without introducing confounding factors

	, package type, system type, location, or inverter loading ratio
for the inputs.	
Cell Technology Package Type mono-Si • glass-polymer backst •	System Type 2 Location 2 fixed tilt, utility scale • USA MO Kansas City •
Inverter Loading Ratio	
	Apply to baseline Apply to proposed
Baseline	Proposed Copy from Baseline
Cost	Cost
Front layer cost (USD/m ²)	Front layer cost (USD/m ²)
<i>i</i> ¹ 3.50	<i>i</i> th 3.50
Cell cost (USD/m ²)	Cell cost (USD/m ²)
<i>i</i> ¹ 22.20	i ¹ 22.20
Back layer cost (USD/m ²)	Back layer cost (USD/m ²)
Non-cell module cost (USD/m ²)	Non-cell module cost (USD/m ²)
<i>i</i> ¹ 13.60	£ ¹ 4 13.60
Extra component cost (USD/m ²)	Extra component cost (USD/m ²)
1 0 h	Å 0
O&M cost (USD/kWpc/year)	O&M cost (USD/kW _{DC} /year)
16.32	1 16.32
BOS cost, power-scaling (USD/W)	BOS cost, power-scaling (USD/W)
1 0.2	<i>i</i> ⁴ 0.2
BOS cost, area-scaling (USD/m ²)	BOS cost, area-scaling (USD/m ²)
1 53.38	i th 53.38
Performance	Performance
Efficiency (%)	Efficiency (%)
<i>i</i> ¹ 19.5	<i>i</i> ^t 1 19.5
Energy yield (kWh/kW _{DC})	Energy yield (kWh/kW _{DC})
<i>i</i> ¹ 1538	<i>i</i> ^t i 1538
Reliability	Reliability
System degradation rate (%/year)	System degradation rate (%/year)
i ¹ 0.70	<i>i</i> th 0.70
Service life (years)	Service life (years)
1. 1.	£* 20
Financial	Financial
Financial Discount rate	Financial Discount rate
8 6.3	<i>∂</i> 6,3
0.0	0 0.0
Results	
COE result	
COE result Baseline LCOE (USD/kWh) 0.0517	Proposed LCOE (USD/kWh) 0.0517
Baseline LCOE (USD/kWh) 0.0517	Proposed LCOE (USD/kWh) 0.0517
COE result Baseline LCOE (USD/kWh) O0517 Additional results Baseline	Proposed LCOE (USD/kWh) 0.0517 Proposed

0.72

Total installed system cost (USD/W

Simplified PV-LCOE Calculator

Calculator access:

- <u>pvlcoe.nrel.gov</u>
- nrel.github.io/PVLCOE/
- github.com/NREL/PVLCOE
- datahub.duramat.org/dataset/lcoe-calculator-tool

Full Tutorial:

)uraMAT

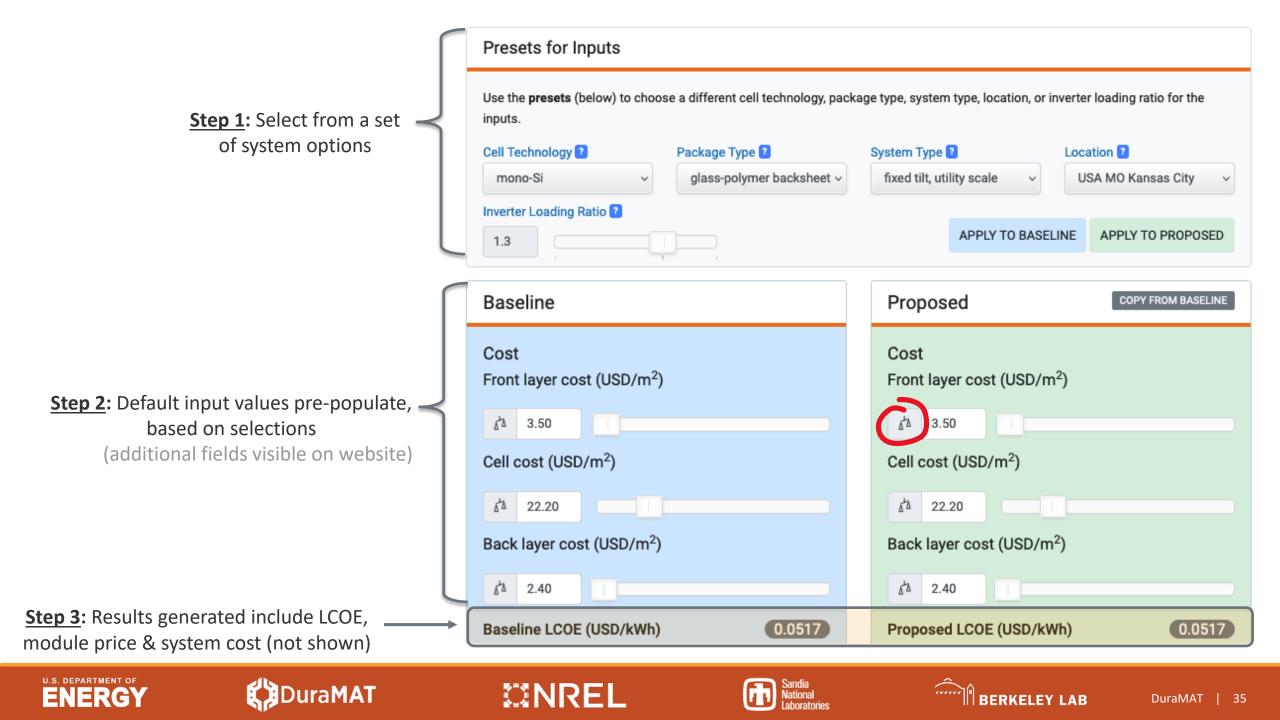
www.nrel.gov/docs/fy22osti/80842.pdf

Calculator architects:

Tim Silverman Mike Deceglie Sophie Andrews Kelsey Horowitz

for the inputs. Cell Technology 2 Package Type ?	System Type 👔 Location 👔
mono-Si • glass-polymer backst	
Inverter Loading Ratio 1	
1.3	Apply to baseline Apply to proposed
Baseline	Proposed Copy from Baseline
Cost	Cost
Front layer cost (USD/m ²)	Front layer cost (USD/m ²)
<i>i</i> ¹ 3.50	ź ⁴ i 3.50
Cell cost (USD/m ²)	Cell cost (USD/m ²)
i ¹ 22.20	<u>i</u> th 22.20
Back layer cost (USD/m ²)	Back layer cost (USD/m ²)
<i>i</i> ¹ 2.40	£1 2.40
Non-cell module cost (USD/m ²)	Non-cell module cost (USD/m ²)
13.60	£ ¹ 1 13.60
Extra component cost (USD/m ²)	Extra component cost (USD/m ²)
O&M cost (USD/kWpc/year)	O&M cost (USD/kWpc/year)
<i>t</i> ¹ 16.32	1 16.32
BOS cost, power-scaling (USD/W)	BOS cost, power-scaling (USD/W)
BOS cost, area-scaling (USD/m ²)	BOS cost, area-scaling (USD/m ²)
A 53.38	£ ¹ 4 53.38
Performance	Performance
Efficiency (%)	Efficiency (%)
19.5	<i>i</i> ¹ 19.5
Energy yield (kWh/kW _{DC})	Energy yield (kWh/kW _{DC})
A 1538	ź ¹ 1538
Reliability	Reliability
System degradation rate (%/year)	System degradation rate (%/year)
<i>i</i> ¹ 0.70	<i>i</i> ² 0.70
Service life (years)	Service life (years)
1 25	<i>i</i> ¹ 25
Financial	Financial
Discount rate	Discount rate
6.3	€ 6.3
Results	
COE result	
Baseline LCOE (USD/kWh) 0.0517	Proposed LCOE (USD/kWh) 0.0517

Module price (USD/W


0.72

Total installed system cost (USD/W)

0.25

Module price (USD/W)

Total installed system cost (USD/W)

Example: What cost for improved clamps would still be competitive?

If someone designed clamps that were more secure, or easier to use, this could potentially:

- Require less installation labor
- Reduce O&M expenses (maintenance, replacements, insurance)
- Reduce degradation rate
- Increase service life
- Or all the above?

For an equal LCOE, how much more could the new clamps cost?

Step 1: Preset menu selection (leaving at defaults in this example) Step 2: Propose cost/maintenance/performance improvements

Non-cell module cost (USD/m ²)	Non-cell module cost (USD/m ²)	
<u>έ</u> λ 13.60	۵٬۵ 13.60	
Extra component cost (USD/m²)	Extra component cost (USD/m ²)	
δ ² δ 0	δ'δ 0	If the end owned and has all that we do not in a
<u>O&M</u> cost (USD/kW _{DC} /year)	<u>O&M</u> cost (USD/kW _{DC} /year)	If the clamps enable slight reductions in:
<u><u>j</u>¹2 16.32</u>	۵ ⁴ ۵ 16.00	O&M costs
BOS cost, power-scaling (USD/W)	BOS cost, power-scaling (USD/W)	install labor
<u>δ</u> ¹ δ 0.2	۵٬۵ 0.2	
BOS cost, area-scaling (USD/m ²)	BOS cost, area-scaling (USD/m ²)	install labor O degradation rate
<u>6</u> ¹ 2 53.38	<u>á</u> *à 53.00	
Performance	Performance	
Efficiency (%)	Efficiency (%)	
<u>ś</u> ² 19.5	۵٬۵۵ 19.5	
Energy yield (kWh/kW _{DC})	Energy yield (kWh/kW _{DC})	
δ ¹ 2 1538	<u>á</u> ¹ å 1538	
Reliability	Reliability	
System degradation rate (%/year)	System degradation rate (%/year)	
6 ¹ 2 0.70	۵ ⁴ ۵ 0.68	
Service life (years)	Service life (years)	
<u>6</u> ² 25	<u>م</u> ¹ ۵ 25	
Baseline LCOE (USD/kWh) 0.0517	Proposed LCOE (USD/kWh) 0.0512	

Step 3: Compare results

Non-cell module cost (USD/m ²)	Non-cell module cost (USD/m ²)	Non-cell module cost (USD/m ²)
<u>6</u> ^t à 13.60	δ ¹ Δ 13.60	Automatically adjust this
Extra component cost (USD/m ²)	Extra component cost (USD/m ²)	input to make LCOE match the baseline LCOE.
δ ¹ δ	δα 0	δ ¹ δ 1.32095
<u>O&M</u> cost (USD/kW _{DC} /year)	<u>O&M</u> cost (USD/kW _{DC} /year)	<u>O&M</u> cost (USD/kW _{DC} /year)
6 ¹ 16.32	δ ¹ Δ 16.00	á ^t ă 16.00
BOS cost, power-scaling (USD/W)	BOS cost, power-scaling (USD/W)	BOS cost, power-scaling (USD/W)
6 ¹ 0.2	δ ⁱ Δ 0.2	δ ¹ δ 0.2
BOS cost, area-scaling (USD/m ²)	BOS cost, area-scaling (USD/m²)	BOS cost, area-scaling (USD/m ²)
<i>δ</i> ¹ λ 53.38	δ ¹ λ 53.00	<u>δ</u> ¹ 3 53.00
Performance	Performance	Performance Efficiency (%)
Efficiency (%)	Efficiency (%)	
4 ² 19.5	<u>م</u> ¹ ۵ 19.5	δ ¹ δ 19.5
Energy yield (kWh/kW _{DC})	Energy yield (kWh/kW _{DC})	Energy yield (kWh/kW _{DC})
δ ¹ δ 1538	<u>م</u> ¹ λ 1538	δ ¹ δ 1538
Reliability	Reliability	Reliability
System degradation rate (%/year)	System degradation rate (%/year)	System degradation rate (%/year)
6 ³ 0.70	δ ¹ Δ 0.68	á ^t á 0.68
Service life (years)	Service life (years)	Service life (years)
6 ² 25	6 ¹ 8 25	<i>μ</i> ^μ 25
Baseline LCOE (USD/kWh) 0.0517	Proposed LCOE (USD/kWh) 0.0512	Proposed LCOE (USD/kWh) 0.0517

The system can tolerate an extra \$1.32/m² for the same LCOE

Step 3: Compare results

Non-cell module cost (USD/m ²)	Non-cell module cost (USD/m ²)	Non-cell module cost (USD/m ²)	
<u>د</u> م 13.60	δ ¹ Δ 13.60	Automatically adjust this	
Extra component cost (USD/m ²)	Extra component cost (USD/m ²)	input to make LCOE match the baseline LCOE.	
0 43	δ ² 0	á ^{ta} 1.32095	
<u>O&M</u> cost (USD/kW _{DC} /year)	<u>O&M</u> cost (USD/kW _{DC} /year)	<u>O&M</u> cost (USD/kW _{DC} /year)	
<u>د</u> م الم	δ ¹ Δ 16.00	<u>مْ</u> تْمُ 16.00	
BOS cost, power-scaling (USD/W)	BOS cost, power-scaling (USD/W)	BOS cost, power-scaling (USD/W)	Baseline
<u>دم</u> 0.2	δ ^ί Δ 0.2	۵ ⁴ ۵ 0.2	
BOS cost, area-scaling (USD/m²)	BOS cost, area-scaling (USD/m ²)	BOS cost, area-scaling (USD/m ²)	Module price (USD/W) 0.25
۵٬۵ 53.38	δλ 53.00	<u>á</u> *a 53.00	Total installed system cost (USD/W) 0.72
Performance Efficiency (%)	Performance Efficiency (%)	Performance Efficiency (%)	Proposed
<u>د</u> م الم	لألم 19.5	۵ ⁴ ۵ 19.5	
Energy yield (kWh/kW _{DC})	Energy yield (kWh/kW _{DC})	Energy yield (kWh/kW _{DC})	Module price (USD/W)0.25Total installed system cost (USD/W)0.73
₆ ² à 1538	<u>لا</u> م الم الم الم الم الم الم الم الم الم ال	<u>δ</u> 'λ 1538	
Reliability	Reliability	Reliability System degradation rate (%/year)	
System degradation rate (%/year)	System degradation rate (%/year)		
6 ^t 0.70	δ ⁴ δ 0.68	<u>6</u> ^t <u>a</u> 0.68	
Service life (years)	Service life (years)	Service life (years)	
6 ³ 25	₫ ¹ Δ 25		
Baseline LCOE (USD/kWh) 0.0517	Proposed LCOE (USD/kWh) 0.0512	Proposed LCOE (USD/kWh) 0.0517	

Questions / Discussion

Thank You

NREL/PR-6A20-86393

Thank You

www.nrel.gov

NREL/PR-6A20-86393

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Solar Energy Technologies Office. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

