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Preface 
This document was developed for the U.S. Department of Energy Uniform Methods Project 
(UMP). The UMP provides model protocols for determining energy savings and demand 
reductions that result from specific energy efficiency measures implemented through state and 
utility programs. In most cases, the measure protocols are based on a particular option identified 
by the International Performance Verification and Measurement Protocol; however, this work 
provides a more detailed approach to implementing that option. Each chapter is written by 
technical experts in collaboration with their peers, reviewed by industry experts, and subject to 
public review and comment. The protocols are updated on an as-needed basis.  

The UMP protocols can be used by utilities, program administrators, public utility commissions, 
evaluators, and other stakeholders for both program planning and evaluation. 

To learn more about the UMP, visit the website, https://energy.gov/eere/about-us/ump-home, or 
download the UMP introduction document at http://www.nrel.gov/docs/fy17osti/68557.pdf. 

https://energy.gov/eere/about-us/ump-home
http://www.nrel.gov/docs/fy17osti/68557.pdf
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1 Measure Description 
A smart thermostat is an internet-connected device that controls home heating, ventilation, and 
air-conditioning (HVAC) equipment and can automatically adjust temperature set points to 
optimize performance and achieve energy savings.1 Smart thermostat features often include 
two-way communication, occupancy detection (such as geofencing and occupancy sensors), 
schedule learning, and seasonal optimization algorithms. Smart thermostats can control most 
conventional HVAC systems including central air conditioners, heat pumps, and forced air 
furnaces. 

Several types of residential utility programs offer smart thermostats as replacements measures. 
These programs may be delivered as upstream or midstream rebate programs with retail partners, 
direct-install programs with installations performed by HVAC contractors, or self-install 
programs that provide utility customers with a thermostat for installation as a stand-alone 
measure or as part of an efficiency kit. In addition, working with smart thermostat vendors, 
utilities can offer separate optimization programs to produce energy savings beyond those 
achieved by installing a smart thermostat. 

From an evaluation perspective, smart thermostat programs have several noteworthy features. 
First, the energy savings from a smart thermostat may change over the life of the device. As a 
smart thermostat is connected to the internet, original equipment manufacturers can update the 
thermostat software to improve energy efficiency as implemented by the thermostat. Likewise, 
users can adjust the thermostat settings and schedules over time in response to changes in 
weather, thermal comfort, energy prices, or preferences for energy efficiency. Additionally, 
many thermostat manufacturers offer seasonal optimization programs that recommend changes 
or make minor, automated adjustments to the thermostat settings to improve energy efficiency. 
These opt-in programs are now standard offerings for many smart thermostat manufacturers and 
provided at no additional cost to users. The potential for software updates and continuous 
optimization and the evolving nature of user interactions mean future energy savings may differ 
from first-year savings and the energy savings of smart thermostats may need to be evaluated 
more than once.2  

Second, smart thermostats often have small unit energy savings relative to a home’s total energy 
consumption, especially in comparison to whole-home retrofit programs. This can make it 
difficult to detect the smart thermostat savings in billing or advanced metering infrastructure 
(AMI) meter consumption data. For example, as cooling loads in many regions average about 
20% of annual electricity consumption, smart thermostat savings of 10% of cooling energy use 
would equate to a 2% reduction in home electricity consumption. Evaluators should use 
regression analysis of whole-home billing consumption or AMI meter consumption data to 
evaluate smart thermostat savings because, as explained at greater length in Section 2 and 

 
1 ENERGY STAR® lists requirements for a thermostat to qualify as a connected thermostat. See 
https://www.energystar.gov/sites/default/files/asset/document/ENERGY%20STAR%20Program%20Requirements
%20for%20Connected%20Thermostats%20Version%201.0.pdf   
2 Life cycle savings for traditional energy efficiency measures are often reported and evaluated based on first-year 
savings estimates and the effective useful life of the measure. 

https://www.energystar.gov/sites/default/files/asset/document/ENERGY%20STAR%20Program%20Requirements%20for%20Connected%20Thermostats%20Version%201.0.pdf
https://www.energystar.gov/sites/default/files/asset/document/ENERGY%20STAR%20Program%20Requirements%20for%20Connected%20Thermostats%20Version%201.0.pdf
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Section 3, these data are usually available to evaluators and regression can control for the 
impacts of weather and other potentially confounding factors on a home’s energy consumption.  

Finally, as with other energy efficiency programs, participation in smart thermostat programs is 
self-selective. As discussed at greater length in Section 3, smart thermostat participants tend to 
be, among other things, younger, higher-income, and more likely to adopt electric vehicles and 
internet connected devices than nonparticipants. These differences are often unobservable to the 
evaluator and correlated with a home’s energy consumption, creating the potential for bias in 
estimating savings. Due to the small unit savings of thermostats, errors and biases from self-
selection that may not be very consequential when evaluating whole-home retrofits (e.g., ±2% of 
home electricity consumption) can have a major impact when evaluating the savings and cost-
effectiveness of smart thermostat programs.3 A percentage point change in the estimated savings 
could affect the cost-effectiveness of a program.4 This means it is important for evaluators to 
assess and to minimize the potential for error from selection bias in estimating smart thermostat 
program savings.  

 
3 Errors in smart thermostat savings estimates can arise randomly from sampling or random disturbances in the 
energy consumption data or from bias introduced in participant self-selection, sampling, the model specification 
(such as from an omitted variable), or the estimation procedure. Models of home energy consumption for estimating 
smart thermostat savings are presented in Section 3.1.4.  
4 For example, suppose surveys indicate smart thermostat program participants had higher rates of adopting electric 
vehicles and adding living space to their homes after installing a smart thermostat than nonparticipants. The surveys 
also suggest installing a smart thermostat did not cause these changes. As a result of the changes, home electricity 
consumption across all participants was about one percentage point higher than it otherwise would have been after 
installing the smart thermostat. Then, the smart thermostat program electricity savings estimate from the billing 
analysis is likely biased downward by as much as one percentage point. If the threshold for program cost-
effectiveness is 1.5% of home electricity consumption and the evaluation based on a matched comparison group 
finds savings of 1%, the cost-effectiveness threshold is within one percentage point (the amount of potential bias) of 
the evaluated savings, and the evaluator should not conclude the program is not cost-effective.      
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2 Application Conditions of Protocol 
This protocol applies to evaluating smart thermostat replacement and optimization programs 
when several conditions are met: 

• The smart thermostats were installed in residential buildings. 

• The smart thermostats were installed as part of a utility residential thermostat 
replacement program, or existing smart thermostats were enrolled in an optimization 
program. 

• The replacement smart thermostats are stand-alone measures—they were not bundled 
with other energy efficiency measures or installed as part of time-varying pricing 
programs (such as time-of-use rates). 

• The objective is to estimate savings of utility-supplied energy (natural gas or electricity). 
The savings may be measured for a year, a season, specific days, or specific hours of the 
day.   

• For smart thermostat programs, customer billing consumption or AMI meter data are 
available for the reporting (post-installation) and baseline (pre-installation) periods5; for 
thermostat optimization programs, billing consumption or AMI meter data are available 
for the baseline (pre- or non-optimization) and reporting (optimization) periods or 
thermostat telemetry data are available for the baseline and reporting periods.6  

• The number of program smart thermostats is large enough that there is a high probability 
of detecting the expected savings through regression analysis of billing consumption or 
AMI meter data given the unexplained variance in energy consumption in the data.7 

• The impact of known or likely sources of bias should be small compared to the expected 
savings. Depending on the study design and methodology, this bias may equal 1% or 
more of home energy consumption. If a known or likely bias of this magnitude would 
materially affect the conclusions of the study, the evaluator should redesign the 
evaluation approach to mitigate the bias (if feasible) and the evaluation report should 
explain the potential implications of the bias for the study’s conclusions and future 
program and policy design.  

While this protocol is applicable to the evaluation of most utility energy efficiency thermostat 
replacement or optimization programs, it does not address the following objectives or situations:  

• The goal is to estimate the demand impacts from smart thermostat demand response 
programs. Demand response is event-based demand-side management (DSM), meaning it 
happens in response to specific utility operations contingencies or needs such as high 
wholesale electricity prices, reliability concerns, or peak load management. While there 
are many conceptual similarities between estimating demand response savings and 
estimating hourly energy efficiency savings, there are also important differences that 

 
5 Billing consumption or AMI meter data are considered accurate because the data are used for billing purposes. 
6 Smart thermostat optimization programs may be evaluated with telemetry data because all treatment and control or 
comparison group customers will have smart thermostats.  
7 See the Uniform Methods Project (UMP), Chapter 8 for more information (Agnew and Goldberg 2017). 
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place demand response savings outside the scope of this chapter. Evaluators should 
consult Goldberg and Agnew (2013) for guidance about estimating smart thermostat 
demand response program savings.  

• The goal is to estimate savings for a thermostat replacement program, and customer 
billing consumption or AMI meter data are not available. This protocol only recommends 
nonparticipant comparison group methods for estimating savings from a thermostat 
replacement program, and construction of nonparticipant comparison groups requires the 
availability of billing consumption or AMI meter data.8 

• The smart thermostat measures were installed with other residential measures or 
coincided with customer participation in other utility DSM programs. Many utility 
programs bundle installation of smart thermostats with other rebated measures, which can 
make it challenging to estimate the savings from smart thermostats. This protocol does 
not address or otherwise prescribe savings estimation methods for these situations.9  

• The smart thermostats were installed as part of a residential new construction program, 
which means baseline data for participants are unavailable. This protocol does not 
prescribe methods to estimate energy savings from smart thermostats in residential new 
construction or from building energy efficiency codes and standards. 
  

 
8 There are three practical challenges with using the telemetry data to evaluate smart thermostat replacement 
programs. First, when telemetry data are available, they are often anonymized or aggregated to customer groups 
because of consumer privacy protection rules, and there is not an accepted way to establish the provenance or 
authenticity of the data. The inability to verify the source and completeness of the data (such as whether vendors 
provide a complete and accurate rendering of requested data) may limit the trust that program administrators, 
evaluators, and stakeholders can place in the results. Second, telemetry data for the baseline period (before the 
installation of smart thermostats) are not available. The absence of such data makes it difficult to establish baseline 
conditions for smart thermostat replacement program evaluations. Section 5.1 of this protocol discusses potential 
uses of telemetry data for smart thermostat evaluation in greater detail. Third, it is not possible to construct a 
comparison group of thermostat program nonparticipants. 
9 When thermostats are installed as part of a bundle, the reliability of savings determined through consumption data 
analysis depends on the variability of the mix of measures installed across customers, as well as the measures 
installed being unrelated to the expected savings from the smart thermostats.  
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3 Energy Savings Calculations 
This section presents the recommended approach for estimating energy savings from smart 
thermostat replacement and optimization programs.  

3.1 Thermostat Replacement Programs 
This protocol recommends whole-home energy consumption data analysis for evaluating smart 
thermostat programs. Many features of the whole-home consumption analysis lend themselves 
well to smart thermostat program evaluation:  

• This type of analysis can be applied when the baseline thermostat type (whether it was a 
manual or programmable unit) is unknown. In general, the baseline thermostat type will 
be unknown; if such information is available, it is usually self-reported by participants on 
the rebate application form.  

• Whole-home consumption analysis can be applied without knowledge of thermostat 
settings before and after installation of the smart thermostat. Baseline temperature set 
points and schedules are usually unknown because most baseline equipment does not 
record such data. Reporting period temperature set points may also be unknown because 
of the unavailability of thermostat telemetry data. The unavailability of this information 
would pose difficulties for many engineering-based evaluation approaches but not whole-
home billing or meter consumption approaches.10  

• Evaluators can detect the energy savings from smart thermostats with statistical analysis 
of whole-home billing consumption or AMI meter data if the analysis samples are large 
enough. Submetering of HVAC equipment, which may be prohibitively expensive, is not 
necessary.  

• Highly accurate whole-home billing consumption or AMI meter data are usually 
available from utilities for program participants and nonparticipants. 

• Whole-home consumption analysis captures all nonthermostat energy use changes related 
to or potentially caused by the thermostats (such as changes in the usage of fans or 
windows).  

• Whole-home consumption analysis of smart thermostat programs (not involving direct 
installation) accounts for in-service rates by including participant homes that did not 
install or that removed thermostats during the reporting period in the analysis sample.11 
(Savings from delayed installations may be partially or wholly undercounted in a first 
year analysis, and savings from program thermostat installations at other 
[nonparticipating] premises within the territory will be excluded entirely.) 

 
10 Baseline temperature set points can be collected through surveys, but there are concerns about the accuracy of 
self-reported set point data. Setpoints and runtimes may also be collected through on-site data collection and 
metering studies, which are often very expensive. 
11 This assumes participants in the analysis sample are customers who received a smart thermostat rebate or a kit 
including a smart thermostat and the evaluator cannot be certain whether the customer installed the thermostat. 
Evaluators using whole-home consumption data analysis should not apply an in-service rate adjustment (estimated 
from participant surveys) because the smart thermostat savings estimate will reflect the in-service rate.  
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Given these advantages and that thermostat replacement programs fit the conditions set forth in 
UMP Chapter 8 for whole-building consumption data analysis (Agnew and Goldberg 2017), this 
protocol recommends evaluating smart thermostat programs using whole-home energy 
consumption data analysis.  

3.1.1 Challenges 
The suitability of smart thermostat programs notwithstanding, there are two principal challenges 
with applying the UMP Chapter 8 whole-building energy consumption data analysis to the 
evaluation of smart thermostat programs. 

3.1.1.1 Detecting Small Percentage Savings 
One challenge of whole-home consumption data analysis is that, as previously noted, energy 
savings from smart thermostats are often expected to be a small percentage of home energy 
consumption. In contrast to larger whole-home energy efficiency retrofit projects that involve 
multiple measures, the “signal”—the expected energy savings from smart thermostats—may be 
small relative to “the noise”—the variability in the energy consumption data—even in a large 
panel regression equation that includes control variables for the customer, time period, and 
weather.  

When the expected savings from smart thermostats are a small percentage of home energy 
consumption, evaluators should have realistic expectations about their ability to detect the energy 
impacts and the relative precision of savings estimates obtained from a consumption data 
analysis. As UMP Chapter 8 observes, billing analysis results that have 90% confidence and 
±50% relative precision are common and may provide acceptable results for the purposes of 
some program evaluations (Agnew and Goldberg 2017).  

By participating in the smart thermostat program planning stage, evaluators may be able to help 
program administrators better achieve the evaluation research objectives. Program administrators 
can increase the probability of detecting the smart thermostat savings by sizing their programs 
appropriately. Through data analysis simulations or use of statistical power formulas, evaluators 
can determine the probability of detecting the expected savings for analysis samples of different 
sizes and adjust the analysis sample size to increase the study’s statistical power.12 UMP Chapter 
17 (Stewart and Todd 2020) recommends methods for sizing analysis samples using statistical 
power analysis. Likewise, for a given level of statistical confidence, evaluators can forecast the 
absolute precision with which they will be able to estimate the thermostat savings with a sample 
of given size. It may be possible to increase the statistical power or statistical precision by 
increasing the number of homes in the analysis sample, the length of the analysis period, the 
frequency of energy consumption data, or the number of model explanatory variables.     

3.1.1.2 Self-Selection in Smart Thermostat Program Participation 
Another challenge for evaluators is addressing the potential for bias in estimating savings due to 
the self-selection of participants into smart thermostat programs. Selection bias can cause the 

 
12 Evaluators should also consider how known or likely biases in the estimated savings from self-selection in 
program participation affect the sizing of the analysis sample. For example, if self-selection is likely to bias the 
savings estimate toward zero, evaluators will need a larger analysis sample than would otherwise be required to 
detect the savings. 
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estimated savings to differ from the true savings and arises from the presence of factors not 
controlled or otherwise accounted for in the energy consumption analysis that make participation 
in smart thermostat programs more or less likely and that also affect energy consumption.  

Evidence for self-selection in smart thermostat program participation comes from analysis of 
household-level data from the U.S. Department of Energy’s Residential Energy Consumption 
Survey (RECS 2020), which shows adopters of smart thermostats have the following differences 
compared to other households13: 

• Smart thermostat households were younger on average by about nine years (58 years of 
age vs. 49 years) than households without a smart thermostat. Households without a 
smart thermostat were 2.3 times as likely to be 65 years of age or older.  

• Smart thermostat households were 1.6 times as likely to have children under 17 years of 
age in the home (45% vs. 28%).  

• Smart thermostat households were 1.8 times as likely to have an income over $100,000 
(59% vs. 32%). 

• Smart thermostat households were about one-third as likely to be renters (3% vs. 10%). 

• Smart thermostat households were 1.8 times as likely to have someone teleworking in the 
home (53% vs. 29%).  

• Smart thermostat households were four times as likely as households without a smart 
thermostat to own an electric vehicle (5.2% vs. 1.3%). 

• Smart thermostat households had more desktop computers (0.8 vs. 0.6 per home), more 
laptop computers (2.1 vs. 1.4), tablet computers (1.7 vs. 1.1), and smart speakers (1.8 vs. 
0.5).   

• Smart thermostat households were 1.7 times more likely to have a new (less than two 
years old) central air conditioning system (21% vs. 12%) and 1.7 times more likely to 
have a new central heating system (19% vs. 11%). 

Self-selection in smart thermostat program participation may manifest in and lead to biased 
savings estimates in several ways: 

• In comparison to households that do not adopt smart thermostats, households adopting 
smart thermostats may make other changes to their homes that significantly affect the 
demand for electricity at or around the same time they adopt the smart thermostat. For 
example, they may undertake home renovations that coincide with or closely follow the 
installation of a smart thermostat.14 

 
13 The following statistics were calculated as RECS sample weighted averages for single-family homes with a 
central heating system (a heat pump or furnace) or central cooling system (n=10,544).  
14 A study of smart thermostat energy savings in the Pacific Northwest (Apex Analytics 2021, p. 24) found that 
about 60% of households installing smart thermostats made changes to their homes that had significant effects on 
energy consumption, such as beginning to use an electric vehicle, undertaking a home renovation, installing a new 
HVAC system, or making changes in home occupancy. DNV-GL (2021, p. 38) found smart thermostat program 
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• Households adopting smart thermostats may adopt other connected devices that increase 
their demand for electricity around the same time or after thermostats are adopted.15 For 
example, adoption of electric vehicles and/or other connected devices would increase 
energy consumption and bias the smart thermostat savings estimate toward zero.  

• Households adopting smart thermostats may have demographic or economic 
characteristics such as wealth, youth, increasing size, and tech-savviness that make their 
participation more likely and affect year-over-year changes in energy consumption.16  

• Households adopting smart thermostats may adopt other energy efficiency or 
electrification measures at higher rates compared to naturally occurring adoption in the 
comparison group.17 This can cause estimates of smart thermostat savings to be biased 
downwards.       

These behaviors present a challenge for smart thermostat program evaluation because they can 
generate differences in trend energy consumption between the smart thermostat program 
treatment group and the comparison group that cannot be easily distinguished from the savings 
and that can therefore bias the savings estimates.  

To see this, consider the intuitive and widely practiced way of estimating smart thermostat 
savings as a difference-in-differences (D-in-D) in energy consumption between the treatment 
(participant) group and the comparison group for the reporting and baseline periods. Denoting p 
as smart thermostat participant customer, np as nonparticipant customer, 1 as the program 
reporting period, and 0 as the baseline period, a D-in-D of mean consumption per customer �̅�𝑒 is 
defined as: 

 
participants were more likely to add home floor area (+3 percentage points) and lighting (+9 percentage points). 
DNV-GL (2022, p. 38) finds smart thermostat rebate homes were more likely than matched nonparticipants to have 
recently added living space to the home (+4 percentage points) and to use more lighting (+9 percentage points).  
15 Apex Analytics (2021, p. 24) found 35% of smart thermostat homes installed other connected devices before and 
after the smart thermostat was installed, 25% installed other connected devices only after the smart thermostat 
installation, and 10% installed other connected devices at the same time or before the smart thermostat installation. 
Consistent with the Apex Analytics findings about additions to home electricity loads after smart thermostat 
adoption, Guidehouse (2020a, p. 133) observed a net increase in baseload energy consumption on mild (non-HVAC 
using) days averaging about 0.24 kWh/day or 78 kWh/year from a future participant comparison group study. DNV-
GL (2021, p. 38) found smart thermostat program participants were more likely to add an electric vehicle (+4 
percentage points) and a refrigerator (+9 percentage points). DNV-GL (2022, p. 38) finds smart thermostat rebate 
homes were more likely than matched nonparticipants to have recently added electric vehicle charging to the home 
(+ 6 percentage points).  
16 DNV-GL (2020, pp. 34–36) found that smart thermostat program participants were more likely than 
nonparticipants to be homeowners, reside in newer and larger homes, have central air conditioning, and have higher 
incomes. Adopters were also more likely to have recently experienced an increase in household size and to have 
added electric vehicle charging to the home. DNV-GL (2021, pp. 36–39) made similar findings about smart 
thermostat program participants.   
17 For example, in California, smart thermostat program participants were more likely to install water-saving 
aerators and perform duct sealing through the utility’s rebate programs by about 2 percentage points (DNV-GL 
2020, p. 34). Evaluators can drop smart thermostat participants who installed other rebated measures from the 
analysis sample or retain these participants and attempt to adjust the savings estimates for this additional 
participation. There is more potential for efficiency improvements undertaken outside of utility energy efficiency 
programs to bias the savings estimates because these improvements are likely to be unobserved. 
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D-in-D savings = (e�p,1- e�p,o) - (e�np,1- e�np,o)  (1) 

The first difference equals the smart thermostat program effect plus any other consumption 
change between the reporting period and the baseline period unrelated to the program for 
participant customers. The second difference is the change in nonparticipants’ consumption 
between the reporting and baseline periods. If the participant group, absent adoption of the 
thermostat, and the comparison group would have followed the same reporting-period 
consumption trend, any time-invariant (pre-existing) level difference in consumption between 
the groups will be differenced out and the D-in-D calculation will yield an unbiased estimate of 
the savings. Figure 1 illustrates this “parallel trends” assumption that must hold for the D-in-D 
calculation to be unbiased.  

 
Figure 1. Parallel trends assumption 

However, if the parallel trends assumption is not satisfied, perhaps because smart thermostat 
participants simultaneously install other appliances that raise consumption and these installations 
are unobserved by the evaluator, the groups would have followed different trends if the 
participant group had not received the smart thermostat and the D-in-D savings estimate will be 
biased. In this situation, shown in Figure 2, the D-in-D estimate will yield a downward-biased 
estimate of the smart thermostat savings because the participant group counterfactual 
consumption is trending upward relative to the comparison group.18 In subsequent sections, this 

 
18 The bias could go in the opposite direction if, for example, homes installing smart thermostats simultaneously 
replace other home appliances with more energy efficient models.   
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protocol discusses research designs to minimize the potential for unobservable trend differences 
to arise and statistical tests for detecting such differences. 

 
Figure 2. Violation of parallel trends assumption 

The self-selection phenomenon is not unique to smart thermostat programs—it affects 
participation in all utility energy efficiency programs in which customers self-enroll. However, 
self-selection may present a bigger challenge for evaluation of smart thermostat programs. First, 
given the newness of smart thermostats as a technology, self-selection in terms of who adopts 
these products may be quite severe. As previously noted, households that adopt smart 
thermostats tend to be wealthier, younger, faster-growing, and tech-savvy. Second, any bias from 
self-selection may be large compared to the typical smart thermostat percentage savings, which 
are usually less than 5% of home consumption and often less than 3% when evaluating cooling 
savings in moderate climates.19 Even if a bias in smart thermostat savings estimates is only 1% 
to 2% of consumption, this bias may be enough to confound assessments of whether programs 
save energy and are cost-effective. In contrast, bias of 1% to 2% will be less consequential for 
assessing the cost-effectiveness of retrofit programs with larger percentage savings. 

3.1.2 Evaluation Approaches 
The section recommends specific evaluation approaches and methods for minimizing self-
selection bias in estimating smart thermostat program savings. The evaluation design 
recommendations in this protocol align closely with those in UMP Chapter 8 (Agnew and 

 
19 See Nexant (2017, p. 3), Guidehouse (2018, p. 6), Guidehouse (2020a, p. 11), and DNV-GL (2020, pp. 42 and 
44). 
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Goldberg 2017), UMP Chapter 17 (Stewart and Todd 2020), and the SEE Action Report (State 
and Local Energy Efficiency Action Network 2012). 

All recommended evaluation approaches require a randomized control or quasi-experimental 
comparison group to adjust for time-varying factors unrelated to the program that affect the 
electricity consumption of smart thermostat program participants (such as changes in macro-
economic conditions like a recession, increasing energy prices, natural occurring efficiency, 
pandemics, and weather). With quasi-experimental approaches, evaluators can use a comparison 
group to try to isolate the smart thermostat savings and to avoid a situation in which the savings 
estimate is dependent on the model specification. When this happens, the savings estimate 
changes significantly when different variables are included in the regression model, raising doubt 
about the accuracy of any estimate. By controlling for unexplained non-program-related changes 
in energy consumption between the baseline and reporting period, the use of a comparison group 
makes this model dependency less likely to occur.  

3.1.2.1 Randomized Field Experiments 
Randomized field experiments are the gold standard in energy efficiency program evaluation and 
are the most reliable way to obtain unbiased savings estimates, particularly when bias from self-
selection is a concern (Stewart and Todd 2020). By randomizing who installs a smart thermostat 
(through a randomized controlled trial [RCT]) or who receives encouragement to install a smart 
thermostat (through a randomized encouragement design [RED]), these approaches ensure that 
receipt of treatment or encouragement is uncorrelated with customer characteristics and that an 
unbiased savings estimate can be obtained by comparing the randomized treatment and control 
groups. RCTs have been widely used and shown to be effective for evaluating large-scale 
residential behavior-based programs with small savings (Allcott 2011, 2015). To a lesser degree, 
evaluators have also used RCTs to evaluate smart thermostat programs due partly to the 
challenges of determining customer eligibility for a smart thermostat and installing the 
thermostats in customer homes. See DNV-GL (2015) and Brandon et al. (2021) for examples.  

Because randomized experiments are expected to produce unbiased savings estimates, this 
protocol encourages evaluators of smart thermostat programs to use these methods when 
possible. Table 1 lists the recommended methods for randomized experiments. An RCT for smart 
thermostat replacement would involve recruiting customers who are interested in and eligible to 
install smart thermostats into the experiment, randomly assigning some customers to receive and 
install a thermostat (these customers become the treatment group), and either denying or 
delaying the installation of smart thermostats for the rest of eligible customers (these customers 
become the control group). An RED for smart thermostat replacement would involve identifying 
eligible customers and randomly assigning some of them to receive direct encouragement to 
participate in the program. These customers would constitute the treatment group, and some 
portion of them will comply by opting into the program and receiving a smart thermostat. The 
control group does not receive the encouragement and provides the baseline for estimating the 
savings. The encouragement provides an exogenous source of random variation in participation 
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that can be used to estimate the average savings per complier with the encouragement or the 
average savings per encouragement group customer who receives a smart thermostat.20  

More detailed descriptions of RCTs and REDs, and the nuances involved in using them for 
evaluations, can be found in UMP Chapter 17 (Stewart and Todd 2020), UMP Chapter 8 (Agnew 
and Goldberg 2017), and the SEE Action Report (State and Local Energy Efficiency Action 
Network 2012). From a customer experience perspective, REDs are usually the preferred 
approach because it is unnecessary for program administrators to delay or deny the program 
participation of interested customers. The main challenge of using an RED is detecting small 
percentage treatment effects in the population of encouraged customers. Program administrators 
need to run very large experiments and make sure the encouragement lifts the participation rate 
relative to the nonencouraged customer (control) group to increase the probability of detecting 
the savings.  

 
20 Encouraged customers who opt into smart thermostat programs include customers who opt in due to the 
encouragement (known as “compliers”) and customers who would opt in whether or not they receive the 
encouragement (known as “always-takers”).  
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Table 1. Randomized Field Experiment Approaches for Smart Thermostat Programs 

Approach Description Advantages Potential Challenges 

Randomized 
Controlled Trial 
(RCT) 

• Opt-in recruit-and-
delay or recruit-and-
deny 

• Eligible and 
interested customers 
are randomly 
assigned to 
treatment (receive 
smart thermostat) or 
to control (do not 
receive treatment or 
receive delayed 
treatment)  

• Yields unbiased estimate of 
intent-to-treat treatment effect for 
population studied 

• Controls for self-selection in 
program participation 

• Potential dissatisfaction from customers whose enrollment 
was delayed or denied 

• Verifying customers are eligible (such as having compatible 
HVAC equipment) to participate in the experiment 

• Noncompliance with assigned treatment such as not installing 
or uninstalling the thermostat 

• Requires effort and coordination to plan the experiment  
• Requires monitoring of experiment implementation 
• Results may not be externally valid because of program or 

experiment eligibility requirements and customer willingness 
to participate in experiment 

• Recruitment process can change control group behavior, 
leading to biased estimates of effects 

Randomized 
Encouragement 
Design (RED) 

• Eligible customers 
are randomly 
assigned to receive 
encouragement 
(encouragement 
group) or not to 
receive 
encouragement 
(control group) 

• Any encouragement 
or control group 
customer can 
participate in the 
program  

• Yields unbiased estimate of local 
average treatment effect of 
encouragement, which, 
depending on whether control 
group customers participate in 
the program, equals the net 
savings for all customers who 
receive a thermostat or the net 
savings for compliers with the 
encouragement (those who 
receive a thermostat because of 
the encouragement)a 

• All interested customers in the 
randomized encouragement and 
control groups can participate—
no need to delay or deny 
participation to any customer 

• Insufficient compliance with the encouragement (such as a 
small difference in program uptake between the 
encouragement and control groups) will lead to low precision 
estimates 

• Large sample sizes are required to obtain precise savings 
estimates 

• Requires effort and coordination to plan experiment  
• Requires monitoring of experiment implementation 
• Results may not be externally valid because of program or 

experiment eligibility requirements 

a To obtain an estimate of the local average treatment effect, the encouragement group customer savings must be scaled by the difference between the encouragement 
and control groups in the percentage of customers receiving thermostats. As another option, evaluators can employ instrumental variables using a random assignment 
of encouragement as an instrument for participation. If control group customers are not allowed to participate in the program, the local average treatment effect will be 
equal to the average treatment effect for all treated customers. If control group customers can participate, the local average treatment effect equals the average 
treatment effect for compliers with the encouragement. More details on REDs can be found in UMP Chapter 17 (Stewart and Todd 2020) and UMP Chapter 8 (Agnew 
and Goldberg 2017). 
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While RCTs and REDs have many benefits, this protocol recognizes that implementing these 
approaches can prove challenging, and that few smart thermostat programs have been evaluated 
this way. Also, regulatory or program policies or program design elements often prevent the use 
of randomized field experiments. In these cases, the evaluators will need to employ a quasi-
experimental design. 

3.1.2.2 Quasi-Experimental Approaches 
When smart thermostat programs are not designed as randomized experiments, thus precluding 
evaluation via the methods described in Table 1, evaluators can use quasi-experimental 
approaches to estimate smart thermostat program savings. The limitations of using quasi-
experimental techniques are noted in UMP Chapter 8 (Agnew and Goldberg 2017): 

An observed change in consumption between pre- and post-installation periods 
includes the effect of the whole-building intervention itself, along with the effects 
of other factors unrelated to the program that may occur in the same timeframe. 
These effects could include changes in occupancy, physical changes to structure, 
behavioral changes, weather, etc. Without special attention, these non-program 
effects may be conflated with program effects, leading to incorrect estimates of 
program effects or savings.  

Controlling for time-varying, nonprogram consumption effects requires a comparison group of 
nonparticipants. The resulting baseline will be accurate if the comparison group’s energy 
consumption accurately represents the counterfactual consumption of smart thermostat 
participants if they had not participated in the program. 

As Table 2 shows, this protocol recommends two comparison group approaches and presents a 
third approach that evaluators can use at their discretion if the data required to implement the 
first two approaches are not available. However, the savings estimates from the first two 
recommended approaches are more likely to be closer to the true savings; that is, they are likely 
to be less biased. The recommended approaches better address the greatest threat to internal 
validity: the potential for participants to self-select into smart thermostat programs based on 
characteristics that affect the probability of participation and future energy consumption. 
Minimizing self-selection bias is important because any bias will likely be large relative to the 
expected smart thermostat energy savings, which tend to be less than 5% of home energy 
consumption.   

In consideration of the potential for bias in smart thermostat savings estimates obtained from 
quasi-experimental comparison group studies, this protocol recommends evaluators discuss the 
following topics in their evaluation reports:  

• The potential for unobserved differences between participants and comparison group 
nonparticipants to bias the savings estimates, with references to the potential biases noted 
in this chapter as appropriate 

• Attempts to test for the presence of these factors, the test results, and any attempts to 
correct or adjust the savings estimates for bias 
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• How the potential for any bias in the savings estimates affects the interpretation of the 
results, particularly regarding program evaluation goals and cost-effectiveness.  

When making adjustments to the quasi-experimental modeled savings to account for suspected 
biases, evaluators should be restrained and transparent. There should be compelling evidence that 
an adjustment is likely to improve the accuracy of the modeled smart thermostat savings 
estimate, and evaluators should be fully transparent about how the adjustment was made and its 
impact on the savings. Ideally, in the evaluation planning stage, evaluators and program 
administrators would anticipate potential sources of bias and incorporate protocols for addressing 
such bias in the program evaluation plan. This advance planning will minimize the potential for 
prior beliefs about the smart thermostat savings to unduly influence the savings adjustments. At a 
minimum, evaluators should write out the plan for addressing bias in advance, in enough detail 
to ensure that every step of the approach—statistical tests, survey questions, calculation methods, 
criteria for pulling the trigger on a potential adjustment—are objective and direction-neutral 
(e.g., if the comparison group purchased more electric vehicles than participants [the opposite of 
what is expected], this is where the evaluator would spell out how this would lead to a downward 
[rather than an upward] adjustment to the thermostat savings).   

An important difference between the estimation approaches is that the interpretation of the 
savings estimate will depend on how the comparison group was constructed and which 
customers were included. As UMP Chapter 8 explains, a comparison group analysis may yield 
an estimate of gross savings, net savings, or, more likely, something in between depending on 
the comparison group used (Agnew and Goldberg 2017). Essentially, if the comparison group 
has no measure adoption or virtually none of its own, the D-in-D estimate produces gross 
savings, i.e., the effect of the measure itself on energy consumption. If the comparison group has 
the same level of natural adoption as participants, the D-in-D estimate produces an estimate of 
net savings. Often, the D-in-D approach produces a savings estimate somewhere in between 
because of differences between participants and the matched comparison group in rates of 
natural adoption. 

Future Participants (Variation in Timing of Participation) 
The most reliable quasi-experimental approach uses variation in the timing of smart thermostat 
program participation to estimate savings. This approach usually compares current smart 
thermostat program enrollees to later program enrollees and therefore uses differences in 
participant enrollment dates to define the comparison group.21 An example of smart thermostat 
evaluations using future participants is provided in Guidehouse (2020a).  

As UMP Chapter 8 (Agnew and Goldberg 2017) describes, the future participant comparison can 
be implemented in two main ways: 

• Static comparison group: this approach compares smart thermostat participants to the 
same group of nonparticipants throughout the reporting period. All participants become 
participants before the reporting period begins, and all nonparticipants do not become 
participants until after the reporting period ends.  

 
21 This comparison group can comprise all prior and/or future participants or a matched subsample of prior and/or 
future participants. 
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• Time-varying (rolling) comparison group: this approach allows nonparticipants to 
become smart thermostat program participants over the reporting period. In each 
reporting interval, participants are compared to all nonparticipants in that interval, who 
may become participants in the next or another future interval. 

The future participant approach is attractive because future smart thermostat program 
participants are likely to have similar energy end uses and to experience similar changes in 
energy consumption patterns as participants over time. The main difference between participants 
and the comparison group of future participants is not whether they decided to install a smart 
thermostat but when they decided to install one. Provided the program population remains stable 
over time, this approach can mitigate some aspects of the potential for self-selection bias, 
specifically long-term trend differences in consumption preceding the thermostat installation. 
However, this approach may not mitigate self-selection bias related to short-term trend 
differences associated with the act or timing of installation. For example, if smart thermostat 
program participants are more likely to undertake home renovations around the time they install 
a smart thermostat, future participants will also be more likely to undertake those renovations, 
but the renovations will not occur until the thermostat is installed, possibly a year or more later. 
In this case, the baseline consumption of future participants would be too low and the smart 
thermostat savings estimate would be biased downward. Evaluators can use participant surveys 
to test for such differences.22 Nonetheless, of all the quasi-experimental methods, this approach 
is expected to do the best in reducing the potential for bias from unobserved customer attributes 
and other time-varying changes in consumption.  

For this approach to be valid, it is important that the demographic composition of the participant 
population and the smart thermostat program implementation not change significantly over time 
in ways that produce unobservable trend differences in consumption between participants and 
future participants. For example, if the earlier participants tend to be more energy conscious and 
efficient than later participants, this could bias the estimate of savings upward. When possible, 
evaluators should inspect and test for the presence of level and trend differences in energy 
consumption between current participants and future participants in the baseline period.23 Such 
differences would suggest the presence of omitted variables that could invalidate the baseline 
and bias the savings estimates. In general, a minimum of two years of baseline period monthly 
consumption data are required to test for trend differences. Guidance about what evaluators 
should do if they detect such differences is provided in Section 3.1.4.3. 

Evaluators should enhance the validity of the future participant approach by matching current 
participants to similar future participants based on observable customer and home characteristics 
such as energy consumption, age, and income. With matching, participants will only be 
compared to future participants who have similar energy consumption and attributes. 

Requirements for implementing the future participant approach are also discussed in UMP 
Chapter 8 (Agnew and Goldberg 2017). The most important requirements include having a large 
enough sample of future participants as well as two years of consumption data. One year of 

 
22 See Apex Analytics (2021) and Guidehouse (2021) for household survey data analysis showing smart thermostat 
adoption preceded or coincided with significant changes in household energy consumption.  
23 For an example of testing using a rolling comparison group, see Harding and Hsiaw (2014). 
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consumption data will be needed for current and future participants for the baseline period and 
one year of consumption data will be needed for both groups for the reporting period. In 
addition, evaluators who want to match current participants to future participants on any 
attributes beyond energy consumption will need customer and home characteristics data. 

The variation in timing of the participation approach yields an estimate of the smart thermostat 
program gross energy savings, as the analysis sample only includes program participants. The 
estimate is gross because the comparison group can reasonably be assumed not to have naturally 
occurring levels of smart thermostat adoption due to the proximity of their future adoption. To 
obtain an estimate of net program savings, a separate freeridership analysis will need to be 
conducted.  

Matched Nonparticipants on Basis of Energy Consumption and Customer Attributes 
The second recommended approach is matching smart thermostat program participants to 
nonparticipants. This approach should be used when it is not possible to implement the future 
participant approach (that is, when the program population or implementation was not stable 
over time or the program population changed over time) and data required for matching are 
available for program participants and nonparticipants.  

This approach requires matching participants to nonparticipants based on the customer baseline 
period energy consumption and observable characteristics, including, most importantly, income 
and age. As previously discussed, adopters of smart thermostats in recent studies have tended to 
be younger and have higher incomes, and both characteristics are correlated with growing energy 
consumption. With data on income and age, evaluators may be able to construct a comparison 
group that more closely resembles the participant group.24 While an improvement over only 
matching on energy consumption, this approach is less attractive than the future participant  
approach because participants and the matched comparison group may still not be similar in their 
unobservable characteristics, including motivations to save energy and interest in and purchases 
of technology such as electric vehicles and “smart” home devices. For example, while smart 
thermostat participants tend to be young and have high incomes, such households with an 
interest in adopting smart devices may be the most likely to participate in smart thermostat 
programs. In general, it is not possible to identify young and high-income nonparticipants who 
have these interests. As a result, even if the matched comparison group and the participants have 
similar ages and incomes, the energy consumption of the matched comparison group and the 
counterfactual consumption of participants may follow different trends, providing a biased 
estimate of savings.  

The matched comparison group approach requires baseline period energy consumption, 
household demographics, and housing characteristics data to be collected, and participants to be 
matched to nonparticipants using a matching algorithm (discussed in Section 3.1.3.2, Matched 
Comparison Group Construction). As with the future participant approach, when feasible, 
evaluators should test for level and trend differences in energy consumption during the baseline 
period. However, evaluators should be aware demographic data for matching may be incomplete 

 
24 Matching on customer demographic and home characteristics in addition to energy consumption can reduce the 
quality of matches on energy consumption, and therefore evaluators need to use their best judgement about whether 
to match on these variables if the quality of the match on consumption significantly worsens.  
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or unavailable for many residential customers, which can significantly limit the pool of smart 
thermostat participants and nonparticipants available for matching and the consumption analysis. 
If demographic data are unavailable for many customers, evaluators should carefully weigh the 
benefits of matching on demographics against the costs of limiting the sample to customers with 
such data available and the ramifications for the external validity of the savings estimates.    

As UMP Chapter 8 explains, the matching of participants to nonparticipants and the estimation 
of a D-in-D regression usually yields a savings estimate between net and gross savings (Agnew 
and Goldberg 2017). As smart thermostat participants likely include a higher percentage of 
would-be natural adopters or freeriders than nonparticipants, the comparison group will account 
for some but not all freeridership in the participant population.25 As in DNV-GL (2020), 
evaluators can adjust the D-in-D savings estimates to obtain estimates of smart thermostat gross 
and net savings.26  

Matched Nonparticipants on Basis of Energy Consumption 
Without customer demographics data, evaluators will only be able to match participants to 
nonparticipants based on energy consumption. Given that smart thermostat households tend to 
have higher incomes, be younger, and have increasing energy consumption, there will be 
enhanced potential for bias in estimating smart thermostat program savings when evaluators can 
only match on energy consumption. Accordingly, this matching approach, the last option in 
Table 2, should only be used when data to implement one of the other two approaches are not 
available.  

 
25 Differences between participants and the matched comparison group in their propensity to adopt a smart 
thermostat in the absence of the program only affect the distinction between gross and net savings if the naturally 
occurring adoption would have occurred during the evaluation period. Measured against a baseline of comparison 
group customers who adopted smart thermostats prior to the baseline period, the savings of smart thermostat 
program participants would be net savings. 
26 To obtain an estimate of smart thermostat gross energy savings per participant, DNV-GL (2020) makes 
adjustments to the D-in-D savings estimate for (1) differential trends in baseload consumption between the treatment 
and comparison group; (2) the prevalence of space heating and space cooling in participant and comparison group 
homes; and (3) the prevalence of smart thermostats in the comparison group. The authors then apply a net-to-gross 
factor to the adjusted gross savings to estimate the net program savings.    
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Table 2. Quasi-Experimental Evaluation Approaches for Smart Thermostat Programs 

Comparison 
Group Approach Description Potential 

Advantages Potential Challenges 
Gross or 
Net 
Savings 

Future 
participants 
(variation in timing 
of participation) 

Future or prior 
participants who 
may be matched 
based on energy 
consumption and 
demographicsa 

• Comparison 
group comprises 
smart thermostat 
participants 

• Quasi-
experimental 
approach 
minimizes 
potential for self-
selection bias  

• Requires customers to 
enroll for two or more 
years 

• Time-varying participant 
characteristics or 
program implementation 
can invalidate the 
comparison group 

Gross 

Comparison 
group matched 
on consumption 
and 
demographics/ 
housing 
characteristics 

Comparison 
group of 
nonparticipants 
matched on 
energy 
consumption and 
other 
characteristics 

• Straightforward 
conceptually and 
easy to 
implement for 
most smart 
thermostat 
programs 

• Will account for 
potential bias 
from matching 
variables  

• Unobservable 
characteristics from self-
selection may lead to 
varying consumption 
trends and bias savings 

• May not produce 
unbiased savings 
estimates 

• Requires collecting data 
on customer 
demographics 

Likely 
between 
net and 
gross 

Matched 
comparison 
group with 
customers 
matched on 
consumption only 

Comparison 
group of 
nonparticipants 
matched solely 
on energy 
consumption 

• Only requires 
billing 
consumption data 
to implement 

• Least robust of 
recommended methods 
for addressing selection 
bias 

• Unlikely to produce 
unbiased savings 
estimate 

Likely 
between 
net and 
gross 

a Prior participants are customers who participated in the smart thermostat program before the start of the evaluation 
baseline period. As prior participants, they are expected to be similar to participants whose savings will be evaluated 
if the program and participant population have remained stable over time. The difference in prior participant 
consumption between the evaluation reporting period and the evaluation baseline period is the naturally occurring 
change in energy consumption that participants would have experienced if they had not installed a smart thermostat. 
Taking the difference in savings in the reporting baseline period between participants and prior participants yields an 
estimate of the smart thermostat savings. See UMP Chapter 8 (Agnew and Goldberg 2017) for an illustration of this 
method. 

Discouraged Evaluation Approaches 
This protocol discourages evaluators of smart thermostat programs from using a random sample 
of residential nonparticipant customers as a comparison group. Given the high potential for self-
selection in smart thermostat program participation, it is likely that the savings estimates from 
such a comparison will be biased. 

Also, this protocol discourages evaluators from using the participant’s energy consumption 
before participation is adjusted for differences in weather to construct the baseline. The validity 
of this within-subject design depends strongly on the ability to accurately adjust the participant’s 
baseline for differences in weather and other time-varying factors. While it may be possible to 
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adjust the baseline for differences in weather, it is usually not possible to adjust for the effects of 
other time-varying factors.  

3.1.3 Data Analysis 
Data analysis concerns evaluation data requirements and collection, matching of participants to 
nonparticipants for quasi-experiments, and regression modeling to estimate savings.  

3.1.3.1 Data Requirements 
Regardless of the experimental or quasi-experimental approach, the following data are needed to 
evaluate smart thermostat program savings: 

• Utility customer consumption data from a utility billing or AMI meter data system 
o This protocol recommends analyzing customer daily or monthly interval 

consumption data to estimate energy savings and analyzing hourly or subhourly 
consumption data to estimate subdaily energy impacts. Hourly or subhourly 
consumption data may also be aggregated to the daily level to estimate energy 
impacts.27 

• Program tracking data 
o Program tracking data concern customer enrollment dates, equipment installation 

dates, measure descriptions, and incentive payments. These data are required to 
identify smart thermostat program participants and nonparticipants and determine 
participation start dates.  

• Weather data 
o Weather data usually includes hourly or daily outdoor temperature data that can 

be used to calculate heating or cooling degree days or the average temperature for 
the analysis time periods (which may be days, calendar months, or customer 
billing periods). 

For additional considerations related to program tracking data and weather data, see Sections 
4.5.2.2, 4.5.2.3, and 4.5.2.4 of UMP Chapter 8 (Agnew and Goldberg 2017). If monthly 
consumption data are used for the evaluation, see Section 4.5.2.1 of UMP Chapter 8. For helpful 
guidance about assessing data sufficiency and quality and preparing consumption data for 
analysis, this chapter encourages evaluators to consult Section 2 of the CalTRACK guidelines 
(CalTRACK 2018).28 

To implement the recommended quasi-experimental comparison-group matching approaches, 
evaluators will also need data on customer demographic and home characteristics. When 
available, the most important such data will be utility customer income and age.  

In addition, evaluators may find it useful to collect data on other characteristics such as dwelling 
type or heating fuel to match or estimate savings.  

 
27 With the implementation of AMI in more jurisdictions, there is growing availability of hourly data, making it 
possible to estimate savings for specific event windows or times of the day.  
28 See https://docs.caltrack.org/en/latest/methods.html  

https://docs.caltrack.org/en/latest/methods.html
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3.1.3.2 Matched Comparison Group Construction 
Matching of participants to similar comparison customers is a preprocessing stage in the savings 
analysis designed to minimize baseline period differences between participants and the matched 
comparison group and to minimize the savings estimates’ dependence on model specification 
choices.29 As a first step in selecting a comparison group, the potential comparison group 
population should be limited to utility customers who would be eligible for the program, 
especially if eligibility requirements are strongly correlated with energy consumption. For 
example, if utility customers must qualify as low income to participate in the smart thermostat 
program, in most cases evaluators will want to restrict potential matches to other low-income 
customers. This first step of excluding ineligible customers constitutes a type of exact matching.  

Next, one of several statistical matching methods can be used to select the matched comparison 
group based on observable customer characteristics. For example, if smart thermostat 
participants are more likely to use electricity for space heating, participants and comparison 
customers can be matched based on heating fuel type to increase the similarity of the samples in 
this respect and reduce the need for modeling electricity consumption as a function of heating 
fuel. Evaluators should only match on variables correlated with participation and expected to 
affect energy consumption. Also, to the extent that observable characteristics that are controlled 
by this preprocessing of the data are themselves good proxies for unobservable characteristics 
associated with self-selection, matching can also serve to mitigate self-selection bias, though this 
is not the primary purpose of the matching procedure. In fact, as previously noted, even 
comparison groups that are closely matched on key observable characteristics such as income 
and age may not be valid because of unobservable differences affecting participation and trend 
electricity consumption.30  

There are several good options for constructing a matched comparison group sample: 

• Propensity-score matching involves modeling the propensity to participate in the smart 
thermostat program as a function of observable utility customer characteristics and then 
predicting the propensity of participants and comparison customers to participate. 
Participants are then matched to comparison customers with the closest propensity scores. 
This method reduces multidimensional differences between participants and 
nonparticipants to a single score, which reduces the computational burden of using this 
method, but also creates potential for matched participants and matched comparison 
customers to not be well-balanced on some observable characteristics. There are many 
technicalities to implementing propensity score matching, including whether to employ 
one-to-one or many-to-one matching, determining which variables to include in the 
propensity scoring model, and deciding whether to trim poorly matched observations 
from the analysis sample using a caliper. Imbens and Rubin (2015) is a very good 
reference for these considerations.  

 
29 We use “comparison customer” rather than “nonparticipant” when referring generically to matching to avoid 
confusion about situations when evaluators match participants to future participants. In this context, it is ambiguous 
whether “nonparticipant” applies to future participants. 
30 Evaluators may be able to employ advanced econometric methods to control for selection bias based on these 
unobservable characteristics; see DNV-GL (2017) and Goldberg et al. (2017). Some methods require functional 
form assumptions about the model and distributional assumptions about the error term. 
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• Mahalanobis distance matching selects the nearest comparison customer using a 
measure of distance based on weighted differences in observable characteristics between 
participants and comparison customers. Distance is calculated as a weighted Euclidean 
distance, using the sample covariance matrix of the matching characteristics. This 
approach is simple and often very effective at identifying comparison customers with 
similar observable characteristics and yielding a well-balanced sample of matched 
comparison customers. DNV-GL (2020) is an example of a smart thermostat evaluation 
that uses propensity score matching and Mahalanobis distance matching.  

• Exact and Euclidean distance matching involves first conducting exact matching on 
demographic data (such as income and age ranges) then choosing the best match on 
energy usage based on the Euclidean distance within the group of exact matches on 
demographics. This approach is straightforward and effectively identifies comparison 
customers with similar observable characteristics, yielding a well-balanced sample of 
matched comparison customers. Guidehouse (2020a) is an example of a smart thermostat 
evaluation that uses exact and Euclidean distance matching. 

• Coarsened exact matching is a conceptually simple approach for obtaining a matched 
comparison group that is well balanced on observable characteristics. It involves first 
stratifying the participant sample using different customer characteristics—such as by 
ranges of energy consumption, income, and age—then sampling comparison customers 
from each stratum in proportion to participants in the stratum. This should result in a 
participant and matched comparison sample that is exactly balanced on the coarsened 
matching variables. Iacus, King, and Porro (2011) is a good reference for this approach.  

Regardless of which method is used, because smart thermostat adoption is highly correlated with 
both income and age, this protocol recommends matching participants to comparison customers 
based on these two variables and energy consumption. However, data on income and age may be 
unavailable for many of the utility’s customers, and evaluators should assess the impacts of the 
data availability on the size and representativeness of the final analysis sample.31  

In addition, the accuracy of the baseline may be improved by matching on other demographics, 
housing characteristics, and energy variables that may be correlated with participation and 
energy consumption: 

• Other demographics, such as education and home ownership 

• Dwelling unit type (single family, multifamily, other) 

• Geography (zip code or census tract if feasible) 

• Energy end uses (such as natural gas space heating, electric water heating, or electric 
vehicle ownership) 

• Energy efficiency or other DSM program participation. 

 
31 If evaluators use a future participant approach and the utility collects data on participant income and age from 
participants, the availability of income and age data may be limited due to survey nonresponse. If utilities collect 
data on income and age from third-party data providers, head-of-household age and household income may be 
missing for many customers or imputed for others and therefore subject to error.   
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Evaluators can also match on participation status in other energy efficiency or DSM programs or 
measures. Typically, this is necessary only for large programs or measures that overlap 
significantly with thermostat replacement. An example would be a home energy reports program 
for utilities that have a very large portion of their customer base enrolled in such a program. 

Note that matching on demographic and housing characteristics will not improve and may even 
reduce the alignment on baseline energy consumption between participants and matched 
comparison customers. As the demographic and housing variables are intended to account for 
trend consumption differences, there may be a trade-off between accounting for future 
consumption trends and aligning on baseline period energy consumption. Evaluator discretion 
will be needed to determine which set of matching criteria are most appropriate. 

Assessing Match Quality 
After completing the matching, this protocol recommends always assessing the quality of the 
matches between participants and nonparticipants. There are several checks that should be 
performed, and the findings of the match quality assessment should always be reported so the 
validity of the baseline can be judged. 

First, after matching participants to comparison customers, check for balance on the time-
invariant attributes used in matching. If matching worked as intended, it should reduce any 
differences between participants and matched comparison customers in these matching variables. 
This can be checked by comparing the mean values and distributions of the matching variables 
for participants, matched comparison customers, and all comparison customers. The comparison 
to all comparison customers will show whether matching was an improvement over taking a 
simple random sample of comparison customers.  

Second, check for balance between participants and matched comparison customers in baseline 
period energy consumption and other time-varying characteristics such as energy efficiency 
program participation. Use plots and summary statistics to check for level and trend differences.  

Third, check for balance on observable attributes not used in matching.32 This provides yet 
another check on the quality of matches. However, it is most important that participants and 
matched comparison customers are balanced for variables that affect both participation and 
energy consumption. 

Fourth, if enough pretreatment energy consumption data are available, compare the energy 
consumption of participants and matched comparison customers outside the window used in the 
matching. Such a test can be used to detect the presence of omitted variables that can bias the 
savings estimate. For example, if 24 months of pretreatment consumption data are available, it 
may be possible to match participants to comparison customers using the first 12 months and 
then check the quality of the match using consumption data for the next 12 pretreatment months. 
This out-of-sample comparison is useful for identifying imbalances or pre-existing trends in 
energy consumption and can be employed on other time-varying customer characteristics.33  

 
32 See DNV-GL (2021, p. 66) for an example of this check. 
33 See DNV-GL (2021, p. 41) for an example of this validation check. 
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3.1.4 Savings Estimation 

3.1.4.1 Defining Baseline and Reporting Periods 
An initial step in estimating smart thermostat program savings is to define the baseline and 
reporting periods. The reporting period is when savings will be estimated. The baseline period is 
before the smart thermostats were installed and provides the baseline (pre-thermostat 
installation) consumption for the reporting period. The baseline and reporting periods may be 
defined identically or allowed to vary between smart thermostat program participants. The 
baseline and reporting periods should be defined using the thermostat installation date. For direct 
install programs, this information should be available from the program administrator. For 
customer self-install programs, the thermostat installation date will be unknown. However, a 
reasonable proxy for the thermostat installation date is when the thermostat was first connected 
to the internet. This information may be available from the smart thermostat vendor.34 Also, 
while a participant’s thermostat purchase or rebate application date may be known, these dates 
are unlikely to correspond to the installation date. As a result, evaluators should exercise care in 
defining the baseline and reporting periods.  

This protocol recommends that when the smart thermostat installation dates are known, 
evaluators should define the reporting period to begin at least 30 days after the installation date. 
This buffer (1) allows time for the household to program the smart thermostat and for the 
thermostat to learn the household’s space conditioning schedule and behaviors; and (2) 
eliminates the possibility that the customer bill for the installation month includes consumption 
for both the preinstallation and post-installation periods in the case that the smart thermostat was 
installed during the middle of the customer billing cycle. The first consideration means that even 
when analyzing daily energy consumption data and knowing the installation date, evaluators 
should exclude the first 30 days after installation from the reporting period. 

When installation dates of smart thermostats are unknown, this protocol recommends that 
evaluators work with the smart thermostat vendor(s) to determine the first-connected dates for 
the devices and begin the reporting period 30 days after the first-connected date. If both the 
installation and first-connected dates are unknown, evaluators should consider starting the 
reporting period 60 days after the rebate application date or thermostat purchase date. This 
additional time allows for participant delays in installing the smart thermostats in their homes.  

3.1.4.2 Regression Modeling 
After selecting a matched comparison group and defining the baseline and reporting periods, this 
protocol recommends using regression analysis to estimate savings. Regression analysis will help 
to isolate the smart thermostat program savings by controlling for the consumption impacts of 
time-varying factors such as weather as well as for the impacts of any remaining differences in 
the matching variables between the treatment and control groups. The remainder of this section 
discusses considerations for regression model forms. The model forms discussed here assume the 
availability of monthly billing consumption data and are discussed in greater length in UMP 
Chapter 8 on whole-building retrofits (Agnew and Goldberg 2017) and UMP Chapter 17 on 

 
34 Some thermostat vendors require customers to consent to the release of this information so it may not be available 
for all participants. 
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behavioral programs (Stewart and Todd 2020). However, the model specifications are valid for 
daily, weekly, or bi-monthly consumption data with minor redefinitions of the variables.  

Smart thermostat program evaluators have three main options for regression modeling of 
electricity consumption: a two-stage approach, a two-way fixed-effects panel regression, or a 
lagged dependent variable panel regression. Regardless of the approach, evaluators should report 
regression coefficient standard errors, regression model fit statistics such as the R2 and F 
statistics, and confidence intervals for the savings estimates.     

Two-Stage Approach  
In the first stage, the evaluator fits separate baseline and reporting period regression models of 
whole-home energy consumption for individual participants and nonparticipants. The models 
explain average daily energy consumption for customer i in month t (Eit) as a function of a 
constant (which represents the customer daily baseload consumption αi), average daily heating 
degrees (HDDit), average daily cooling degrees (CDDit), or both HDD and CDD, depending on 
the fuel being modeled:  

Eit = αi + βi1HDDit + βi2CDDit + εit  (2) 

where εit is the model error and the coefficients αi, βi1, and βi2 are the parameters to be estimated 
for customer i in the baseline period or reporting period.  

Using data for a normal weather year, the evaluator uses the fitted models to predict each 
customer’s normalized annual consumption for the baseline and reporting periods and to 
calculate the difference between periods. This change in the customer’s normalized energy 
consumption reflects the effects of the smart thermostat program; time-varying, 
nonprogrammatic factors during the reporting period for participants; and the effects of time-
varying, nonprogrammatic factors for the matched comparison or randomized control group.  

In the second stage of the estimation, the evaluator runs a cross-sectional ordinary least squares 
regression of the customer’s change in normalized annual consumption on an intercept and an 
indicator variable for whether the customer was a smart thermostat program participant. The 
coefficient on the indicator variable is an estimate of the program’s impact on normal weather-
year average daily energy savings. 

This two-stage approach is versatile and can be implemented with different research designs, 
including RCTs, REDs, the future participant approach, and matched comparison groups. There 
are many technical details to be mindful of in implementing the two-stage approach, including 
the selection of degree day base temperatures, allowing degree day base temperatures to vary 
between customers and between the pre- and post-periods, sample selection (including the 
removal of outliers), and steps for addressing imprecisely estimated first-stage regression 
coefficients. Evaluators should consult UMP Chapter 8 (Agnew and Goldberg 2017) for details 
about these considerations.  
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Two-Way Fixed-Effects Panel Regression 
The second approach is a standard two-way fixed-effects D-in-D panel regression model of 
average daily energy consumption: 

Eit = αi + τt + β0DDit + β1DDit * Parti + γ0DDit * Postt + γ1Parti * Postt + γ2Parti * Postt * DDit + εit   (3) 

where: 

Eit =  Average energy consumption of utility customer i in month t  
αi  =  Customer fixed effect to control for time-invariant differences between 

customers in energy consumption 
τt = Time period fixed effect 
DDit =  Degree days for customer i in month t; depending on the fuel and the seasons 

being analyzed, this model might include cooling degree days, heating degree 
days, or both variables35  

Parti =  Indicator for smart thermostat program participant—this variable equals 1 if 
the customer was a participant and equals 0 otherwise 

Postt =  Indicator for the reporting period after the thermostat was installed—this 
variable equals 1 if the period t was post-installation and equals 0 otherwise 

εit  =  Error term for customer in i in period t 

This two-way fixed-effects panel regression controls for time-invariant differences between 
customers in their energy consumption (through the customer fixed effect), time period-specific 
consumption impacts unrelated to weather (through the month-year of sample fixed effect), and 
weather (through the cooling and heating degree variables). As the two-way fixed-effects model 
includes separate intercepts for each customer and separate degree day variables for the 
treatment and control groups and the pretreatment and post-treatment periods, the specification 
can flexibly model customer consumption and has many parallels to the two-stage approach.  

This model can be estimated by ordinary least squares using data on customer energy 
consumption before and after the thermostat installation for program participants and 
nonparticipants in the comparison or control group. When estimated by ordinary least squares, 
the fixed-effects panel model will yield an unbiased estimate of the program savings if the error 
term is uncorrelated with Parti * Postt conditional on the other model variables. This assumption 
will be satisfied if program participation was determined through a randomized controlled 
procedure (such as an RCT) or in quasi-experiments if the parallel-trends assumption holds: 
absent the installation of the smart thermostats and conditional on time-period fixed effects, 
customer fixed effects, and heating and cooling degree variables, participant and nonparticipant 
consumption would have followed the same reporting period time trends.  

In the two-way fixed effects model, the energy savings for participant customer i in post-
installation period t are equal to -1 * (γ1 + γ2DDit). The coefficient γ1 represents the energy 
consumption impact that does not depend on cooling or heating degrees. The coefficient γ2 

 
35 Within a month, degree days would vary between customers because of geographic variation in outdoor 
temperature or differences between customers in the base heating or cooling temperature. 
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represents the smart thermostat daily energy impacts per cooling or heating degree. For a smart 
thermostat program, it is expected that most savings will be temperature-related and the 
coefficient γ1 will be close to zero. Nonetheless, it is advisable to include the intercept to mitigate 
any nonlinearity in the relationship between the smart thermostat savings and degree days. The 
annual savings for a normal weather year or the reporting period can be estimated as -1 * (365.25 
* γ0 + γ1AnnualDDit), where AnnualDDit is the degree days for a normal weather year or for the 
reporting period.  

As with the two-stage model, there are many technical details to keep in mind, and evaluators 
should consult UMP Chapter 8 (Agnew and Goldberg 2017) to learn more about these details.  

Lagged Dependent Variable Panel Model 
The lagged dependent variable (LDV) panel model (sometimes referred to as a “post-only 
model”) is a panel regression model of reporting-period energy consumption. It is estimated with 
observations of customer average daily consumption or daily energy consumption during the 
reporting period for smart thermostat participants and matched nonparticipants. The model gets 
its name from the inclusion of a lag of the dependent variable—the customer’s energy 
consumption for the same interval during the baseline period—as an explanatory variable.  

A typical LDV panel model specification is as follows:  

Eit =  τt + β1 * Parti + 𝜌𝜌𝐸𝐸𝚤𝚤𝚤𝚤
𝑝𝑝𝑝𝑝𝑝𝑝������ + εit (4) 

where: 

Eit =  Average energy consumption of utility customer i in month t  
τt  =  The time-period fixed effect affecting the consumption of all subjects 

during month-year t; the month-by-year fixed effect can be estimated 
by including a separate dummy variable for each month-year t 

β1  =  Coefficient for the average treatment effect of the smart thermostat 
program; the energy savings per subject per period equals -β1

 

Parti  =  An indicator variable for whether customer i participated in the smart 
thermostat program; the variable equals 1 for participants and equals 0 
otherwise 

ρ  =  Coefficient indicating the average effect of consumption during the 
same interval of the baseline period 

𝐸𝐸𝚤𝚤𝚤𝚤
𝑝𝑝𝑝𝑝𝑝𝑝������  =  Average consumption during the corresponding interval of the baseline 

period for customer i; for example, if the dependent variable was a 
customer’s average daily consumption in July during the reporting 
period, 𝐸𝐸𝚤𝚤𝚤𝚤

𝑝𝑝𝑝𝑝𝑝𝑝������ would equal the customer’s average daily consumption 
for July in the baseline period 

εit  =  The model error term representing random influences on the energy 
consumption of customer i in period t 



28 

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

Evaluators can estimate slightly different versions of the LDV model by including a participation 
indicator variable for each interval of the reporting period instead of a single participation 
indicator variable for the entire reporting period. This specification will produce an estimate of 
average savings per subject for each interval. Also, evaluators can add other variables to the 
model, such as weather.  

A limitation of the LDV model is that it is generally inappropriate for weather-normalizing 
savings; that is, for calculating the savings that would occur in a normal weather year. This is 
because the coefficient on the lag of the dependent variable picks up some weather effects.  

3.1.4.3 Detecting Self-Selection Bias and Diagnosing Its Causes 
Evaluators should examine the results of the two-stage approach and the two-way fixed-effects 
panel regression approach for evidence of model misspecification or omitted variables. 
Specifically, it is highly recommended that smart thermostat program evaluators do the 
following: 

• Test for differences in trend consumption between participants and future participants or 
the matched comparison group if two or more years of baseline period data are available. 
This step can also be performed when assessing the match quality. Using baseline period 
data for two years, run a two-way fixed-effects regression model of customer monthly 
energy consumption on customer fixed effects, time-period fixed effects, customer 
heating degrees, customer cooling degrees, and time-period fixed effects interacted with 
an indicator for whether the customer is a program participant during the reporting 
period. Plot the estimated coefficients on the interaction variables (time-period interacted 
with participant indicator) against time to look for evidence of differences in trend 
consumption. If the per-period trend difference is large relative to the per-period expected 
smart thermostat program savings, this trend would likely bias the savings estimate. 
However, this test would only capture savings estimation bias from factors present before 
the adoption of the smart thermostat; it would not capture any bias from differences in 
adoption of other energy-intensive devices such as electric vehicles occurring after the 
thermostat is installed.    

• Test for differences between participants and matched nonparticipants regarding changes 
in the baseload (non-weather-sensitive) energy consumption between the reporting and 
baseline periods. Many participants and matched nonparticipants will exhibit large 
negative or positive changes in baseload consumption between the baseline and reporting 
periods. These changes could reflect their adoption of new appliances or other household 
durables, permanent changes in household occupancy, or other changes in energy 
consumption behaviors. However, if the matched nonparticipant group provides an 
accurate counterfactual for participants, there should not be large differences between the 
groups in terms of the mean or the distribution of baseload consumption changes (as 
smart thermostats primarily affect heating and cooling energy consumption loads). 
Differences in baseload consumption changes between the groups would suggest that one 
group is adding or reducing baseload consumption more than the other group. Evaluators 
should test for differences in the mean change in baseload consumption and the 
distribution of the change in baseload consumption. In the two-stage approach Equation 
2, the change in baseload consumption for an individual customer equals αi,Reporting - 
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αi,Baseline. Evaluators should assess the magnitudes of and conduct statistical tests for 
differences in the mean and distributions of baseload consumption changes between 
participants and matched nonparticipants. In the two-way fixed-effects regression model, 
the coefficient γ1 represents the energy consumption impact that does not depend on 
weather. If the coefficient γ1 is large (whether negative or positive) relative to baseload 
energy consumption, this would suggest a difference in the change in baseload 
consumption between participants and the matched comparison group.  

If there is evidence of significant differences in trend consumption or changes in baseload 
consumption between participants and matched nonparticipants, the regression model may be 
mis-specified and the savings estimate may be biased. In such a situation, evaluators should 
follow two steps: 

1. Assess the significance (in terms of magnitude, not just statistical significance) of the 
difference relative to the expected smart thermostat savings and the potential for bias. If 
the potential for bias is small, report the assessment results and the estimated savings.  

2. If the potential for bias is high, attempt to diagnose the cause. Many smart thermostat 
program impact evaluations conduct participant surveys. This protocol recommends 
surveying participants and matched nonparticipants about their recent durable equipment 
purchases including electric vehicles, changes in household occupancy, and 
demographics and comparing the responses. This comparison may help the evaluators to 
diagnose the cause of the difference and to identify potential remedies.  

If the potential for bias is high, evaluators have several options: 

• Conduct the matching again, attempting to correct for the source of the trend or baseline 
consumption change differences by incorporating additional co-variates in the matching, 
and re-estimate the smart thermostat program savings.  

• Retain the matched comparison group but adjust the smart thermostat replacement energy 
savings for the bias from the trend or baseload consumption change differences. For an 
example of such an adjustment see DNV-GL (2020, p. 44) or Guidehouse (2020a).36      

• Retain the matched comparison group but include additional variables in the regression to 
attempt to correct for the source of the trend or baseline consumption change differences. 

• If it is not possible to improve the match quality or adjust the savings on the backend, 
retain the savings estimate but clarify the potential for bias in the savings estimate, and to 
the extent possible, state the magnitude of the potential bias so that program 
administrators and policymakers can factor this information into their planning and 
policy decisions.37  

 
36 DNV-GL (2020) adjusted the smart thermostat savings for three factors: the difference in trend consumption 
between participants and matched nonparticipants; the fact that not all customers have space heating and space 
cooling; and the fact that some matched nonparticipants already have smart thermostats. Adjusting the smart 
thermostat savings for differences in trend or baseload consumption may correct for bias related to non-weather-
sensitive drivers of consumption (e.g., adoption of electric vehicles). Other sources of bias may exist in the 
measurement of differences between participants and matched nonparticipants in weather-sensitive loads.  
37 Guidehouse (2020a) and DNV-GL (2020) are examples of evaluations that are transparent about the potential 
causes of bias and that adjust the regression-based savings estimates to reduce the potential for bias.  
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3.1.4.4 Daily or Hourly Energy Consumption Models 
The presentations of the two-stage approach and the two-way fixed-effects panel regression 
model were based on the availability of monthly billing consumption data. However, with some 
modifications, both modeling approaches may be adapted for use with daily or hourly energy 
consumption data.38  

When working with daily or hourly consumption data, evaluators have greater flexibility with 
their model specifications.39 The most important consideration is to specify a model (or models) 
that capture the relevant variation in daily or hourly energy consumption. With daily energy 
consumption data, evaluators may allow consumption to depend on day of the week. With hourly 
energy consumption, evaluators may allow consumption to depend on hour of the day and day of 
the week. Within the contexts of the two-stage, two-way fixed-effects panel regression and LDV 
panel models, evaluators can estimate separate models for each day of the week or each hour of 
the day.40 Alternatively, evaluators can expand the models to include interaction terms that allow 
the effects of baseload consumption and weather to depend on day of the week or hour of the 
day.  

3.2 Smart Thermostat Optimization Programs 
Smart thermostat optimization programs optimize cooling and/or heating schedules to produce 
incremental energy savings beyond those achieved by the base programming in the smart 
thermostat. Smart thermostat optimization can also achieve energy savings, load shifting, and bill 
savings for customers who are on a time-of-use or dynamic rate. The programs use software 
algorithms to optimize cooling and/or heating schedules through a series of very small 
adjustments to scheduled set points. Several smart thermostat vendors now provide optimization 
algorithms to their customers for free on an opt-in basis. Working with vendors, utility program 
administrators also can offer the programs to their customers. Most often, utility customers 
receive an offer to participate in the optimization program on the thermostat display or the 
thermostat app and must opt in to participate.  

3.2.1 Evaluation Approaches 
This protocol recommends that evaluators work with vendors to implement REDs or RCTs to 
estimate savings from smart thermostat optimization programs. The optimization savings is the 
difference in consumption between the smart thermostat with and without the optimization. 
Implementing randomized experiments to estimate optimization savings is usually 
straightforward because the optimization algorithms can be switched on and off remotely and at 
random by the thermostat manufacturer or service provider.  

 
38 If high-frequency data are unavailable, consult the UMP Chapter 10 (Stern and Spencer 2016) for alternative 
methods that combine an analysis of monthly energy consumption with engineering calculations or end-use load 
shapes. In general, these alternative methods require stronger assumptions and may not be as accurate as methods 
that analyze high-frequency consumption or runtime data. 
39 More research is needed about whether matching on hourly or daily data produces significant differences in 
results than matching on monthly data. While including aspects of hourly data in the matching process theoretically 
improves match quality with respect to loads across hours of the day, peak loads, and other aspects of hourly loads, 
it often proves difficult to attain tight matches using only hourly loads due to the noisiness of hourly data. Matching 
on daily or weekly data may produce better results.  
40 See DNV-GL (2020) for an example. 
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Table 3 lists the recommended evaluation approaches for smart thermostat optimization 
programs from most highly recommended to least recommended. Note that two separate 
approaches for RCTs are provided: an opt-out design and an opt-in design. In all approaches, 
program nonparticipants (who own smart thermostats) provide the baseline consumption for 
estimating the optimization impacts.  
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Table 3. Smart Thermostat Optimization Evaluation Design Options  

Approach Description Advantages Potential Challenges Gross or Net 
Savings 

RED: Utility randomly 
varies who receives 
encouragement to 
participate in the 
optimization program 

• Eligible customers are randomly 
assigned to receive encouragement 
to enroll in the optimization program 
(encouragement group) or not to 
receive encouragement (control 
group) 

• Any encouragement group or 
control group customer can 
participate in the program 

• Depending on whether control 
group customers can participate, 
RED yields an unbiased estimate 
of average savings per customer 
for all treated customers (control 
group participation not allowed) or 
for all customers who receive 
encouragement and opt in due to 
the encouragement (compliers with 
the encouragement) 

• All interested customers can 
participate—no need to delay or 
deny participation 

• Insufficient compliance 
with the encouragement: 
not enough encouraged 
customers opt into the 
program  

• Large sample sizes 
required to obtain 
precise savings estimate 

Net savings for all 
treated customers 
or compliers with 
the 
encouragement, 
depending on 
whether control 
group customers 
can opt in 

RCT: Utility randomly 
varies who receives 
treatment or on which 
days treatment is given 

Opt-out: The utility randomly assigns 
eligible customers to receive the 
optimization (treatment group) or not to 
receive treatment (control group). The 
utility can alternate the groups 
between receiving treatment and 
serving as the control  

Opt-out: Yields unbiased estimate of 
intent-to-treat treatment effect as 
some auto-enrolled customers will 
unenroll from the program; controls 
for self-selection in participation 

Opt-out: Potential 
customer dissatisfaction 
from auto-enrollment 

Opt-out: Net 
savings per 
treatment group 
customer (intent-to-
treat treatment 
effect) 

Opt-in: Customers self-enroll in 
optimization program and the utility 
either (a) randomly varies who 
receives treatment on a given day; or 
(b) randomly varies the days the 
optimization treatment is applied to all 
or some customers 

Opt-in: All eligible and interested 
customers can participate. 

Opt-in: Insufficient overlap 
in distributions of weather 
or other time-varying 
factors affecting 
consumption between 
treatment and control days; 
also, spillover of impacts 
from event to nonevent 
days can confound savings 
estimates 

Opt-out: Net 
savings per treated 
customer 

Matched comparison 
group 

Opt-in: Comparison group of 
nonparticipants matched on either 
energy consumption and other 
characteristics or only on energy 
consumption  

• Unnecessary to set up randomized 
experiment at the program start 

• Less susceptible to selection bias 
than replacement program 
evaluation as customers in 
matched comparison group have 
smart thermostats  

Potential for bias from self-
selection still exists 

Net savings per 
enrolled customer 
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Following are additional descriptions of these approaches: 

• RED experimental design. An RED for an optimization program would require 
randomly selecting eligible customers with smart thermostats for the encouragement 
group, who would be encouraged to participate in the optimization program. Customers 
who are randomly selected for the control group would not receive the offer and provide 
the baseline for measuring the savings for the encouragement group. Some treatment 
group customers receiving the offer who would not otherwise enroll will accept (these are 
referred to as compliers). The RED is expected to produce an unbiased estimate of the net 
savings for all treated customers (the treatment effect for the treated) through an 
instrumental variables two-step estimation procedure if none of the customers in the 
control group receive the optimization or for compliers (the local average treatment 
effect) if control group customers can enroll in the optimization program.41 To obtain a 
precise savings estimate, REDs usually require large treatment and control groups and 
sufficiently large rates of compliance with the encouragement. See the UMP Chapter 8 
(Agnew and Goldberg 2017) and UMP Chapter 17 (Stewart and Todd 2020) for 
additional details about implementing REDs and see Guidehouse (2019, 2020b) and 
Blonz et al. (2021) for examples of an RED smart thermostat optimization evaluation. 

• RCT experimental design. RCTs vary who receives treatment or on which days 
treatment is given and can be implemented in two main ways, depending on whether 
customers self-enroll or the utility auto-enrolls them:  

o In the first approach, randomly selected customers are defaulted into the 
optimization program while retaining the ability to opt out. Customers are 
randomly assigned to two or more groups. To estimate savings, one or more 
groups receive the optimization intervention, and their consumption is compared 
to that of a control group who does not receive the optimization.42  

o In the second approach, interested customers self-enroll in the optimization 
program and the optimization treatment is applied to either (a) randomly chosen 
customers; or (b) on randomly chosen days. In (a), the evaluator randomly assigns 
enrollees to two or more groups so the groups have similar mixes of geography, 
consumption, and demographics. Then the evaluator can generate a random 
sequence of testing periods (multiple consecutive days) during which one group 
would not receive the optimization and the remaining groups would. For the next 
period, a different group would serve as the control and the remaining groups 
would receive treatment, and this procedure would be repeated. In (b), the 
evaluator uses days when the thermostat optimization is not operational to 
establish the baseline. For example, a thermostat vendor could probabilistically 
assign customers to receive or not receive optimization for several consecutive 
days during the cooling or heating season. In this control-day approach, 

 
41 While control group customers would not receive the encouragement, the program administrator could allow 
interested control group customers to participate. In this situation, the RED would yield an estimate of the net 
energy savings for compliers (customers who participated due to the encouragement).  
42 Customers who opt out of treatment should be retained in the analysis sample for the duration of the experiment. 
The savings estimate from this RCT would be an intent-to-treat treatment effect (savings) unless the evaluator 
adjusts the savings estimates to account for opt-outs.  
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evaluators must ensure that the range of weather is equivalent on optimization and 
nonoptimization days or use regression analysis to adjust for any differences in 
weather conditions between optimization and nonoptimization days to minimize 
potential for bias in the savings estimates. Also, evaluators must rely on data at a 
daily or more granular level.43 

• Matched comparison group. In this approach, evaluators match optimization program 
participants to smart thermostat customers who do not participate in the optimization 
program based on baseline period energy consumption and possibly customer 
demographic variables. Because the matched comparison group only comprises smart 
thermostat customers, the potential for bias from self-selection is lower for optimization 
programs than for replacement programs. The thermostat optimization program could be 
implemented on an opt-in or opt-out basis. Making participation the default option while 
allowing participants to opt out would reduce self-selection in participation due to 
customer tendencies to adhere to the status quo (Fowlie et al. 2021) and make it easier for 
the evaluator to construct a valid comparison group.  

In addition, through a statistical power analysis, evaluators should verify that the planned sample 
sizes for the treatment and control or comparison groups are large enough to detect the expected 
savings given the unexplained random variation in the energy consumption or vendor telemetry 
data.44 

3.2.2 Smart Thermostat Telemetry Data and Whole-Home Consumption Data 
To estimate optimization program savings, evaluators can analyze whole-home consumption 
data from the utility or thermostat runtime telemetry data from the thermostat vendor. This 
protocol recommends analyzing whole-home hourly or daily consumption data when such data 
are available because they will account for all optimization program-induced energy impacts, 
including the use of other appliances (such as fans) to control the home temperature, changes in 
refrigerator runtimes, and other secondary effects of the optimization. In addition, in contrast to 
telemetry runtime data analysis, home energy consumption data analysis does not require 
converting smart thermostat HVAC runtime impacts to energy. Both features mean that home 
energy consumption data analysis is likely to yield more accurate savings estimates than 
telemetry runtime data analysis.  

However, utility meter data may be unavailable, or the probability of detecting the expected 
smart thermostat program optimization savings in the meter data may be low. Evaluators of 
smart thermostat optimization programs should analyze thermostat runtime when one or more of 
the following conditions are met: 

• Optimization program participants and nonparticipants do not have AMI meters, or the 
utility is otherwise unable to provide interval data from AMI meters. 

 
43 For both approaches, evaluators should be aware of the potential for changes in thermostat-setting behaviors by 
participants who become aware of the treatment. For example, participants may become habituated to more energy 
efficient temperatures and set new, more efficient thermostat set points.  
44 More information is available in UMP Chapter 8 (Agnew and Goldberg 2017). 
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• Due to customer privacy protections and policies, smart thermostat vendors are unable to 
reveal the identities of optimization program participants and nonparticipants, preventing 
evaluators from linking smart thermostat customers to utility meter data. 

• The optimization program analysis sample is not large enough to detect the expected 
optimization energy impacts in whole-home AMI meter data. The consumption data may 
contain too much noise to pick up the optimization energy impacts. The probability of 
detecting the savings through statistical analysis may be higher with HVAC runtime data.     

Because thermostat telemetry data are usually available for the periods before, during, and after 
the optimization for both participants and nonparticipants, evaluators can construct accurate 
baseline HVAC runtimes and estimate the optimization savings as a D-in-D. As an example of a 
telemetry data analysis, in Massachusetts in summer 2019, several energy efficiency program 
administrators and a thermostat vendor implemented an RED to test a thermostat optimization 
program. The evaluator analyzed the impacts of the optimization on thermostat runtimes and 
HVAC electricity consumption using vendor-supplied telemetry data for customers randomly 
assigned to the RED encouragement and control groups and a D-in-D fixed effects panel 
regression (Guidehouse 2020b).   

3.2.3 Savings Estimation 

3.2.3.1 Whole-Home Consumption Analysis 
When estimating optimization program savings by analyzing whole-home consumption data, 
evaluators should specify a regression model that matches the time granularity of the data and 
the desired granularity of the savings estimate(s), such as hourly or daily. In addition, evaluators 
will need to specify a regression model whose coefficients will measure the difference in energy 
consumption between optimization participants and nonparticipants or between optimization 
days and nonoptimization days depending on the research design. Evaluators can implement a 
variant of the two-stage approach, the two-way fixed-effects panel regression, or the LDV panel 
regression to estimate the optimization savings. These approaches are described in Section 
3.1.4.2. 

3.2.3.2 Thermostat Telemetry Analysis 
Evaluators will need to collect thermostat telemetry data from smart thermostat vendors. If the 
telemetry data are anonymized, evaluators should start by verifying that the runtimes are 
associated with smart thermostats within the utility’s service territory. Evaluators can compare 
the zip code locations of customers in the anonymized telemetry data with the utility’s or 
program administrator’s service area to confirm the optimization participant receives service 
from the utility. 

Next, the evaluator should select the runtime data based on the season under study (i.e., the 
winter heating months or summer cooling months). Most telemetry data sets include a field 
indicating if the home HVAC system is set to off, heating mode, or cooling mode. In the case of 
programs targeting optimization of auxiliary heat, the analysis should use separate models of 
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primary and auxiliary heat because the running wattage for the two systems will be different.45 If 
separate primary and auxiliary runtime data are unavailable, this protocol discourages the 
analysis of telemetry runtime data and instead encourages analysis of AMI meter data.46  

The next step is to run appropriate model specifications to estimate the runtime or energy 
savings. Evaluators have the option of converting runtime data to energy before modeling energy 
consumption or modeling runtime and then converting the runtime impact estimate to energy 
savings. Approaches for calculating runtime-to-energy conversions are presented in the next 
section.  

Conversion From Runtime to Energy Savings 
Converting runtime impacts to energy savings requires multiplying runtime or the runtime 
reduction by an HVAC energy-consumption-per-unit-of-runtime factor.47 This conversion will 
be accurate for most single-stage systems.48 Also, for compressor-based systems, this runtime 
factor will be a function of outside temperature (Goldman et al. 2017). When converting 
runtimes to energy, it is best practice to use conversion factors applicable to the smart thermostat 
program population under study rather than conversion factors applicable to the general 
population.   

Making runtime-to-energy conversions usually requires information about the heating and 
cooling systems of smart thermostat program participants, such as:  

• Cooling equipment type and capacity 

• Heating equipment type and capacity 

• Cooling and heating efficiency values 

• Cooling and heating fuel sources. 

The most widely used approach for obtaining runtime-to-energy conversion factors is to draw 
from region-specific technical reference manuals. In addition, engineering studies or primary 

 
45 An additional energy-savings source from smart thermostats is their more efficient use of backup/auxiliary heat 
from heat pump systems. Considering that heat pumps require longer recovery times to bring the house back to a 
comfort set point due to lower-temperature supply air, a thermostat will sense this delay, automatically turning on 
auxiliary heat to warm the house more rapidly. Smart thermostats can learn how long it takes for the house to 
recover from various setback conditions, then automatically adjust the setback amount to maximize the unit 
efficiency. However, some heat pumps will also sense the delay and switch to a less-efficient, higher-power mode 
when they do not reach the set point quickly enough. This complicates the interpretation of runtime impacts. 
46 Analysis of smart thermostat runtime data will capture the benefits of auxiliary heating optimization if that system 
is also controlled by the smart thermostat, but other secondary heat such as portable electric resistance heating that 
might offset optimization control of the primary heating will not be captured. 
47 Depending on the region, evaluators may have to consider multiple heating fuels. If possible, separate models 
should be run for thermostats that control natural gas, electric, or oil heat, and for whether the thermostats are 
controlling furnaces, heat pumps, or boilers. If there is no way to accurately assign thermostats to a given fuel type 
and equipment type, evaluators can estimate one runtime savings value (or percentage savings) and apply it to the 
best estimate of the proportions and usage by fuel type and equipment type in the region. 
48 This approach may not work for hydronic systems using water or water-based solutions for heat transfer. 
Hydronic systems often do not run the burner the whole time a thermostat calls for heat but cycle the unit on based 
on the hydrostat in the boiler reservoir. 
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engineering study data (such as baseline studies or participant surveys) may also be used. See 
Guidehouse (2020b) for an example of converting runtime to power based on analysis of 
metering data from a baseline study. 

Evaluators can also collect nameplate information by visiting a sample of participant sites or 
asking participants to self-report. See Goldman et al. (2017) for an example of the former 
approach and how HVAC nameplate data may be used to calculate power. See Guidehouse 
(2022) for an example of the latter approach in which residential utility customers submitted 
photographs of home HVAC nameplate information. These approaches yield information about 
HVAC equipment specific to the program population being evaluated and may be most useful 
when the smart thermostat program population differs from the average residential utility 
customer as represented in the TRM. However, if site visits or self-reporting are employed, 
evaluators should take steps to minimize any bias from self-selection related to who participates 
in a site visit or self-reports HVAC information. 

Evaluators should be mindful of the increasing prevalence of two-stage or three-stage HVAC 
systems, which will draw different amounts of electric power or natural gas depending on the 
system’s level of operation and will complicate the conversion from runtime to kilowatt-hour or 
therm impacts. Evaluators will need separate conversion factors for the runtimes for the three 
stages. A useful reference for making runtime-to-energy conversions for multi-stage systems is 
Cutler et al. (2013).49  

  

 
49 Most variable speed HVAC systems including those with more than three heating or cooling capacities are 
incompatible with smart thermostats. 
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4 Net-to-Gross Considerations 
Consult the UMP Chapter 21 (Violette and Rathbun 2017) for a discussion about determining net 
program impacts at a general level, including direction on how to assess freeridership. Additional 
net-to-gross discussion and consideration based on the program conditions are available in 
Section 3.1.2.2 of this protocol and UMP Chapter 8 (Agnew and Goldberg 2017). 
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5 Other Evaluation Issues 
5.1 Data Availability, Accessibility, and Security 
Telemetry data analysis can provide useful insights about the energy impacts of smart 
thermostats. For example, if AMI data show an increase in energy consumption during certain 
hours, and thermostat runtime data shows that the HVAC system was not running during the 
same hours, an evaluator can infer that the thermostat did not contribute to the energy 
consumption increase in the home during these hours. In addition, thermostat telemetry data may 
be the only data available to evaluators of optimization programs. 

Due to the potential value of thermostat telemetry data, evaluators, program administrators, and 
smart thermostat vendors should continue to work together to find solutions to several issues 
related to telemetry data availability, accessibility, and security50: 

• Vendors have valid concerns about providing smart thermostat data to third-party entities 
and use various data security and privacy steps (such as anonymization or aggregation of 
the data) to protect customer data from unauthorized access, destruction, use, 
modification, or disclosure. At the same time, utility program administrators have 
obligations to be responsible stewards of rate payer funds and to undertake rigorous, 
transparent, and replicable evaluations. Steps to protect privacy and ensure security can 
make it difficult for evaluators to establish the source, completeness, and quality of the 
telemetry data and to link the telemetry data to program participants.     

• To receive customer identifying information in the telemetry data such as name, street 
address, and utility account number, utilities or evaluators often must obtain permissions 
for such information from individual customers. Evaluators may not receive all needed 
permissions or the customers giving permission may not be representative of the 
population, providing analysis results that are not statistically significant or externally 
valid. There may be ways for evaluators and vendors to increase the number and 
representativeness of customers opting to share their thermostat data.  

• Even if explicit customer authorizations are obtained, evaluators will need to work with 
vendors to obtain the data. This may involve verifying with the thermostat vendor that 
customer authorization procedures will be acceptable to facilitate the data release. In 
general, it is prudent to have explicit support for customer telemetry data sharing 
referenced in the incentive agreement between the utility (or program administrator) and 
each vendor. Also, evaluators should test the data access process on a few sample 
thermostats early in the process to ensure that all necessary data fields will be available 
and each customer’s data can be matched to program participant records, if necessary. It 
may also be necessary for the program administrator to negotiate data access 
requirements as part of the incentive agreement (e.g., as part of the request for proposal 
for qualified products), and the vendor may charge an additional fee for data access 
infrastructure (e.g., APIs, dashboards) and technical support. 

 
50 Apex Analytics (2021) discusses many of these issues and impediments to using telemetry data for the purposes 
of evaluation.  



40 

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

5.2 ENERGY STAR Connected Thermostat Metric 
The U.S. Environmental Protection Agency’s (EPA) ENERGY STAR® Connected Thermostat 
Method to Demonstrate Field Savings was originally designed to certify under the ENERGY 
STAR program that smart thermostats were capable of delivering significant energy savings to 
most households. ENERGY STAR primarily offers a metric of the relative performance of 
different thermostats compared with a common baseline (of maintaining a constant indoor 
temperature) and does not allow for or otherwise incorporate different or varied behaviors prior 
to installing a smart thermostat. The metric was not intended for use in evaluating energy savings 
for smart thermostat programs. 

The ENERGY STAR metric, method, and specification are expected to be updated every three to 
four years, as is typical for ENERGY STAR specifications. A strong focus of recent EPA 
research has been to improve the score to be a more reliable indicator of achieved savings. The 
EPA would like to understand if the ENERGY STAR metric or a modified version of the metric 
could be used to estimate energy savings.51  

Two recent studies implemented modified versions of the ENERGY STAR metric and compared 
the resulting savings to savings estimated with whole-home consumption data (Guidehouse 
2020a; Apex Analytics 2021). In both studies, the modifications primarily involved the use of 
more realistic assumptions about the baseline thermostat setting behavior of smart thermostat 
adopters before the smart thermostats were installed. Guidehouse (2020a) found nontrivial 
differences in the estimated percentage cooling savings between the whole-home consumption 
analysis (7.8%) and the ENERGY STAR metric (10% to 14%).52 The study’s main conclusion 
was that the estimated savings were sensitive to the assumption of a household’s preferred 
comfort temperature prior to installing their smart thermostat. The main objective of the Apex 
Analytics (2021) study was to validate the adjusted ENERGY STAR metric as an indicator of 
energy savings, but the authors found very weak or no correlation between the ENERGY STAR 
metric savings and savings from site-level meter monthly consumption data analysis. The study 
“could not establish a method to use thermostat-derived metrics to estimate these energy savings 
with sufficient reliability for use by Northwest utilities.” The Northwest study’s finding of a 
weak correlation is not unexpected because the ENERGY STAR metric is a measure of the 
efficiency of a home’s thermostat set points, not an indicator of energy savings from the smart 
thermostat, and site-level estimates of energy savings from the meter data analysis were noisy.   

The EPA and other researchers are continuing to refine the ENERGY STAR metric with the 
hope that in the future it may support smart thermostat program evaluation. The ENERGY 
STAR metric can complement smart thermostat program evaluations that analyze monthly 
billing consumption or AMI meter data. For now, however, evaluators should not rely on the 
metric as their primary evaluation method.  

  

 
51 The EPA believes that incorporating locally appropriate baseline temperature data, collected through data logging 
of actual indoor temperatures in representative homes, into an ENERGY STAR metric will improve the accuracy of 
the savings estimates of the ENERGY STAR method. 
52 This 10% to 14% represents the range of savings associated with assumed baseline behavior agreed to by the 
study stakeholders. The baseline assumptions were not verified.  
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