
NREL is a national laboratory of the U.S. Department of Energy 
Office of Energy Efficiency & Renewable Energy 
Operated by the Alliance for Sustainable Energy, LLC 
This report is available at no cost from the National Renewable Energy 
Laboratory (NREL) at www.nrel.gov/publications. 

 

 
Contract No. DE-AC36-08GO28308 

  

Technical Report  
NREL/TP-5D00-85679 
April 2023 

Final Technical Report: Multi-Timescale 
Integrated Dynamics and Scheduling 
for Solar (MIDAS-Solar)   
Jin Tan,1 Andy Hoke,1 Haoyu Yuan,1 Bin Wang,1 Rick Wallace 
Kenyon,1 Xin Fang,1 Przemyslaw Koralewicz,1 Emanuel Mendiola,1 
Yingchen Zhang,1 Yilu Liu,2 Shutang You,2 Mirka Mandich,2  
Annie Zhao,2 Jianhui Wang,3 Shengfei Yin,3 Yanling Lin,3 Erik Ela,4 
Vikas Singhvi,4 Parag Mitra,4 and Robert Entrike4 

1 National Renewable Energy Laboratory 
2 University of Tennessee, Knoxville 
3 Southern Methodist University 
4 Electric Power Research Institute 



NREL is a national laboratory of the U.S. Department of Energy 
Office of Energy Efficiency & Renewable Energy 
Operated by the Alliance for Sustainable Energy, LLC 
This report is available at no cost from the National Renewable Energy 
Laboratory (NREL) at www.nrel.gov/publications. 

 

 
Contract No. DE-AC36-08GO28308 

 

National Renewable Energy Laboratory 
15013 Denver West Parkway 
Golden, CO 80401 
303-275-3000 • www.nrel.gov 

Technical Report 
NREL/TP-5D00-85679 
April 2023 

Final Technical Report: Multi-Timescale 
Integrated Dynamics and Scheduling 
for Solar (MIDAS-Solar) 

Jin Tan,1 Andy Hoke,1 Haoyu Yuan,1 Bin Wang,1 Rick Wallace 
Kenyon,1 Xin Fang,1 Przemyslaw Koralewicz,1 Emanuel Mendiola,1 
Yingchen Zhang,1 Yilu Liu,2 Shutang You,2 Mirka Mandich,2  
Annie Zhao,2 Jianhui Wang,3 Shengfei Yin,3 Yanling Lin,3 Erik Ela,4 
Vikas Singhvi,4 Parag Mitra,4 and Robert Entrike4 

1 National Renewable Energy Laboratory 
2 University of Tennessee, Knoxville 
3 Southern Methodist University 
4 Electric Power Research Institute 

Suggested Citation 
Tan, Jin, Andy Hoke, Haoyu Yuan, Bin Wang, Rick Wallace Kenyon, Xin Fang, 
Przemyslaw Koralewicz, Emanuel Mendiola, Yingchen Zhang, Yilu Liu, Shutang You, 
Mirka Mandich, Annie Zhao, Jianhui Wang, Shengfei Yin, Yanling Lin, Erik Ela, Vikas 
Singhvi, Parag Mitra, and Robert Entrike. 2023. Final Technical Report: Multi-Timescale 
Integrated Dynamics and Scheduling for Solar (MIDAS-Solar). Golden, CO: National 
Renewable Energy Laboratory. NREL/TP-5D00-85679. 
https://www.nrel.gov/docs/fy23osti/85679.pdf.  

https://www.nrel.gov/85679/fy23osti/85679.pdf


 

 

NOTICE 

This work was authored in part by the National Renewable Energy Laboratory, operated by Alliance for Sustainable 
Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding 
provided by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Solar Energy 
Technologies Office. The views expressed herein do not necessarily represent the views of the DOE or the U.S. 
Government. 

This report is available at no cost from the National Renewable 
Energy Laboratory (NREL) at www.nrel.gov/publications. 

U.S. Department of Energy (DOE) reports produced after 1991 
and a growing number of pre-1991 documents are available  
free via www.OSTI.gov. 

Cover Photos by Dennis Schroeder: (clockwise, left to right) NREL 51934, NREL 45897, NREL 42160, NREL 45891, NREL 48097,  
NREL 46526. 

NREL prints on paper that contains recycled content. 

http://www.nrel.gov/publications
http://www.osti.gov/


DE-EE00034224 
Jin Tan  

 

Page 1 of 73 

Acknowledgement:  
This material is based upon work supported by the U.S. Department of Energy’s Office 
of Energy Efficiency and Renewable Energy (EERE) Solar Energy Technologies 
Office (SETO) under the SETO Lab Call Award Number 34224. Support for the work 
was also provided by Hawaiian Electric Companies (HECO) under cooperative 
research and development agreement no. CRD-20-16630.  
The authors thank the project teams from the partner organizations, including the 
University of Tennessee, Knoxville (Yilu Liu, Shutang You, Mirka Mandich, and Annie 
Zhao); Southern Methodist University (Jianhui Wang, Shengfei Yin, and Yanling Lin); 
the Electric Power Research Institute (Erik Ela, Vikas Singhvi, Parag Mitra, and Robert 
Entriken); and the multiple NREL researchers who conducted extensive research and 
analysis (Haoyu Yuan, Xin Fang, Bin Wang, Richard Wallace Kenyon, Przemyslaw 
Koralewicz, and Emanuel Mendiola). Many of these contributors are coauthors in the 
corresponding papers and reports. Also, we offer a special thanks to those who 
contributed behind the scenes to set up experiments, manage finances and reporting 
(Shannon Calkum), and otherwise support these efforts. Thanks also to Barry Mather 
and Bryan Palmintier for reviewing our publications. 
 
Special thanks as well to our SETO technical managers, Kemal Celik, Jeremiah Miller, 
Yi Yang, and Guohui Yuan, who supported this project and provided feedback.  
 
The project team thanks the members of the technical review committee for their 
insightful comments and assistance. Participation in the committee does not imply 
agreement with the project findings. The committee included Marc Asano (HECO), Li 
Yu (HECO), Gemini Yau (HECO), Julia Matevosyan (Energy Systems Integration 
Group), Mark O’Malley (University College Dublin), Clyde Loutan (California 
Independent System Operator), Xiaochuan Luo (Independent System Operator New 
England), and Kai Sun (University of Tennessee, Knoxville). 
 
Disclaimer: “This report was prepared as an account of work sponsored by an agency 
of the United States Government. Neither the United States Government nor any 
agency thereof, nor any of their employees, makes any warranty, express or implied, 
or assumes any legal liability or responsibility for the accuracy, completeness, or 
usefulness of any information, apparatus, product, or process disclosed or represents 
that its use would not infringe privately owned rights. Reference herein to any specific 
commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, 
or favoring by the United States Government or any agency thereof. The views and 
opinions of authors expressed herein do not necessarily state or reflect those of the 
United States Government or any agency thereof.” 

  



DE-EE00034224 
Jin Tan  

 

Page 2 of 73 

Executive Summary 
Solar photovoltaic (PV) installations have experienced unprecedented growth in the 
United States. PV will become not only an energy producer but also a necessary provider 
of ancillary services at multiple timescales. Conventional methods to simulate power 
systems operations—such as long-term production simulation (which typically considers 
schedules from hours to minutes by using an optimization framework) and short-term 
transient studies (which simulate dynamics from seconds to sub-seconds using state 
variables and differential equations)—are not sufficient for studying the multiple-timescale 
variation of solar generation and its impact on system reliability. Long-term system 
economics and short-term system dynamics are highly coupled, particularly when the 
penetration level of renewable generation is extremely high, because the uncertainty and 
variability of solar generation will impact both power system steady-state and dynamic 
performance. 
This project helps meet and exceed the U.S. Department of Energy Office of Energy 
Efficiency and Renewable Energy Solar Energy Technologies Office goal of systems 
integration by directly addressing this stability and reliability challenge for power grid 
planning and operation. We have developed a temporally comprehensive, closed-loop 
simulation model, named Multi-timescale Integrated Dynamics and Scheduling (MIDAS), 
that seamlessly simulates power system operations from economic scheduling (day-
ahead to hours) to dynamic response analysis (seconds to sub-seconds). For schedules 
with very high levels of inverter-based resources (IBRs), up to and including 100%, the 
stability of grid controls has been evaluated through electromagnetic transient (EMT) 
simulations and power-hardware-in-the-loop (PHIL) simulations of key transient events at 
key schedule points. Specifically, MIDAS provides: 

• A closed-loop simulation framework for simulating timescales from economic 
scheduling to dynamic stability analysis 

• Machine learning-based stability assessment 
• EMT modeling and analysis for large-scale power systems 
• MIDAS PHIL test bed. 

We worked with Hawaii Electric Companies to apply the MIDAS study framework to a 
Maui grid study. The entire island’s transmission system was modeled in detail—from a 
yearly scheduling model, to a second-level frequency dynamic model, down to a sub-
second-scale EMT model to address critical stability issues.  
The project demonstrated how MIDAS can help system planners and operators assess 
system reliability and stability while the power grid is marching toward a high-renewable, 
high-IBR future. In this Maui grid study, we found that 100% instantaneous IBR operation 
is achievable in EMT simulation and PHIL testing, and grid planners and operators might 
need new analysis/simulation tools to assess grid reliability and stability in the scheduling 
stage. MIDAS will bring Maui and other systems closer to 100% clean and stable energy 
futures. (In this study, we examined transient stability. Other topics necessary for 100% 
IBR operation, such as protection and resource adequacy, were not examined.)   



DE-EE00034224 
Jin Tan 

Page 3 of 73 

Table of Contents 

1 Background .............................................................................................................. 5 

1.1 Background and Motivation............................................................................... 5 

1.2 Literature Review .............................................................................................. 5 

2 Project Objectives .................................................................................................... 7 

2.1 Objectives ......................................................................................................... 7 

2.2 Summary of Tasks ............................................................................................ 7 

3 Project Results and Discussion ................................................................................ 9 

3.1 Introduction ....................................................................................................... 9 

3.2 MIDAS Framework .......................................................................................... 10 

3.3 Integrated Dynamic and Scheduling Model .................................................... 12 

3.3.1 Extended-Term Dynamic Model of PV and Grid ........................................ 12 

3.3.2 Multi-Timescale Scheduling Model Development ...................................... 16 

3.3.3 Interface Between Dynamic and Scheduling Models ................................. 17 

3.3.4 Full-Dynamic Simulation of Integrated Dynamic and Scheduling Model .... 19 

3.3.5 Quasi-Dynamic Simulation of Integrated Dynamic and Scheduling Model 20 

3.4 Use Cases for MIDAS ..................................................................................... 21 

3.4.1 18-Bus Test System .................................................................................. 21
3.4.2 Maui Use Case .......................................................................................... 24 

3.5 Large-Scale EMT Model for Maui Grid ............................................................ 31 

3.5.1 EMT Modeling of Maui Grid ....................................................................... 31 

3.5.2 Validation of Maui PSCAD Model .............................................................. 32 

3.5.3 Simulation of Low-inertia Scenarios .......................................................... 34 

3.5.4 Transmission and Distribution Simulation of Maui Grid ............................. 40 

3.6 PHIL Testing for MIDAS .................................................................................. 40 

3.6.1 MIDAS PHIL Test Bed ............................................................................... 40 

3.6.2 PHIL Testing for GFM Inverter in Low-inertia Grid ..................................... 41 

3.7 240-bus WECC Test System Development .................................................... 47
3.8 Machine-learning Based Security Assessment ............................................... 48 

3.9 Tools Developed Under MIDAS Project .......................................................... 52 

3.9.1 MIDAS Tool ............................................................................................... 52 

3.9.2 DC2AC Tool .............................................................................................. 54 



DE-EE00034224 
Jin Tan  

 

Page 4 of 73 

3.9.3 PSS/E Network Reduction Tool ................................................................. 55 

3.10 Technical Summary ........................................................................................ 55 

4 Significant Accomplishments and Conclusions ...................................................... 57 

4.1 Featured Accomplishment .............................................................................. 57 

4.2 High-level Conclusions ................................................................................... 58 

4.2.1 Learnings from a Multi-timescale Simulation Approach ............................. 58 

4.2.2 100% IBR Operation is Achievable in EMT Simulation and PHIL Testing . 58 

5 Path Forward ......................................................................................................... 60 

5.1 System Planning and Operation ..................................................................... 60 

5.2 Advanced Coordination Between Solar and Storage ...................................... 61 

5.3 Plans for Tools Developed Under the Project ................................................. 61 

5.4 Development of the 240-bus WECC Test System .......................................... 62 

5.5 Community Engagement ................................................................................ 63 

6 Inventions, Patents, Publications, and Other Results ............................................. 64 

References .................................................................................................................... 69 

Appendix ....................................................................................................................... 73 

6.1 Appendix A – 18-bus 4-areaTest System ....................................................... 73 

6.2 Appendix B – Machine-learning based dynamic stability assessment. ........... 73 

 
  



DE-EE00034224 
Jin Tan  

 

Page 5 of 73 

1 Background 

1.1 Background and Motivation  
Increasing penetration levels of variable generation (VG) on the power grid will 
significantly increase the difficulty of balancing power systems operations at multiple 
timescales due to the reduced inertia and limited frequency reserve. This leads to poor 
grid frequency performance. For example, the Australian Energy Market Operator 
(AEMO) reported that the power system frequency remained outside the normal operating 
range more than 1% of the time during January 2019 [1]. The United Kingdom blackout 
on August 9, 2019, was exacerbated by low system inertia in power grids with high 
penetrations of inverter-based resources (IBRs) [2]. To address this, the United Kingdom  
recently launched a new inertia market design [3] to maintain the system inertia level, but 
it brings more conventional generation online. Therefore, without considering the fast 
frequency response capability of IBRs in scheduling, renewable energy will eventually hit 
a penetration ceiling due to the limited inertia and frequency response from generators.  
Solar and wind power plants have been proven to be technically capable of providing 
frequency control ancillary services (FCAS) through active power control [4-6], including 
fast frequency control, primary frequency control (PFC), and automatic generation control 
(AGC).1 If designed correctly, active power control from VG can have superior frequency 
regulation performance compared to conventional generators in terms of speed and 
accuracy because most existing photovoltaic (PV) and wind power plants interface with 
the power grid through power electronic devices with fast responses [7-9]; however, these 
advanced controls of PV and other IBRs are rarely considered in practice. Grid operators 
are not confident in VG being as reliable as traditional FCAS resources—partly due to the 
lack of a simulation tool to assess the performance of VG providing FCAS, to predict the 
inherent risk of using VG for FCAS considering VG variability and uncertainty, and to 
validate the functioning of newly proposed market incentives for VG-based FCAS. 
As more renewables are integrated into electric grids, there is an increased interest in 
market designs to incentivize VG to be scheduled to provide fast FCAS [6, 10] (minute- 
to hour-level time resolution). There is also a need to evaluate the deployment of FCAS 
provided by VG and its performance in frequency dynamics (second-level time 
resolution). Therefore, in this project, we introduce a novel multi-timescale framework  to 
study the performance of VG providing FCAS, named Multi-timescale Integrated 
Dynamics and Scheduling (MIDAS). Using this framework, two key issues are addressed: 
(1) the cost and reliability benefit of using PV to provide FCAS and (2) the risk of using 
PV to provide multiple FCAS.  

1.2 Literature Review  

Current commercial software for power system analysis is typically designed for specific 

 
1 AGC is a preferred term in North America for secondary frequency control. Within the Union for the Co-ordination of Transmission of 
Electricity (UCTE), secondary frequency control is called load-frequency control. The term AGC, however, designates the combination of 
dispatching and secondary frequency control within UCTE.  
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applications. For example, PLEXOS is widely used for production cost modeling, and 
PSS/E and PSLF are well-known for transient dynamic analysis. These tools and their 
approaches work well to tackle problems in traditional power systems. But the new 
problems and challenges brought on by high penetrations of renewable generation have 
fundamentally changed the interactions among operations at various timescales.  

In recent years, some efforts have been made to combine multiple specific-timescale 
simulation modules into one platform. Reference [11] suggested that PSS/E can perform 
a new function, called extended-term dynamic simulation, to extend dynamic simulations 
to a virtually unlimited time frame, and the authors implemented slow-moving controls. 
This new feature has been used to test compliance with standards (e.g., CPS1 and CPS2) 
and evaluate the impact of renewable generation on system frequency performance [11]; 
however, the steady-state set points of the system cannot be realistically evaluated 
without knowledge of the economic scheduling. KEMA Inc. published the Renewable 
Energy Modeling and Integration Tool (KERMIT) to simulate power system frequency 
behavior for 24 hours, but it does not include economic scheduling. In the current industry 
practice, market operation is totally independent of dynamic simulation, but with the 
increasing FCAS from VG proposed for the future power grid, it becomes necessary to 
simulate the interactions between the reserve scheduling and the reserve deployment 
through dynamic controls. NREL’s Flexible Energy Scheduling Tool for Integrating 
Variable Generation (FESTIV) can simulate the behavior of the grid from unit commitment 
to AGC; however, it adopts a simplified area control error (ACE) calculation and provides 
only steady-state frequency [12]. Additionally, some studies investigate the adequacy of 
wind generators providing all-timescale frequency response services by simulations from 
either the dynamic or market perspective [13, 14]; however, thus far, they cannot bridge 
economic scheduling and system dynamic performance.  

Although the technical capability of providing FCAS with IBRs has been tested and 
proved, the related FCAS market models for IBRs in the current independent system 
operator (ISO) market in the United State are still under discussion. A new primary 
frequency response (PFR) market has been proposed and developed to host the reserve 
for short-term primary frequency support [15, 16].  
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2 Project Objectives 

2.1 Objectives 

The MIDAS-Solar project developed both a multi-timescale grid model and an integrated 
PV model to seamlessly simulate solar PV variability and its impact on power systems 
operations from economic scheduling timescales (day-ahead to hours) to dynamic 
response analysis (seconds to sub-seconds). 

For schedules with very high levels of IBRs, up to and including 100%, the stability of grid 
controls were evaluated through targeted electromagnetic transient (EMT) simulations 
and power-hardware-in-the-loop (PHIL) simulations of key transient events at key 
schedule points. 

2.2 Summary of Tasks  

Figure 1. Subtasks and flowchart of the MIDAS project 

To achieve the project objectives, we divided the technical work into three parts: 
modeling, validation, and application, as summarized in Figure 1. First, the proper 
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submodules of the grid and PV models were separately developed to ensure the fidelity 
of each device model at different timescales—from the day-ahead scheduling timescale, 
to the seconds-level EMT dynamics, to the millisecond-level EMT dynamics of the power 
grid and PV inverters (Task 1 and Task 6).  

To study the interactions among the economics, reliability, and stability of a high-PV grid, 
the submodules from Task 1 were efficiently integrated to realize the novel multi-
timescale, quasi-dynamic test model and simulation scheme (Task 2). To test and refine 
the scalability of the proposed model, multi-timescale models were implemented in more 
realistic grids, including the Maui grid and the Western Electricity Coordinating Council 
(WECC) 240-bus test system (Task 3). Task 5 demonstrated the applicability of the multi-
timescale approach to three relevant applications drawn from impact analysis, control, 
and market design domains.  

To study the stability of an IBR-dominated grid, the full EMT model of the Maui grid was 
developed. In addition, distribution feeders were modeled to study the interactions 
between the transmission and distribution systems (Task 6).  

Both the proposed multi-timescale model and EMT model of the Maui grid were validated 
and tested through PHIL (Task 4 and Task 8). 
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3 Project Results and Discussion 

3.1 Introduction  

Increasing penetration levels of renewable generation on the power grid will significantly 
increase the uncertainty of balancing power systems operations at multiple timescales. 
From market-based economic scheduling to frequency dynamics, all operation statuses 
will be impacted by the response of renewable generation to various dispatch and control 
signals, as shown in Figure 2. To ensure the security and reliability of the grid operation, 
various renewable sources—such as solar, wind, and batteries—will be required to 
provide various ancillary services, and additional market incentives will be needed to 
encourage renewables to provide these services.  

 
Figure 2. Timescales of power system dynamics and commercial software 

The current commercial software for power system analysis are designed for one-
timescale, isolated applications. For example, PLEXOS is for wholesale market 
simulations, and PSS/E and PSLF are for transmission electro-mechanic dynamic 
simulations. These tools and their approaches work well to tackle problems in traditional 
synchronous generator-dominated power systems. But considering the new problems 
and challenges brought by high penetrations of renewable generation, the interactions 
between various-timescale operations has fundamentally changed. For example, in the 
future, ISOs might encourage renewable generation to provide primary or secondary 
frequency ancillary service to improve the system reliability by developing new market 
rules. In this case, accurately capturing both the market operation and the frequency 
dynamic features in one platform will become an urgent requirement.  
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Different commercial software anin-house tools are summarized in Table 1 based on their 
target timescales.  

 Table 1. Comparison of Different Tools for Multi-Timescale Simulations 

 Vendor Transient AGC Extended-
Term 

Economic 
Dispatch 

Day-Ahead Unit 
Commitment Planning 

PSS/E [1] SIEMENS       

PLEXOS Energy 
Exemplar 

      

KERMIT 
[2], [3] KEMA       

IGMS[4] NREL       

FESTIV[5] NREL       

MAFRIT 
[6], [7] NREL       

MIDAS NREL       

     Capable         Capable but not well developed  

Based on Table 1, the current commercial software is limited to one time resolution and 
research tools are not capable of covering the studied full-time-spectrum of solar 
variation, therefore they cannot analyze the variability and uncertainty impacts across 
different operational timescales.  In this project, we propose an integrated model MIDAS 
that can perform efficient time-domain simulations over a broad range of phenomena—
from fast control systems with a time constant, to transient dynamics (10 milliseconds), 
to load-following and scheduling timescales of up to 24 hours as shown in Table 1 . To 
simulate multiple time resolution, MIDAS integrate all the sub-scheduling programs and 
dynamic simulation in practice into one simulation framework with flexibility to test 
different scheduling strategies impact on economics, reliability and stability of grid 
operation simultaneously.    

3.2  MIDAS Framework 

The MIDAS framework is shown in Figure 3. It represents the evolution of active power 
balance and frequency control at different timescales: (1) mid- to long-term economic 
dispatch based on the load and renewables forecasting models; (2) multi-area AGC for 
renewable power plants, including a dynamic AGC dispatch model at the level of seconds 
(e.g., consider a PV power plant); and (3) a grid frequency response dynamic model that 
includes a primary and secondary frequency controller. The framework has been divided 
into three parts: the extended-term dynamic simulation model, the scheduling model, and 
the data-driven-based stability assessment model.  
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Figure 3. Refined MIDAS framework 

The extended-term dynamic simulation model was implemented using the PSS/E 
platform; however, an AGC block and extended-term dynamic model for PV that can 
capture the variation in solar irradiance and advanced control functions are not included 
in PSS/E. Thus, it is required to separately develop a user-defined model for AGC and 
advanced control functions for PV. The dynamic model will be continually running for 5 
minutes, and at the last time step, we will send the real-time power flow, system loss, and 
reserve of PV back to the scheduling model. In this way, the scheduling model will get an 
accurate awareness of the system’s current operation point. 

The scheduling model integrates multiple scheduling submodules—including day-ahead 
security-constrained unit commitment (DASCUC), real-time security-constrained unit 
commitment (RTSCUC), and real-time security-constrained economic dispatch 
(RTSCED)—with the flexibility to study different scheduling strategies. PV and energy 
storage are considered in this model. New market rules will be designed and flexibly 
plugged into the base model. The input and output are described in Table 2. 
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The Dynamic Stability Assessment (DSA) model was divided into two parts: an offline 
training data set and an online application for integrated model. One-year hourly PV, wind, 
and load data are needed for the test system. Steady-state power flow is calculated by 
the scheduling model, and the convergence is tested by the AC power flow. Then it 
created the training scenarios for the machine learning algorithm. Once the machine 
learning-based model is done and tested, it is directly used in our integrated model. The 
input and output are described in Table 2. 

Table 2. Input and Output of Sub-Models 

 Input Output 

Scheduling 
Model 

1) At least 24-hour hourly PV, wind, and 
load data 

2) Price data and constraints 
3) System data 
4) Real-time power flow, system loss, 

and reserve of PV every 5 minutes 

1) 5-minute economic dispatch and 
reserve 

2) ON/OFF status of units 

 

Extended-Term 
Dynamic Model  

1) At least 24-hour, PV, wind, and load 
data in second time resolution. 

2) 5-minute economic dispatch and 
reserve 

1) Real-time power flow, system loss, 
and reserve of PV every 5 minutes 

DSA 
Model 

Online 
1) Power flow data from scheduling 

model or dynamic model 
1) Trigger decision 

Offline 

1) One-year hourly PV, wind, and load 
data 

2) System power flow and dynamic data 

1) 365*12*4 training scenarios 
2) Machine learning-based model 

 

The innovations of this simulation framework include: (1)  the coordinated, closed-loop, 
multi-timescale simulation of the scheduling model and the extended-term dynamic 
model; (2) an improved dispatch submodule that can dynamically optimize the generators’ 
power outputs while receiving the real-time output of the generators based on both the 
reserve deployments in the dynamic model and the real-time AC-based line loss; and (3) 
an extend-term dynamic model that can accurately capture the full spectrum of the grid 
frequency dynamics by updating the generator set points and the reserve dispatch from 
the scheduling model and integrating the multi-area AGC model, time-series load data, 
and solar data. More details are discussed in following section. 

3.3 Integrated Dynamic and Scheduling Model 
3.3.1 Extended-Term Dynamic Model of PV and Grid 
3.3.1.1 Photovoltaic Variability Modeling 

The variability of VG occurs at multiple timescales—from seconds, to minutes, to hours—
and it requires the movement of other resources to ensure the balance of generation and 
load. It is important to capture the multi-timescale variability from PV. In this section, we 
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developed an approach to model the power output variability of utility-scale solar PV 
power plants and to incorporate the variable power output in the dynamic simulations. 

Integration of Solar Plant Output Profile in PSS/E Dynamic Simulations: In this 
project, we uses WECC’s second-generation, utility-scale solar PV models—namely, 
regca1, reecb1, and repca1—to model the dynamic behavior of a solar PV plant. The 
repca1 model, which represents the solar power plant controller, includes a variable 
called Plant_Pref that is normally initialized at the beginning of a dynamic simulation and 
remains unchanged during the simulation. It can, however, be changed using the Python 
application programming interface of PSS/E. We used this capability of PSS/E to change 
the Plant_Pref according to the power plant real power output profile.  

3.3.1.2 Automatic Generation Control Modeling 

In this section, an automatic generation controller and the plant controller models are 
developed. In addition to the existing plant controller, a new model was developed for 
PSS/E that allows the second-generation renewable energy plant control (REPC) model 
to receive the area megawatt command generated by the AGC module. The new model 
was included in the 18-bus, 4-area system with a PV generation plant, and the action of 
AGC for a load disturbance was tested.  

The primary objectives of AGC are to regulate frequency to the specified nominal value 
and to maintain the interchange of power between the control areas at the scheduled 
value. The block diagram of a simple AGC controller is shown in Figure 4.  

 
Figure 4. Block diagram of AGC controller 

The AGC controller uses the frequency and tie-line flow deviation (from the prescheduled 
value) to generate the ACE signal. The ACE signal is given by:  

𝐴𝐴𝐴𝐴𝐴𝐴 = (𝑁𝑁𝑁𝑁𝑠𝑠 − 𝑁𝑁𝑁𝑁𝐴𝐴) − 10𝐵𝐵(𝐹𝐹𝐴𝐴 − 𝐹𝐹𝑠𝑠) − 𝑁𝑁𝑀𝑀𝑀𝑀 , (1) 
where:  
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• NIs and NIA are, respectively, the scheduled and the actual net area interchanges.  
• Fs and FA are, respectively, the scheduled and the actual system frequency.  
• B is the balancing authority bias (a negative number in MW/ 0.1Hz). 
• IME is the interchange metering error. 

The inverter-based generation units in PSS/E are modeled by using the second-
generation renewable models, also known as the RE models. Because the plant-level 
controller already exists for the inverter-based generation module, we developed a 
separate module that enables the REPCA1 model to communicate with the AGC model 
in the area. Figure 5 shows the plant controller auxiliary module for the renewable 
generation unit. Similar to the conventional plant controller described in the preceding 
subsection, this auxiliary module gets the area megawatt command from the AGC module 
in the area and determines the plant output based on the parameter Frac. The plant 
controller model shown in Figure 5 was developed as a user-defined model in PSS/E, 
and it is available as a dynamic linked library. 

 
Figure 5. Block diagram of the plant controller auxiliary module for inverter-based units 



DE-EE00034224 
Jin Tan  

 

Page 15 of 73 

 

Figure 6. (a) Frequency (generator speed) recovery without AGC, (b) tie-line flows without AGC, 
(c) frequency recovery (generator speed) with AGC, and (d) tie-line flows with AGC 

To validate the performance of the developed models, a frequency event was simulated 
in the 18-bus system. To create a sudden frequency drop, the load in Area 4 was 
increased by 100 MW in a step. The simulations were repeated with and without the AGC 
control to illustrate the difference between the frequency recovery and power sharing.  

Figure 6 (a) and (b) show the frequency (generator speeds) and the tie-line flows, 
respectively, when the generators provide only PFR and no AGC action is modeled. 
Figure 6 (c) and (d) show the frequency (generator speeds) and the tie-line flows, 
respectively, when the generators provide both PFR and secondary frequency response 
via AGC action. As expected, with the AGC control enabled, the system frequency is 
restored to 60 Hz, and the tie-line flows are restored to the prescheduled values.  

3.3.1.3 Load Tap Changer and Switched Shunt Modeling  

Load tap chargers (LTCs) and switched shunts (SWs) are important devices in extended-
term simulations. For example, during peak hours, when the system needs additional 
reactive support, LTCs need to change the tap positions to increase the load-side voltage, 
and the switched shunts need to be switched in to provide reactive support. On the other 
hand, during valley hours, overvoltage might be an issue. LTCs need to change the tap 
positions to reduce the load-side voltage, and the switched shunts need to be switched 
out. The normal transient dynamic test systems not come with any LTC or switched shunt 
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models. As a result, some dispatch results from the scheduling model do not lead to a 
feasible AC power flow solution. In addition, the dynamic model “SWSHNT” and 
“OLTC1T” are used for the switched shunts and LTC, respectively. 

A simple load increase scenario was simulated in the 18-bus test system [28] to verify the 
effectiveness of the added voltage control devices. In the simulation, we increased the 
load at Bus 13 at a fixed rate of 1 MW/second for 200 seconds, as illustrated in Figure 
7(a). The voltages of the Area West buses are shown in Figure 7(b), where Bus 13 had 
the lowest voltage, just above 0.98 p.u., which is the control lower bound of the LTC. As 
the load increased, the voltage dropped below 0.98, where it remained for approximately 
50 seconds. The LTC started to change the ratio to increase the voltage of Bus 13. Seven 
taps were adjusted consecutively from 50 seconds to 110 seconds; however, the voltage 
was still below 0.98 p.u. In the meantime, the voltage of Bus 14 (red curve), the high 
voltage side of the LTC, kept dropping as the tap changed and dropped below 0.98 p.u. 
at approximately 110 seconds. This triggered the switched shunts to switch in one step, 
i.e., 100 MVar, which eventually increased the voltage of both Bus 13 and Bus 14. 

 
(a) Load increase    (b) Voltage profile 

Figure 7. Load increase simulation 

3.3.2 Multi-Timescale Scheduling Model Development 

The MIDAS generation scheduling tool includes day-ahead unit commitment (DAUC), 
day-ahead economic dispatch (DAED), real-time unit commitment (RTUC), and real-time 
economic dispatch (RTED). The framework of the MIDAS generation scheduling tool is 
shown in Figure 8. DAUC and DAED will be run every 24 hours with an hourly resolution. 
RTUC will be run every hour with a 3-hour time span and an hourly resolution. RTED will 
be run every 5 minutes with a 2-hour time span and a 5-minute interval. In the advanced 
version of the MIDAS generation scheduling tool, the time resolution—the time span of 
RTUC and RTED—can be changed by the operators. Note that if the time resolution of 
RTUC and RTED is changed to other values instead of the default ones, the input data 
of RTUC and RTED should be changed accordingly.  
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Figure 8． Framework of the MIDAS generation scheduling tool 

Figure 8 also shows that each module of DAUC, DAED, RTUC, and RTED is coupled with the 
other. So, the scheduling of one module can impact the scheduling of the following modules. 
This framework can help capture the impacts of the inter-interval and intra-interval renewable 
energy variations on the generation scheduling. The detailed mathematic formulation of each 
module can be found in [1], [2]. 

3.3.3 Interface Between Dynamic and Scheduling Models 

The interface design is shown in Figure 9. The components for the integrated simulation 
are represented using blue. The rest of the flowcharts represent the data flow of the 
extended time dynamic (ETD) simulations (left) and scheduling model (right). The figure 
shows that the ETD and scheduling model are running in parallel and act as two agents. 
The two models/agents are exchanging data through a shared folder for each RTED 
interval, i.e., 5 minutes. Two flags, i.e., ETD flag and SCED flag, are used to coordinate 
the two models when advancing in time. The proposed design coordinates the two models 
through two flags and interchanges the data through a shared folder. 
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Figure 9. Interface design for integrated dynamic and scheduling model 

The advantage of such a design is that the ETD model and the scheduling model do not 
need to be developed in the same environments and can be debugged and compiled 
independently. This grants both the ETD team and the scheduling team a high level of 
flexibility in developing their module. Moreover, when migrating to a utility partner’s 
system, such a design is flexible in adapting to an ETD model or a scheduling model in a 
completely different platform. 
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3.3.4 Full-Dynamic Simulation of Integrated Dynamic and Scheduling Model 

 
Figure 10. Gen 101 output 

 
Figure 11. Gen 111 output 

 
Figure 12. Gen 231 output 

 
Figure 13. Gen 311 output 

 
Figure 14. PV generation output 

 
Figure 15. System generation vs. load 

 
Figure 16. System ACE 

 
Figure 17. System frequency 

After the integrated simulation design is implemented, a test run on the 18-bus system is 
performed. The description of the test system is presented in Appendix A. In this run, the 
generator at Bus 311 and the PV generator at Bus 312 can provide the regulation-up and 
regulation-down service, and the PV is using the cloudy day high-variation profile. The 
24-hour plots are shown in Figure 10 to Figure 17. It is shown that the generators (blue 
lines) are closely following the scheduling results (dashed red lines), which means that 
the integrated simulation is performed as expected and can simulate up to 24 hours. The 
purpose of this test is to validate the accuracy of the integrated dynamic and scheduling 
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model.  
3.3.5 Quasi-Dynamic Simulation of Integrated Dynamic and Scheduling Model 

In this section, we integrated the DSA results from Section 3.8 with the dynamic simulation 
by using the DSA results to inform the choice of different integration sizes. As will be 
demonstrated, the variable-time step size simulation speeds up the simulation while 
maintaining high accuracy. 

Three simulation runs are performed on the same sequence of events using different 
integration step sizes: named Size 1, Size 2, and Variable. 
Size 1 step size: We use a quarter cycle, i.e., 0.00416667 second, as the integration step 
in this simulation run. We consider the results from this run the ground truth of this 
sequence of events. 
Size 2 step size: We use four cycles, i.e., 0.025 second, as the integration step in this 
simulation run. This is the largest step size that the simulation can run. 
Variable step size: We use a quarter-cycle step size for the intervals DSA flag as having 
an insufficient stability margin (orange dots) as well as intervals with events (green and 
red dots). For the other intervals (blue dots), we switch to a four-cycle step size. 

The three runs are summarized in Table 3. For computational speed, Size 1 takes 1,390 
seconds (~23 minutes), and Size 2 takes 734 seconds (~12 minutes), which is a 1.89-
times speedup; however, using the large step size will introduce significant errors (we 
define the differences from the Size 1 run as errors) in the frequency-related metrics, such 
as the CPS1 score. The CPS1 score estimated by the Size 2 run is 10% higher, which is 
overly optimistic. On the other hand, the Variable step size achieves a 1.66-times 
speedup but maintains high accuracy compared with the Size 1 run—only a 1% difference 
in CPS score. 

The errors of the minute-level frequency-related compliance factor are presented as a 
box plot in Figure 18. Compliance factors are the fundamental elements used in 
calculating CPS1 and can be thought of as the frequency control errors of each minute. 
The box here depicts the 5th and 95th percentiles of the error distribution, and the whiskers 
(the solid lines extending beyond the box) represent the 1st and 99th percentiles. All dots 
are the remaining 2% percentile. Even though the medium value of both Size 2 and 
Variable size are both close to zero. It is clear that Size 2 tends to bring large errors when 
underestimate the compliance factor, i.e., the frequency errors, according to the 
asymmetric distribution. On the other hand, variable step size gives a nicely symmetric 
distribution and [5, 95] percentiles of the errors (shown by the box) are confined to a very 
small region. 
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Figure 18. Statistics of compliance 

factor errors 

  
Table 3. CPS1 Scores and Generation 

Costs 

Step 
Size Size 1 Size 2 Variable 

Time (s) 1390.90 734.26 833.38 
Speedup N.A. 1.89 1.66 

CPS1 88.15% 98.02% 89.19% 
BAAL 28 28 28 

 

Another observation is that even though Size 2 has a large error distribution, its [5, 95] 
percentiles are still relatively small. This, in turn, illustrates the importance of having the 
DSA to choose the proper small percentage of intervals to use small integration steps. 

In summary, (1) the DSA results are integrated to inform the dynamic simulation to choose 
the proper integration step size; (2) the variable step size can speed up the simulation 
while maintaining good accuracy in assessing the system frequency response; and (3) a 
1.6-times speedup is achieved in the 18-bus system. Even though the absolute reduction 
in terms of simulation time is on the scale of 10 minutes, the potential savings on a big 
system could be much more significant. 

3.4 Use Cases for MIDAS 

3.4.1 18-Bus Test System 

To study the impact of PV and the performance of PV providing FCAS, we use the multi-
timescale integrated model with the methodologies and metrics as described Section 3.3. 
Further, the use cases are developed to reveal the unique findings to understand the 
possible risks, challenges, and interactions between economics and reliability. 

3.4.1.1 18-Bus Test System Introduction 

We apply the proposed model to a modified four-area test system, as shown in Figure 19. 
It consists of 18 buses, 24 branches, and 6 transformers, with 7 loads, totaling 3,218 MW. 
The system includes four generators (one in each area), two hydropower plants, one coal 
power plant, and one gas power plant. Four equivalent generators are modeled as AGC-
enabled generators. The load and wind profiles are obtained from a real power system 
on a typical day. More information about the 18-bus test system can be found in Appendix 
A. The MIDAS integrated model is implemented in a joint PSS/E and Python environment. 
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The parameters of the scheduling modules are summarized in Table 4. 

Table 4. Typical Parameters of Scheduling Modules 

Submodule Dispatch 
Time Step 

Look-
Ahead 

(h) 

Refresh 
(Time per 

Day) 

Load and 
Solar 

Forecast 

DASCUC 1 hour 24 1 Daily 

RTSCUC 1 hour 3 24 Hourly 

RTSCED 5 min 2 288 5-min 

 

 
Figure 19. One-line diagram of the 18-bus system 

3.4.1.2 Impact Analysis of Full-Time Spectrum Variation from Solar 

To study the impact of the variability of renewable generation on system frequency, cases 
on a sunny day and a cloudy day are compared by assuming that all forecasts are perfect 
over the length of the scheduling interval. For the cloudy data, we adopt the 1-second 
real solar power variation data from the Maui grid and scale it up to match our system. 
3% regulation reserve has been used in the scheduling model.  Figure 20 (a) and (b) 
show the solar output power for 1 day. The closed-loop simulation of the integrated model 
gives the 24-hour continual dynamic simulation of the grid frequency, as shown Figure 20 
(c) and (d), which clearly show that the grid frequency is much worse on a cloudy day 
than a sunny day.  
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Figure 20. Comparison of output power and grid frequency 

CPS and BAAL (Balance Authority ACE Limit) violation scores are used to quantify the 
reliability, as shown in Table 5. On the sunny day, the CPS score is 198% and no 
violations occur. However, on the cloudy day, the CPS score is 92.3%, and the BAAL has 
as many as 48 violations. This means that when we use the 3% regulation reserve 
requirement for grid operation, it might be more than enough on a sunny day but not 
enough on a cloudy day. This implies that there might be a need for an adaptive regulation 
requirement based on the weather and system operational conditions. 

 Table 5. Comparison of Metrics: Sunny Day vs. Cloudy Day 

 Sunny Day Cloudy Day 

CPS1 198% 92.3% 

BAAL Viol. 0 48 

In addition, on the cloudy day, the solar variation can cause a significant frequency 
deviation that is larger than the deadband of the PFC. If this occurs regularly, it can lead 
to inadequacy of the PFR and increase the risk of underfrequency load shedding if a 
contingency occurs. 

3.4.1.3 Summary  
More related use cases in the 18-bus test system can be found in a journal paper under 
submission [29], including 1) effects of control modes of PV during a cloudy day; 2) 
Interaction between PFR and AGC; 3) Fast- vs. slow-response resources for regulation. 
The main conclusions are as follows: 
1) In an electric grid with high penetrations of PV, the traditional regulation 

requirement might be enough for sunny day, but it might not be enough for a cloudy 
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day. Thus, adaptively define the system reserve requirement based on system 
operational status and weather conditions will be recommended.  

2) Advanced frequency controls of PV can improve the frequency reliability metrics 
by providing FCAS under a perfect forecasting scenario, while the reserve 
adequacy from PV needs to be considered and controlled from both the scheduling 
and control perspective. When PV is providing stacked PFR and AGC reserve, 
there is a risk of overtaking the other reserve during the ramp of sunset or sunrise 
and it might result in insufficient PFR and AGC when needed.  

3) PV has a better tracking performance than gas and hydro in AGC regulation.  The 
results show that fast response inverter-based resource is a good candidate for 
FCAS provider, while it needs detailed economic analysis for a specific system, by 
considering the trade-off between opportunity cost and revenue gained from 
FCAS. 

3.4.2 Maui Use Case 
3.4.2.1 Maui System Description 

Maui is likely to become the first interconnected electric transmission system anywhere 
to operate with 100% wind and solar PV power on an instantaneous basis. Through 2024, 
Maui is scheduled to bring online more than 175 MW of new solar storage hybrid power 
plants. In addition to the almost 200 MW of wind and solar presently on the grid, this will 
be enough renewable power to supply Maui’s roughly 70,000 customers (i.e., gross load 
of 140 MW–200 MW) without using conventional generation for many hours in the year; 
however, the operability of 100% inverter-based power systems has not been 
demonstrated in the field.  

3.4.2.2 Strategy of PV and Battery Energy Storage Providing Ancillary Services 
(1) Methods 

       
(a) Separate independent resources. (b) single hybrid resource, self-management. 

Figure 21. Two operation modes of a hybrid PV power plant 

The same hybrid resource could have different electricity market participation modes. 
From the system operator’s view, different participation modes mean different situational 
awareness, modeling complexities, controllability, and telemetry requirements. In our 
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study, we explore two participation modes for a hybrid PV power plant, as shown in Figure 
21. One is to treat the PV and the battery as separate independent resources (Case 1), 
and the other is to treat them as a single hybrid resource as a black box for the system 
operators (Case 2). The coordination between the PV and the battery will be taken care 
of by the plant owner.  

For the single hybrid resource, the hybrid PV and battery plant (HPP) can be treated as 
a single integrated resource. From the ISO/regional transmission operator perspective, 
they want to treat the HPP as a conventional generator. This mode is simple to implement 
and easy to avoid considering the state-of-charge (SOC) management of the battery and 
PV forecast; however, the challenges will be transferred to the plant owners because they 
need to manage the PV and battery at the plant level while providing capacity limits and 
bids for the whole entity. 

In this study, two operation modes of an HPP are implemented in both the MIDAS 
scheduling tool and the dynamic simulation tool. The advanced controllers are 
implemented on the PV and battery to participate in different reliability ancillary services.  

In Case 1, the PV and battery are scheduled independently. Two sets of set points are 
sent from the system operator (SO) to the PV and the battery energy storage system 
(BESS), as shown in Figure 22. The ISO will need the PV forecast and will actively 
manage the SOC of the BESS. 

 
Figure 22. Controllers’ implementation for the model of the separate independent resources 

In Case 2, one set of set points is sent to the HPP. The plant level control distributes the 
HPP set points to the PV and BESS, respectively, to fulfill the energy, secondary 
frequency response (SFR), and PFR obligations. In our study, we implemented the 
coordination control strategy by running the PV at maximum power point tracking (MPPT) 
and using the BESS to fulfill the remaining energy obligation and the full amount of the 
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SFR and PFR obligations, as shown in Figure 23. 

 
Figure 23. Controllers’ implementation for the single hybrid resource mode 

The Maui grid model was developed based on a high renewable penetration scenario, 
which represents a low-inertia condition. A high wind and high PV noon hour with high 
load (175 MW) is chosen to perform the simulation. In this case, the PV and wind 
penetration level reached 73%. The renewable profiles of the wind and PV are shown in 
Figure 24. These PV profiles represent the Maui grid condition on March 7, 2019. The PV 
variability is high during this hour, as can be observed.  

 

          (a) Wind profiles           (b) Utility PV profiles           (c) Profile of total DPV output 

Figure 24. PV and wind profiles of the simulated hour 

(2) Simulation Results 

In Case 1, the PV is treated as a dispatch resource and provides the frequency-related 
services. In Figure 25(a), the orange line shows the MPPT of the PV inverter in the field-
testing, the blue line presents the set point sent to the PV inverter from MIDAS, and the 
green line shows the actual output of the PV inverter. AS shown, the PV can be 
dispatched below the maximum power point (MPP) to provide headroom in this case. Due 
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to the frequency variation caused by other solar variations, the tested PV inverter can 
provide both up- and down-regulation services. When the set point aligns with the MPPT, 
the PV inverter can only provide down-regulation.  

   
(a) Case1                                                                                    (b) Case 2 

Figure 25. PV output under two modes 

In Case 2, the set point is sent to the whole HPP. Results show that the PV output can 
track the MPPT at any time. The dark blue curve is the output of the BESS plus PV. When 
the PV is in oversupply, the battery can charge itself, and when the PV output is lower 
than the set point, the BESS can generate power to compensate the PV by discharging. 
Meanwhile, the BESS also provides up- and down-regulation for ancillary services.  

The grid frequency was compared under two cases. As shown in Figure 26, the frequency 
varied around 60 Hz due to the load and solar variations. To quantify the impact, we 
calculated the frequency standard deviations and summarize them in Table 6. This shows 
that the improvement of the grid frequency of the two cases is very close, whether we 

adopt the separate mode or the hybrid mode.  

(a) Case 1           (b) Case 2 
Figure 26. AGC signal and system frequency 

Meanwhile, we also compare two cases with a base case that leverages only the PV and 
battery to provide energy. The renewable curtailment and generation cost are also 
summarized in Table 6. Compared with the energy-only case, both cases 1 and 2 can 
reduce the renewable curtailment and generation cost and can improve the reliability 
metrics (frequency standard deviation). This means that using the HPP (PV+BESS) to 
provide ancillary services for the Maui grid—renewable-dominated grid—can improve 
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both system economics and reliability. This is because the Maui grid has an oversupply 
from solar at noon. Using the curtailed PV to provide ancillary services could avoid the 
reserve cost that is associated with synchronous generators.  

Comparing Case 1 to Case 2, the differences in curtailment and generation cost are 
mainly caused by the discharge/charge schedule of the BESS. Case 1 can optimize the 
operation of the PV and BESS from the system level. This means that the operator has 
full controllability to schedule the BESS in the DAUC and to optimally predefine its 
charging and discharging. In this study, during the noon hour, the BESS is charging at 5 
MW throughout because the DAUC sees abundant renewable generation. In Case 2, 
however, the BESS is not explicitly modeled because it is now a part of the HPP. 
Scheduling will not optimize its charge or discharge in a longer horizon because it loses 
the visibility of the BESS. The BESS is discharging at the beginning and switches to 
charging in the middle of the simulation. This effectively reduces the net load during this 
hour, which, in turn, reduces the generation cost but increases the renewable curtailment. 

 Table 6. Comparison of Three Cases 

 Energy Only Separate (Case1) Hybrid (Case 2) 

Renewable energy 
curtailment (MWh) 29.81 22.41 26.44** 

Generation cost ($) 9210.51 8015.82 7960.77* 

Frequency Std 0.092538 0.084765 0.084601 

(3) Summary 

Two HPP operation modes, separate individual resources (Separate) and single hybrid 
resources (Hybrid), are explored in the PHIL test. 

a) The Separate mode requires the system operators to fully model and telemeter 
both the PV and the BESS devices. This brings additional complexity to the system-
level schedule; however, the system operator will have full control of both devices 
and can potentially achieve a global optimal schedule (e.g., reduced renewable 
dispatch in our case study). 

b) The Hybrid mode needs only the system operators to model and telemeter the 
hybrid plant as one plant that is comparable to a traditional plant (without the need 
for forecasting the PV output and real-time monitoring of the PV headroom). The 
plant owner/operator takes responsibility to coordinate the PV and BESS. 

c) Both modes can effectively provide ancillary services (SFR and PFR), as 
demonstrated in our study. 

3.4.2.3 Inertia Requirement Study 

To maintain the frequency nadir above 59.3 Hz and the rate of change of frequency 
(ROCOF) below 3 Hz/s for the Maui grid, we explored nadir constraints and ROCOF 
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constraints in the scheduling model and studied their impacts. Take the nadir constraints 
as an example in the following.  

To fully capture the relationship among the frequency nadir, the system inertia, the 
maximum generation outage, and the PFR headroom, a linear regression-based nadir 
constraint will be constructed and added to the MIDAS generation scheduling model. To 
build the relationship between the frequency nadir and other system parameters—such 
as the system inertia, the maximum generation outage, and the PFR headroom—we use 
1-year generation scheduling and dynamic simulation data to train this linear regression 
model. The unit commitment is performed for 1 year (365 days with 8,760 hours). Then, 
the dynamic simulation of the largest generation outage at that hour is performed for each 
hour to obtain the system frequency nadir under each hour’s largest generation outage.  

With these data, the following linear model is constructed:  

𝑓𝑓𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑎𝑎 ∗ 𝑁𝑁𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑎𝑎 + 𝑏𝑏 ∗ 𝑃𝑃𝐹𝐹𝑃𝑃ℎ𝑒𝑒𝑛𝑛𝑛𝑛𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑐𝑐 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑎𝑎𝑃𝑃 + 𝑑𝑑 (2) 

The parameters from the linear regression model are listed in Table 7. 

Table 7. Coefficient Results of the Linear Regression Model 

 Coefficients 

Inertia (a) 0.000847 

HR Total (b) 0.006293 

Largest Pgen (c) -0.04737 

Intercept (d) 59.86421 

The frequency nadir linear regression results are shown in Figure 27.  

 
Figure 27. System frequency nadir from the linear regression forecast and dynamic simulation 
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The forecasting errors of the nadir using the linear regression model are depicted in 
Figure 28. The R2 error is 0.79, and the standard deviation is 0.1692 Hz. Ninety percent 
of the cases have a prediction error between [-0.29, 0.29] Hz. 

 
Figure 28. System frequency nadir forecasting error distribution 

Three cases are simulated, including the case without nadir constraints, the case with 
nadir constraints, and the case with only inertia constraints.  
Case 1: without inertia constraints 
Case 2: with inertia constraints based on the linear regression model with (2) added 
Case 3: with a predetermined inertia constraint (Inertia > 350 MVA*s). 

The generation scheduling results of these three cases are listed in Table 8. 

Table 8. Scheduling Results with Nadir Constraints 

 Generation Cost ($) Min Nadir (Linear 
Regression) 

No constraint 244481.3 58.70977 
Linear regression 

constraint (Eq. (2)) 259055.2 59.29053 

Inertia >350 MVA*s 311722.5 58.89598 

As shown in Table 8, the system generation cost increases when the nadir and inertia 
constraints are added. With the inflexible inertia constraints, the generation cost 
significantly increases. With the adaptive linear regression-based nadir constraints, the 
generation cost mildly increases. 

The system frequency nadirs in the three cases are simulated and shown in Figure 29. 

As shown in Figure 29 with the linear regression constraint, the frequency nadir, will be 
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larger than 59.3 Hz for most hours. Only 2 hours nadir is slightly lower than 59.3 Hz. 
Because the linear regression model has some forecasting errors, at these hours, the 
nadir is slightly lower than the predetermined 59.3 Hz. With only the inertia constraints, 
the frequency nadir cannot be maintained. 

Figure 29. System frequency nadir from dynamic simulations 

In this project, both the impacts of the inertia and the ROCOF-related constraints are 
studied in the scheduling model. A linear regression model is used to construct the 
constraint of the inertia, the PFR headroom, the largest generation contingency, and the 
frequency nadir. The simulation results show that the generation cost increases after 
adding this constraint. The system frequency nadir for most hours can be improved with 
this nadir constraint. Compared to a case with predetermined inertia constraints, the cost 
of the linear regression-based nadir constrained case is lower. In addition, the nadir 
results of the inertia-constrained case demonstrate that the system cannot maintain the 
nadir by considering only the inertia. 

3.5 Large-Scale EMT Model for Maui Grid 
3.5.1 EMT Modeling of Maui Grid 

The Maui transmission system has been constructed in the Power Systems Computer 
Aided Design (PSCAD) software platform using parallel computational elements from 
both PSCAD and the E-RTAN Plus from Electranix Corporation to operate on 30 cores, 
which reduces the computational cost by more than an order of magnitude. A 20-second 
simulation takes approximately 4 hours of computation time in this 30-core configuration. 
Figure 30 shows the layout of the model, with substantial bus reduction for descriptive 
purposes and to protect proprietary information. The model, as dispatched in the 2023 
case, includes 171 distributed solar PV units, 90 loads, 2 Type 3 and Type 4 wind power 
plants, 2 utility-scale solar plants, 3 hybrid power plants, 3 synchronous generators, and 
6 synchronous condensers. 
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Figure 30. PSCAD Maui transmission map 

3.5.2 Validation of Maui PSCAD Model 
The alignment of the PSCAD model with the Hawaiian Electric Companies-supplied 
PSS/E model required the comparison of steady-state voltage magnitude and bus phase 
quantities. The distribution of errors between the two models is shown in Figure 31, which 
are minimal and deemed acceptable. 

The distributed PV (DPV), utility-scale solar, and HPP plants are all implemented in 
PSCAD using high-order grid-following (GFL) models (Figure 32 (a)) developed by the 
NREL team. In tandem, grid-forming (GFM) models (Figure 32 (b)) were also developed. 
These models, established in the DQ rotating reference frame, include 6th-order output 
filters, inner current controllers, and respective power (GFL) or voltage (GFM) controllers. 
The publication [34] documents these models.  



DE-EE00034224 
Jin Tan  

 

Page 33 of 73 

 
Figure 31. Count (histogram) of buses with various levels of error in (a) steady-state voltage and 

(b) phase angle between the PSS/E and PSCAD models  

 

Figure 32. (a) GFL and (b) GFM control diagrams for PSCAD implementation 

 
Figure 33. (a) Frequency and (b) current and voltage waveforms of the measured and PSCAD 

reproduced response for the March 2, 2017 event 
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An event on March 2, 2017, which consisted of a fault on a synchronous generator’s 
transformer and subsequent trip of that generator, was selected for the dynamical 
validation of the PSCAD model. The measured frequency response, the PSS/E 
generated response, and the PSCAD generated response are shown in Figure 33(a). 
The measured and PSCAD generated current and voltage waveforms of the selected 
buses are shown in Figure 33(b). The field data show a damped oscillation around 0.4 
Hz that does not appear in either the PSS/E or PSCAD model. After investigation, it was 
found that not enough data existed to determine the cause of the 0.4-Hz oscillation. In 
addition, the oscillation was not present in more recent field events and was not of 
major concern to the utility partner, so the team decided to move on. The effort to 
validate the Maui PSCAD model is documented in [35].  
 
3.5.3 Simulation of Low-inertia Scenarios 

 

Figure 34. Maui PSCAD simulation scenarios 

With the validated PSCAD model of the Maui system in the 2023 day minimum load 
dispatch, denoted as scenario S1, eight more scenarios were dispatched, as shown in 
Figure 34. Scenarios S2–S5 represent a consecutive decrease in system inertia. 
Scenario S6 has only synchronous condensers online. Scenario S7 has zero utility-side 
inertia. Scenarios 8 and S9 are high wind and high DPV, respectively. Note that the 
utility’s planning cases have since changed from those analyzed here; in addition, 
scenarios S2–S7 were extrapolations from a planning case to lower inertia scenarios and 
do not necessarily represent planned operating scenarios.  

Eleven events were simulated in PSCAD for each scenario, as shown in Table 9. The 
events E1–E7 represent faults on critical buses (low short-circuit or low critical clearing 
time), E8 is the loss of 21 MW of wind power, E9 is the trip of a critical transmission path, 
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E10 is the loss of four behind-the-meter hydro units, and E11 is the loss of a synchronous 
condenser. 

For these simulations, discontinuous control behaviors, such as distributed energy 
resource (DER) tripping and underfrequency load-shedding action, were disabled to 
better observe the system oscillatory stability. 

Table 9. Maui PSCAD Events Simulated 

 

 
Figure 35. Simulation results for PSS/E and PSCAD for varied dispatch scenarios and events 

Each of the 11 events were simulated in PSCAD for each of the 9 scenarios. Figure 35 
shows the summary of the results of each simulation with GFL inverters. These results 
show that the Maui model with no GFM assets (S7) is not stable, as expected. 
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Interestingly, the model with only synchronous condensers as GFM (S6), and all 
frequency response from HPPs, is stable, as detailed in [36]. The scenarios become less 
stable as the inertia decreases, as illustrated in subsequent figures, with scenarios S3 
and S4 being borderline unstable and scenarios S5 and S7 being unstable. Scenarios 
S1, S8, and S9 gave similar results, indicating that the exact mix of GFL assets did not 
strongly influence the stability for these scenarios. A journal paper highlighting these 
results is under construction [40]. Selected simulation cases are discussed in the 
following. 

Event 1: Fault at Low Short-Circuit Ratio Bus (97, KWP I) 

 
Figure 36. PSS/E and PSCAD frequency (shaft speed and phase-locked loop derived) for event 
E1 applied to scenarios (a) S1, (b) S2, and (c) S3, which have successively decreasing inertia 

levels. (MPP indicates the frequency at the Maalaea Power Plant, and M4 indicates the 
frequency derived from the rotor speed of generator M4.)  

 
Figure 37. Root-mean-square PSS/E and PSCAD voltages for selected buses. Event E1 is 

applied to scenarios (a) S1, (b) S2, and (c) S3. 

Time domain profiles are provided for frequency (Figure 36), root-mean-square voltage 
(Figure 37), and aggregate distributed generation output (Figure 39). In Scenario S3, 
which represents a 66.7% reduction in inertia (or GFM assets on the system) from S1, 
the system has a poorly damped, high-frequency mode that appears only on PSCAD. 
The PSS/E model fails (is numerically unstable) in this simulation.  
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Figure 38. Effect of reducing system inertia on oscillatory stability for event E1  

 
Figure 39. Aggregated distributed generation output for PSS/E and PSCAD. Event E1 is applied 

to scenarios (a) S1, (b) S2, and (c) S3  

The effect of reduced inertia on system stability (as quantified by the damping ratio) is 
illustrated in Figure 38. Also note that the location of the inertia on the system can play a 
role: Scenarios S3 and S4 have similar inertia but different damping ratios. 

 
Figure 40. Frequency response for scenarios (a) S1, (b) S3, and (c) S6, perturbed with event E8 

Figure 40 illustrates that the dynamic response of scenario S6 is very similar to S1 despite 
having zero synchronous generation (but significant quantities of synchronous 
condensers) online; however, note that these simulations do not include DER trip and 
momentary cessation dynamics. If DER momentary cessation dynamics are included, the 

S1 S2 S3 S4 S5

Low freq
mode 0.44 Hz 0.50 Hz 0.64 Hz 0.65 Hz 1.77 Hz

Damping 
ratio 25.4% 16.0% 5.03% -0.46% -1.55%

Inertia 
(MVA·s) 365 239 119 108 48
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synchronous condensers might not be sufficient to stabilize the system under severe fault 
events due to the need to replace lost DER active power.  

Event 8: Loss of Largest Generator (21 MW from Wind Plant) 

The time domain frequency results of Event 8 as applied to S1, S3, and S6 are shown in 
Figure 40 (a), (b), and (c), respectively.  

GFM Inverter Impacts 

As a display of the potential benefits to GFM controls, a single HPP unit is replaced with 
a droop-controlled GFM inverter and compared to the scenario S3 response to event E8. 
The frequency response in Figure 41 shows a substantial improvement in response, with 
a much higher nadir and improved damping with the GFM (b). The active power output of 
the GFM device, called G2 in Figure 42(b), shows a near-instantaneous delivery of power 
following the perturbation. 

 
Figure 41. Frequency response to event E8 applied to scenario S3 with (a) all GFL and (b) a 

single HPP as GFM 

 
Figure 42. HPP real power response to event E8 applied to scenario S3 (a) without GFM and 
(b) with a single plant as GFM. G2 is a 30-MVA PV-BESS plant that is in GFL mode in (a) and 

GFM mode in (b). G4 is another 30-MVA PV-BESS plant that is in GFL mode in both 
simulations. 
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Figure 43. (a) Frequency and (b) real power response of GFM resources to Event E8 applied to 

scenario S7, which contains only IBRs (no synchronous machines) 

The EMT simulations also indicated that it is possible to stabilize the zero-inertia scenario, 
S7, of this 145-MW power system with 60 MVA of GFM capacity. Figure 43 shows the 
response to event E8 (loss of the largest generator): The system is stable and recovers 
quickly. In contrast, without GFM capacity, this event is unstable, even before 
perturbation. These results will be further detailed in an upcoming publication. 

An investigation into the impacts of controller complexity yields that the modeling of the 
inverters’ inner current loops is critical to uncover the high-frequency oscillatory modes, 
as indicated by Figure 44. This work was presented at the Power Systems Computation 
Conference in June 2022 [37]. Based on this result, the team now includes in all EMT 
simulations the phase-locked loop, current controller, and power controller dynamics of 
IBRs. (Prior to this, and to some extent still in industry and academia, it is common for 
dynamic simulations to include only power control loops.) 

 
Figure 44. Frequency results for varied GFL inverter controller complexity 

a b
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3.5.4 Transmission and Distribution Simulation of Maui Grid 

A single-phase GFL inverter has been developed in the PSCAD environment and applied 
to an aggregate feeder model that replaced a constant power load and three distributed 
generation units. The feeder model is shown in Figure 45, in which short circuit ratios of 
the feeder buses are also included. The time-domain responses do not differ substantially 
from the non-feeder models and thus not repeated here. However, for certain simulations 
such as unbalanced faults (not simulated here), including single-phase DER 
representations would be very important (though it is rarely done in practice). 

 
Figure 45. Feeder model showing the location of single phase, and three phase inverter models 

3.6 PHIL Testing for MIDAS 
3.6.1 MIDAS PHIL Test Bed  
3.6.1.1 Framework 

MIDAS PHIL test bed has been set up using software/hardware facilities at NREL’s 
Flatirons campus, including MIDAS server, RTDS machine, and Controllable Grid 
Interface. Maui grid is simulated on RTDS, which takes the real-time power set points 
from MIDAS server and simultaneously interacts with power hardware. 

3.6.1.2 RSCAD Model (version 1) Development for Maui Grid 

Maui RSCAD model version 1 was developed from the Day Minimum case provided by 
Hawaiian Electric by first conducting a network reduction using our proposed reduction 
techniques [43] to enable the simulation with 4 NovaCor cores on RTDS, and then adding 
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hybrid power plant (HPP) models whose controls are to be evaluated.  

• Reduced model in PSS/E has been validated over a loss-of-generation event, 
where frequency deviation curves overlap with each other between the models 
before and after the network reduction. Steady state of the Maui RSCAD model 
has also been validated by comparing the bus voltage, MW, and MVar of 
generation and load to those in reduced PSS/E model. Dynamics have been 
validated over the loss of one generation unit. 

• AGC has been implemented in this RSCAD model. All generations, loads, and 
their frequency droop characteristics have been properly configured. Through 
these efforts, we can get reasonable frequency responses. 

• Communication between MIDAS server-RTDS (121 channels) and that between 
RTDS-hardware (5 channels) have been implemented by Modbus and UDP, 
respectively. 
 

3.6.1.3 Use Cases 
Three different PV/HPP control strategies are simulated for the Paeahu HPP. 
Case 1. PV and BESS only provide energy: PV only provides energy and can be 
curtailed through delta control. BESS strictly follows a constant charging/discharging 
profile determined day ahead. 
Case 2. PV provides both energy and ancillary services: PV provides energy and 
ancillary service (PFR and AGC) through delta control. BESS strictly follows a constant 
charging/discharging profile determined day ahead. This case verifies that PV inverters 
can be used to provide both regulation and PFR services. 
Case 3. HPP (PV+BESS) provides both energy and ancillary services: PV and BESS 
are treated together as a single plant and receives a single set point. HPP provides both 
PFR and AGC. This case verifies that by forming an HPP, PV and BESS can provide both 
regulation and PFR services. The detailed discussion and analysis haven been included 
in Section 3.4.2.2. 

Table 10. Reliability and Economic Comparison of Three Cases 
 Case 1 Case 2 Case 3 

RE Curtailment (MWh) 29.81 22.41 26.44 

Generation Cost($) 9211  8016 7961 

Frequency std 0.0925 0.0848 0.0846 

 
3.6.2 PHIL Testing for GFM Inverter in Low-inertia Grid 

EMT simulations described in Section 3.5 demonstrate the ability of grid forming inverters 
to stabilize Maui system dispatches that are otherwise unstable, include cases with 100% 
inverter-based generation, both with and without synchronous condensers. These 
PSCAD simulations have used NREL’s generic PSCAD models of GFM inverters. To gain 
more confidence in these findings using a real hardware inverter, we developed a real 
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time, EMT-domain model of the Maui power system in RSCAD and used PHIL to test the 
ability of a real megawatt-scale inverter at NREL’s Flatirons Campus to stabilize the Maui 
system. The 2.2-MW SMA inverter can operate in GFM and GFL modes, allowing an 
apples-to-apples comparison of Maui system stability with the inverter in GFL and GFM 
modes.  

3.6.2.1 Maui RSCAD model (version 2) for EMT-domain PHIL  

In Section 3.6.1, we have developed the Maui RSCAD model (version 1) which focuses 
on frequency dynamics and their interactions with scheduling. Following that work, we 
added faster dynamic models for several key components in the system including the 
DPV units and 3 HPP units. This version 2 is designed for capturing fast EMT-domain 
dynamics of the Maui system in cases at nearly 100% IBRs. Major changes from version 
1 to version 2 are summarized in Table 11.  

3.6.2.2 PHIL Testbed Set up 

The PHIL test setup as implemented at NREL’s Flatirons Campus is shown in Figure 46. 
We leverage an RTDS real-time computer to run the model and simulate the dynamics of 
Maui power system. The simulated 3-phase voltage waveforms at the point of 
interconnection of the 30 MVA PV-BESS plant (called K1 below) are transmitted in real-
time to a 7 MVA controllable grid interface (CGI, a controllable AC supply). The AC 
terminals of the 2.2-MVA hardware inverter are connected to the CGI so that the inverter 
sees the voltage waveforms produced by the Maui model. The inverter responds to those 
voltages as it would to voltages in the real power systems, and its resulting 3-phase output 
current waveforms are sampled using medium voltage CT’s every 25 µs, digitally filtered 
for noise and anti-aliasing, transmitted to the RTDS via 2 Gb/s optical cables, and injected 
in real time back into the Maui model, completing the PHIL loop. More details of PHIL 
setup can be found in publication [41]. 
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Table 11. Major Changes from Maui RSCAD Model Version 1 (V1) to Version 2 (V2) 
 

Element Modeling in V1 Modeling in V2 

Purpose  • Capture slower dynamics 
and their interactions with 
scheduling 

• Capture fast EMT-domain dynamics of the Maui 
system in cases at and near 100% IBRs 

Dispatch Generation 
and load 

• 2022 DayMin No HPP case 
• Single scenario, no 

disturbance 
• Total load = 145.2 MW, total 

generation = 146.4 MW. 

• 2023 DayMin 3 HPP case 
• 6 scenarios, 2 contingencies, 4 configurations (for 2 

HPP units) 
• Total load = 162 MW, total generation = 164 MW. 

Dynamic 
elements 

Machine • 6 synchronous generators 
(SGs) w/ exciters and 
governors, no synchronous 
condensers (SCs) 

• 3 SGs w/ exciters and governors and 6 SCs (the 6 
SGs in V1 were either removed or converted into 
SCs, 3 small SGs and a couple of SCs were added) 

Load • 13 loads, w/ load-frequency 
characteristics added 

• 11 loads (2 small ones merged into nearby loads) 

DPV & UPV • 12 DPVs and 2 UPVs (utility-
scale PV plants). 

• Each of DPVs and UPVs is 
modeled as dynamic PQ 
source. 

• 10 PVs (2 UPVs and 2 small DPVs merged into 
nearby DPVs) 

• Detailed average DPV model was implemented 
(translated from Kenyon’s PSCAD DPV model: 
https://github.com/NREL/PyPSCAD)  

BESS • Two BESSs, i.e., BESS1 
and BESS2 

• BESS1 modeled as dynamic 
PQ source w/ fixed set point 
(no droop) 

• BESS2 modeled as dynamic 
PQ source w/ frequency 
droop. 

• The control in BESS1 PSS/E model documentation 
has been implemented in RSCAD, which, upon a 
frequency drop <59.7Hz, injects extra MW for 5 sec 
and then linearly ramps back to the pre-disturbance 
output level in the following 30 sec. 

• BESS2 is still modeled as dynamic PQ source w/ 
droop (updated gain). 

Wind • 2 type-3 and 2 type-4 wind 
farms 

• Modeled as dynamic PQ 
source w/ fixed set point (no 
droop) 

• Detailed average WTG models provided by RTDS 
are ready to be swapped in. However, this requires 
1-2 more RTDS cores than the available. Still, wind 
farms are modeled as dynamic PQ source. 

HPP • 3 HPPs  
• W/ frequency droop 

• Modeled as detailed IBR model, BESS RSCAD 
model, or represented via PHIL by BESS inverter 
hardware, based on different control configurations 

Comms MIDAS-
RTDS 

• Modbus • Modbus disabled, no comms with MIDAS server. 
Switching scenarios manually within RTDS. 

Hardware-
RTDS 

• UDP • UDP 

AGC 
 

• AGC units include all 6 SGs, 
3 HPPs and 2 BESSs w/ 
controllable participations. 
AGC signals updated every 
4 seconds. 

• AGC disabled. 

https://github.com/NREL/PyPSCAD
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Figure 46. Multi-MW high-fidelity PHIL test setup 

3.6.2.3 Simulation Scenarios Power HIL Test Results 
Table 12. PHIL Test Scenarios, in Order of Decreasing Inertia 

Scenario # 
SGs 

# 
SCs Inertia (MVA·s) Inertia constant H (s) Generation from 

IBRs (%) 

      

S1 3 6 365 0.97 96% 

S6 0 6 317 0.89 100% 

S2 3 4 239 0.76 96% 

S3 3 2 119 0.47 96% 

S3a 3 1 92 0.39 96% 

S5 3 0 48 0.21 96% 

S7 0 0 0 0.0 100% 

Seven Maui resource dispatch scenarios were implemented in the RSCAD model. The 
scenarios are summarized in Table 12, where the abbreviations SG and SC stand for 
synchronous generator and synchronous condenser, respectively. 

Simulation assumptions include  



DE-EE00034224 
Jin Tan  

 

Page 45 of 73 

• For each scenario, two events were simulated: A 3-phase, 5-cycle fault at a low 
SCR bus (bus 97) and the loss of largest generator (two adjacent wind plants 
operating at 21 MW in total).  

• For all simulations, underfrequency load-shedding and inverter trip and momentary 
cessation settings were disabled within the RSCAD model to better observe the 
system dynamics. 

 

 
Figure 47. Summary of PHIL test results. To be considered stable, a scenario has to survive 
both the fault and the N-1 generation trip tests without frequency exceeding underfrequency 

load-shedding thresholds and without voltage or frequency exceeding ranges that would cause 
excessive tripping of generation. 

The results of the PHIL tests are summarized in Figure 47, and selected test results are 
presented in detail below. The scenarios with inertia constants above 0.6 seconds were 
stable in all cases, with and without GFM inverters. Scenarios 3 and 3a, which had inertia 
constants between 0.3 and 0.5 seconds, needed 30 MVA of GFM capacity (12% of total 
online generation capacity) to remain stable. The very low inertia scenarios are stabilized 
with 60 MVA of GFM inverter capacity (27% to 29% of total generation online capacity). 
Notably, the percentage of generation from IBRs is not predictive of stability or of the need 
for GFM capacity to provide stability. In contrast, low inertia is clearly associated with 
higher need for GFM capacity. These results align with PSCAD tests in this report.  

One example with fault event of a zero-inertia operating case is shown in Figure 48, other 
case studies can be found in publication [41]. It shows that for the 60 MVA GFM case 
(purple), the system recovers quickly from the fault without oscillations. For the case with 
30 MVA of GFM in hardware (blue), the simulation shows low-amplitude oscillations even 
before the event, and the inverter trips shortly after the fault, causing the system voltage 

Scenario
Inertia 

constant “H” 
(s)*

Generation 
from IBR (% of 

generation 
output)

GFM IBR 
capacity to 

stabilize (% of 
total online 

capacity)

S1 0.97 96% 0

S6 0.89 96% 0

S2 0.76 100% 0

S3 0.48 96% 12%

S3a 0.39 96% 12%

S5 0.21 96% 27%

S7 0 100% 29%

Stable with and 
without grid-forming 

inverters

Stable with 60 MVA 
grid-forming 

inverters

Stable with 30 MVA 
grid-forming 

inverters

Trip all 3 synchronous 
generators

Trip 2 synchronous 
condensers

Trip 2 more 
synchronous 
condensers

Trip 2nd-to-last 
synchronous 

condenser
Trip all 3 

synchronous 
generators 

S1: 2023 Day 
Minimum 

Case

S2: Low 
inertia

S3: Very low 
inertia (2 SCs)

S5: Extremely 
low inertia 

(No SCs)

S6: No 
synchronous 
generation

S7: No utility 
inertia

S3a: Very low 
inertia (1 SC)

*Inertia constant calculation 
includes IBR capacity in MVA base

SC: Synchronous Condenser

Trip last synchronous 
condenser

Summary of Maui transmission system stability in PHIL experiments with and without grid-forming inverters

See Figure 4

See Figure 5

See Figures 6 and 7
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to collapse and the PHIL system to trip. With 30 MVA of GFM in simulation (red), the 
system voltage and frequency oscillate after the fault and eventually stabilize; however, 
the large voltage and frequency deviations would likely have resulted in extensive tripping 
of DPV and possibly a system collapse. 

 
Figure 48. Scenario 7 (zero synchronous machines) fault event with 30 MVA and 60 MVA of 

inverters in GFM mode. The 30 MVA case is run with the GFM plant implemented in hardware 
(blue) and in simulation (red). Note that all traces are measured at the hardware inverter’s 13.2 

kV PCC, and the two cases with 30 MVA of GFM appear very different. 

3.6.2.4 Summary 

The PHIL test results experimentally verify several key conclusions of the Maui PSCAD 
study conducted earlier, including: 

• In higher system strength scenarios (S1 and S2), the system was stable both with 
and without GFM controls.  

• In low system strength scenarios (S3-S5), a single HPP in GFM mode (either of 
the two 30 MVA capacity Kuihelani plants) was sufficient to stabilize the system, 
whereas with no GFM IBR, the system is unstable or marginally stable in those 
scenarios. This is true whether the GFM HPP is included in hardware or inside the 
real-time simulation.  

• In the zero-inertia (or extremely low system strength) scenario, S7, both Kuihelani 
plants (60 MVA capacity) are needed to be operated in GFM mode to stabilize the 
144 MW system. 
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• The stabilizing effect of HPPs in GFM mode is robust to both the loss of the largest 
generator and to a severe 5-cycle fault at a low short circuit ratio bus.  

• In the scenario with zero synchronous generation but significant synchronous 
condensers, S6, GFM controls were not necessary to stabilize the system – it was 
stable with all IBRs using GFL controls. 

As far as we are aware, this is the first time a real hardware GFM inverter has been 
shown to stabilize an otherwise unstable bulk power system (i.e., a power system 
with many geographically separated generators interconnected by a transmission 
system). In addition, we believe it is the first time a MW-scale GFM inverter has been 
shown to stabilize a bulk power system with zero inertia (i.e., no synchronous 
generators or condensers). While both of these results align with our expectations from 
theory and EMT simulation, the demonstration at MW-scale in hardware is a significant 
step towards future operation of 100% IBR bulk power systems. 

It is important to note that this does not mean bulk power systems can be immediately 
operated in scenarios such as those studied. Remaining concerns include but are not 
limited to: 

• Will protection systems operate safely in scenarios with very low fault current (and 
with fault current having significantly different sequential components and other 
characteristics from synchronous machine fault current)? 

• This PHIL study used one commercially available GFM inverter. Inverters from at 
least two other manufacturers are currently planned to be deployed in Maui HPPs, 
and control implementations between manufacturers may vary widely. Will other 
GFM control implementations provide similar results?  

• This study has focused on control stability and has intentionally removed 
nonlinearities such as underfrequency load-shedding controls and DER trip and 
momentary cessation behaviors. What impact will these have on system stability 
during contingency events? 
What other challenges will arise in the field that did not show up in PHIL or EMT 
simulations?  

3.7 240-bus WECC Test System Development  

A reduced 240-bus WECC test system in Figure 49 has been developed to validate the 
MIDAS framework, which has also been improved and can be used by others for verifying 
their research ideas on analyses and controls. The original model in [22] contains 
scheduling data that have been benchmarked against the operation data. But that model 
misses dynamic data. We extended that model by (i) developing a power flow base case 
reflecting the realistic generation resource mix of the actual WECC system in the year of 
2018 [23], (ii) adding positive-sequence dynamic models for synchronous generators, 
exciters, governors, and IBRs [23], and (iii) adding power system stabilizers [24]. To the 
best of our understanding, this reduced 240-bus WECC test system is the only open, 
interconnection-level test system, in the public, with IBR dynamic models included in its 
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dynamic data.  

 

Figure 49. One-Line diagram of the reduced 240-bus WECC test system  

This newly developed model has been made available to the public from NREL [25]. More 
details on the development can be found in [26]. So far, this 240-bus WECC Test system 
has been used for 2021 IEEE NASPI Oscillation Source Location Contest and more than 
8 other projects. It has been providing the training data set for machine-learning-based 
dynamic stability assessment [27], validating an automated tool for obtaining AC power 
flow solution [30], and providing various oscillation scenarios for testing oscillation 
detection algorithms [31] and providing one-year dispatchable power flows for robust PSS 
design, etc. 

3.8 Machine-learning Based Security Assessment 

 

Milestone 1.2.1: Develop data-driven security assessment (DSA) criteria that will be 
suitable for triggering the dynamic simulation.  
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Figure 50. Framework of machine learning-based DSA 

Machine learning (ML) or artificial intelligence (AI) based data-driven stability assessment 
(DSA) can help determine when it is necessary to trigger a dynamic simulation. It can 
bridge the gap between a short-term full dynamic simulation and long-term scheduling 
simulation. The framework of this method is illustrated in Figure 50. This work develops 
the methods for machine-learning-based DSA technology. The margin results obtained 
by this DSA tool help select simulation approaches with different levels of simulation 
details and complexity.  

Figure 51 shows the detailed DSA flowchart. Generation dispatch data and load data from 
the scheduling model are used to develop AC power flow. Chronological AC power flow 
scenarios for an extended period (for example, one year) are obtained, and stability 
margins are then assessed based on detailed simulation and analysis. The power flow 
data and the stability margins are used for the machine learning model training. After 
training, the machine learning model can be used to predict the stability margin for a 
specific power flow scenario. If the estimated stability margin indicates an unstable 
system, a command is sent to the scheduling model to generate new dispatch data. If the 
system is stable and the stability margin is large enough, the simplified steady-state 
model will be activated for simulation. If the system is stable but within a small stability 
margin, a detailed dynamic model is used for full dynamic simulation to quantify the 
stability more accurately.  
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Figure 51. Flowchart of machine learning-based DSA 

The 18-bus test system and the reduced WECC test system are used to develop and 
validate the developed DSA tool. The following four stability assessment use cases are 
developed in this study.  

• AI-based transient stability assessment. 
• AI-based frequency stability prediction. 
• AI-based small signal stability assessment 
• AI-based WECC-1 Remedial action scheme (RAS) Improvement  

An example of AI-based transient stability assessment is provided here. More details and 
other use cases can be found in a separate task report in the Appendix B. 

Transient stability is the power system ability to maintain synchronism when subjected to 
a severe disturbance, such as a short circuit on a transmission line. The maximum 
allowable fault-clearing time for the system to remain stable is known as critical clearing 
time (CCT). A larger CCT value generally indicates higher angle stability. The distribution 
of CCT values of one bus (Bus 1002) in the 240-bus system is shown in Figure 52. (Bus 
1002 was selected because of lower CCT values compared with other buses.) It can be 
seen that the CCT values in summer peak hours are obviously lower, partially due to the 
higher loading levels of generators during summer peak hours.  
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Figure 52. Distribution of the CCT values in one year (Bus 1002) 

Neural network is applied to predict CCT values of the 240-bus reduced WECC system. 
The input and output data information are given in Table 13. The data set is divided into 
two subsets: 80% data are used for training (68%) and validation (12%), and the 
remaining 20% data are used for testing.  

Table 13. Data Entries for CCT Prediction 

Input/Output Data Number of Data Entries 

Input 

Total generation 1 

Total load real power 1 

Total system inertia 1 

Generator power output 146 (number of generators) 

Load power 139 (number of loads) 

Generator’s inertia contribution 146 (number of generators) 

Output CCT 1 

The CCT prediction performance and error distribution are shown in Figure 53. The Mean 
Absolute Error (MAE) of all prediction points is 0.00607s, which is around 4% of the 
average CCT value. The distribution of the error is almost symmetric to the Y axis. This 
indicates a desired feature that errors have a close-to-zero expectation. In addition, it can 
be noticed that the CCT prediction error is smaller when the CCT value is smaller, which 
is also a preferable feature since scenarios with low CCT values are more important for 
operators.  

Figure 54 shows the CCT prediction performance of two days. It is noted that although 
the CCT values change dramatically with the power flow within one day, the machine 
learning tool can assist real-time fast stability assessment by predicting the angle stability 
margin accurately. It can also verify the observation that the prediction errors are smaller 
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for smaller CCT values.  

  
(a)  (b)  

Figure 53. CCT prediction performance and error distribution. (a) CCT prediction results for 
multiple days. (b) CCT prediction error 

  
(a) Jan. 20 (b) Aug. 5 

Figure 54. CCT prediction results of two days 

3.9 Tools Developed Under MIDAS Project 
3.9.1 MIDAS Tool 
The Multi-timescale Integrated Dynamics and Scheduling for Solar (MIDAS-Solar) is a 
multi-timescale power system operation simulation tool which integrates the power 
system economy scheduling from day ahead to real time and the AGC dynamic 
responses analysis across different timescales with modern PV power plants. Detailed 
development and introduction of the tool can be found in a separate document called 
“MIDAS TOOL MANUAL_V2.0” [38].  

 



DE-EE00034224 
Jin Tan  

 

Page 53 of 73 

We also provide a user-friendly graphic user interface of MIDAS tool as shown in Figure 
55. The user guide is in a separate document called “MIDAS_GUI_Manual_V1.0” [39].  

 

Figure 55. GUI of MIDAS tool 
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3.9.2 DC2AC Tool 

 
Figure 56. Flowchart of the DC2AC tool 

DC2AC Tool is an automated tool for achieving a converged AC power flow solution from 
any dispatch determined using a DC model-based optimal power flow. This tool assists 
MIDAS could do the continuous closed-loop simulation between the scheduling and 
dynamics. The entire process is free of human intervention. This tool first achieves a 
solvable AC power flow case by modifying the power flow condition and then to try to 
track the AC power flow solution while gradually removing the adopted changes. If all 
adopted changes can be completely removed, then the original AC power flow solution is 
obtained. Otherwise, insights into actionable controls are derived to help in operation and 
planning. Currently, this tool has been implemented in Python using Siemens PTI PSS/E 
as the power flow solver. Detailed development and validation process of the tool can be 
found in [30]. This tool has been made free and open source on GitHub [32]. 
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3.9.3 PSS/E Network Reduction Tool 

 
Figure 57. Single-port (left) and two-port (right) reduction techniques 

This network reduction tool is named PsseReducer, which is based on Python and 
PSS/E. PsseReducer adopts the single-port and two-port reduction techniques proposed 
in [21] to reduce power system network models. The adopted reduction techniques can 
preserve the voltage and power at the port(s) of the reduced subnetwork and keep the 
power flow pattern in the rest of the system unchanged. This tool has been made free 
and open source on GitHub with examples [33]. In this project, PsseReducer has been 
used to create reduced Maui Grid for the PHIL testing. 

3.10  Technical Summary 

This project proposes an innovative multi-timescale simulation framework of integrated 
scheduling and dynamic model (MIDAS) to study performance of PVs providing frequency 
control ancillary services (FCAS). We discuss motivation for introducing MIDAS to 
quantify the performance of FCAS for high renewable penetrated grid. MIDAS models the 
power grid operations and control for FCAS by including PFR and AGC expression and 
constraints in scheduling model and a true physical representation of centralized AGC, 
detailed dynamics of other PFC units and second-level solar and load variations. It can 
simulate the power grid from day-ahead unit commitment to second-level frequency 
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dynamic seamlessly and continuously. Therefore, it can link FCAS in RTED with actual 
implementation through PFC and AGC at a high time resolution. MIDAS is applicable to 
study the impacts of high penetrations of renewables at a broad range of timescales, 
compare different advanced controls, operation strategies, and generation technologies 
for FCAS, and reveal the insight of interaction between PFR and AGC by providing 
quantified reliability and cost information simultaneously.  

Our case studies demonstrate that 1) the traditional regulation requirement could be short 
for a high PV penetrated grid on a cloudy day based on simulated reliability metrics and 
the requirement needs to be improved by considering PV variations under different 
weather condition; 2) When PV is providing stacked PFR and AGC reserve, there is a risk 
to overtake the other reserve during the ramp of sunset or sunrise, and it might result in 
insufficient PFR and AGC when needed; 3) Fast response IBR is a good candidate for 
FCAS provider, while detailed economic analysis is needed for a specific system. 
Specifically, we should consider the trade-off between opportunity cost and revenue 
gained from FCAS. 

From the EMT study of Maui Grid, we have found that phasor-domain simulation may 
encounter numerical instability and misses key system dynamics in some very weak grid 
scenarios. Modeling inverter control loops (power and current) of GFL devices is required 
to detect faster modes in the system response under very weak grid conditions. Study 
indicates that the presence of synchronous generators is not necessary for the system 
stability. The power system can be stable with GFL and synchronous condensers or GFM 
inverters plus GFL.  

Presence of a single GFM (30 MVA) greatly increases damping, ROCOF, and nadir of 
primary frequency mode in weak grid scenarios (145 MW total load). Through MW-scale 
PHIL experiment, we confirm that introducing two GFM plants (60 MVA total) stabilizes 
zero-inertia system (145 MW total load). 

We believe that when we are moving forward to 100% renewable grid, the integrated 
economics and reliability study and simulation like this should be helpful for system 
operators to fully understand the risk and benefit of implementing new products and 
controls for FCAS in their planning and operation stage and therefore secure future power 
grid.  
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4 Significant Accomplishments and Conclusions 

This project has developed Multi-Timescale Integrated Dynamic and Scheduling (MIDAS) 
study framework to address the challenge of operating the grid with extremely high 
renewable penetrations by bridging the modeling and analysis gaps of different 
timescales between economics, reliability, and stability of grid operation. 

MIDAS will be the first of its kind framework to model and analyze the impact of PV 
systems on system dynamics, reliability, and economics at all time spectrums. MIDAS 
will: 

• Provide information about the impacts of PV on grid economics and reliability 
simultaneously. 

• Enable PV to provide grid services for power systems with high penetration of solar 
by seamlessly studying technical feasibility and economic feasibility. 

• Help stakeholders understand what types of advanced controls PV can support 
grid operation (control), when PV is needed to provide grid reliability services 
(impact analysis), the revenue stream for PV to become a grid-service provider, 
and how to incentivize PV (market). 

• Identify the possible stability issues of an IBR-dominated system by using full EMT 
simulation and propose the mitigation methods. 
 

4.1 Featured Accomplishment  

Provide a panorama for grid with high PV penetrations: The power system model in 
MIDAS can provide multi-timescale comprehensive information on economics, reliability, 
and stability from resource adequacy (years to days) and energy balance (days to 
minutes) to frequency dynamics (minutes to seconds) and EMT (sub-second) timescales.  

MIDAS touch for Maui grid operational planning: One-year (8760 hours) scenarios for 
2022 Maui grid are investigated in MIDAS to help Maui planner evaluate the proposed 
existing fixed minimum inertia requirement.  

Develop the first-of-a-kind, full-scale EMT model of the entire Maui transmission 
system: the EMT model shows that Maui system stability can be maintained while 
operating with 100% IBRs (PV, wind, and energy storage). Our simulations indicate that 
this unprecedented operation scenario can be achieved with synchronous condensers, 
GFM inverters, or a combination of the two technologies.  

A megawatt-scale PHIL testing bed with real-time EMT model of Maui grid: In our 
PHIL simulations, we connect a real, MW-scale GFM inverter to a real-time EMT 
simulation model of Maui system.  

Multi-timescale test systems: To tackle the challenges of high renewables integration, 
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NREL researchers develop a set of test systems by providing one-on-one models and 
data for scheduling, power flow, and dynamic study. The 240-bus WECC Test system 
has been used for 2021 IEEE NASPI Oscillation Source Location Contest and more than 
8 other projects so far. All the test systems can be found in the Test Case Repository for 
High Renewable Study.  

4.2 High-level Conclusions  

In this project, we have successfully developed a MIDAS tool, which could enrich existing 
planning and operational tools for conducting reliability and stability analysis down to the 
fast time-scale dynamics. Unlike current commercial tools, MIDAS bridges the gaps 
between the economic analysis and dynamic reliability evaluations of grid operation. 
Thus, grid operators can see the trade-offs of dispatching renewable (and nonrenewable) 
assets for a variety of grid services. 

So far, MIDAS has helped Maui to plan ahead for more renewables by modeling its 
operations under future high solar scenarios. The Maui model in MIDAS can identify 
potential reliability and stability issues before they happen, from resource adequacy 
(years to days) and energy balance (days to minutes) to frequency dynamics (minutes to 
seconds) and EMT (sub-second) timescales, providing a uniquely complete picture of 
Maui’s high-renewable system.  

4.2.1 Learnings from a Multi-timescale Simulation Approach 

In the multi-timescale study of Maui Grid, the simulation shows that it becomes more 
challenging to ensure the grid stability from a scheduling perspective. Grid planners and 
operators need to carefully design and implement inertia/dynamic related constraints 
because these frequency-dynamic-related constraints have never been included in the 
existing scheduling model of the commercial software. Any newly proposed 
services/constraints need to be tested and validated beforehand through MIDAS or 
similar simulation/study framework.  

The project has demonstrated the pros and cons of a fixed minimum inertia requirement 
for Maui Grid. Also, we propose a new adaptive operational constraint that aims to avoid 
underfrequency load shedding after severe contingencies anytime based on the grid 
operational conditions.  

4.2.2 100% IBR Operation is Achievable in EMT Simulation and PHIL Testing  

In the Maui 100 EMT study, the simulation indicates that there are three pathways for 
Maui grid to achieve a stable operation of a 100% renewable energy grid in terms of 
inverter technologies. One way is to use GFL and synchronous condensers, the second 
way is to use GFL and GFM, and the third one is to use a hybrid method which combine 
GFL, GFM, and synchronous condensers. In addition, GFM has been identified as an 
effective technology to increase damping, reduce ROCOF, and improve nadir of primary 

https://www.nrel.gov/grid/test-case-repository.html
https://www.nrel.gov/grid/test-case-repository.html
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frequency mode in weak grid scenarios.  

The project has demonstrated that 1) Maui system can be stable with GFL and 
synchronous condensers; 2) We can use two GFM plants (60 MVA total) to stabilize zero-
inertia Maui system (145 MW total load), and this is validated through EMT simulation 
and MW-scale PHIL experiment. 

Note that the above conclusions are based on transient stability analysis, and we have 
not considered other topics necessary for 100% IBR operation, e.g., protection, reserves, 
and resource adequacy. 

The MIDAS methods and high-level conclusions can be generalized to other island grids 
and interconnections. But some other specified questions need to be studied and 
addressed further based on the characteristics of the different grids.  
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5 Path Forward 

The MIDAS-Solar project focused on key technical challenges from two main aspects 
when the grid is transitioning to 100% renewable energy. These two key aspects include 
1) how could we ensure the grid reliability with high PV penetrations through advanced 
control and new ancillary services from PV; 2) how shall we maintain grid transient 
stability when the grid is operating with 100% renewables or even with IBRs. There are 
some follow-up research topics that can be considered when we move to next steps. 

5.1 System Planning and Operation 

To maintain high levels of reliability and stability of bulk power systems, changes will be 
needed for both transmission systems and IBRs. The existing practices at various 
timescales—planning, day-ahead scheduling, real-time dispatch and operation and 
transient stability, at all levels—transmission, generation, distribution, and storage 
systems will need to adapt. 

The MIDAS-solar project has pointed out that some interactions among different 
timescales need to be considered in the design and analysis stage, and new control 
technologies need to be developed and deployed for the future IBR-dominated system. 
The future directions consist of many aspects such as design, analysis, control, operation, 
and planning. Here, we name a few of them: 

1) Controls of IBRs could become more complicated from both device and system 
levels. So far, system operators haven’t fully used the fast response capabilities 
from IBRs. Some engineers tend to try to make IBRs perform as synchronous 
machines so that the system-level design doesn’t introduce dramatic changes. 
However, the future IBR-dominated grid has to consider the high flexibility and 
controllability of IBRs, because of new power system dynamic characteristics (e.g., 
low inertia, low short-circuit ratio, etc.). So, we might make future IBRs perform 
better than existing IBRs as well as better than traditional synchronous machines 
on some aspects. That transformation will lead to a set of new questions such as 
how we should consider the fast response/control capability in IBRs in the planning 
stage, how we re-elevate the resource adequacy with IBRs to ensure grid stability, 
and how we could properly design the new system-level ancillary services for IBRs 
to fully use/incentivize new controls of IBRs. Further, the IBR control algorithms 
may interact with other dynamic components in the bulk power systems, like other 
IBRs or high-voltage dc transmission. This could complicate the design, control, 
and analysis of IBR-dominated power systems. 

2) We need to fully understand the stability mechanism of the future IBR-dominated 
system. If the grid structure or characteristics of the dominant dynamic 
components is dramatically changed, the modeling and analysis methods will need 
to be updated accordingly to ensure the system’s reliability, security, and stability. 
For example, the existing scheduling model couldn’t guarantee the system 
stability, therefore, some new tools such as MIDAS are needed for the future 
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planning study. Further, we need to revisit the stability mechanism in this new 
paradigm. We need to understand the limitations of existing simulation-based 
analysis tools and methods. The MIDAS-solar project has identified some new 
stability issues that need to be captured in EMT simulations. However, to fully 
understand the dynamic characteristics of an IBR-dominated grid such as the high-
frequency oscillations introduced by wind, PV and even batteries in the field, more 
research efforts are required in this field.  

5.2 Advanced Coordination Between Solar and Storage 

Given the flexibility of energy storage, pairing a PV plant with a BESS in an HPP provides 
a promising solution for system operators to improve PV dispatchability and predictability 
while providing fast response capability to augment or substitute traditional power plants’ 
inertial response. Facing the fast-increasing capacity of utility-scale HPPs, grid operators 
expect HPPs to take a more essential role than before, ensuring system-wide stability, 
reliability, and flexibility of grid operation. However, most HPPs are still treated as non-
dispatchable and uncontrollable resources in scheduling, and advanced grid controls of 
HPPs are rarely considered in practice. Because there are more technical challenges that 
need to be addressed first. The future research topics include: 

• How to develop advanced coordination/control strategies of PV and battery and 
maximize usage of the battery capacity for energy arbitrary and fast power 
response? 

• How could system operators work with HPP vendors and coordinate the operations 
of HPPs and stand-alone batteries? 

• Development of plant-level optimal coordination of PV and BESS to meet the 
system-level control command. 

• Development of versatile HPP controls for multiple grid services.  

5.3 Plans for Tools Developed Under the Project 
Under the MIDAS project, we have obtained four software records as introduced in 
Section 3.9. These developed tools are summarized in Table 14. 

Table 14. Future Plans for Four Tools Developed Under the MIDAS Solar Project 

Tools Software record Plan Further development 
MIDAS Tool NREL SWR-21-97 Commercialization Yes 

MIDAS-DC-AC Tool NREL SWR-21-39 Commercialization 
Open source Yes 

Network Reducer Tool NREL SWR-21-55 Open source No Plan 
PyPSCAD NREL SWR-20-64 Open source No Plan 

For MIDAS tool, the collaboration with our utility partners to use MIDAS has initially 
demonstrated the market needs. The next steps include:  
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• Further develop the multiple-timescale models and components including battery 
energy storage, pump hydro storage, etc. 

• Further enhance the functionality of DC-AC Tool by using AC-OPF method. 
• Including the open-source power system simulation package in a fully open-

source simulation package. 
• Try to commercialize the tool with potential software vendors (e.g., GE) by 

including the use of commercial tools within the modular co-simulation 
framework. Meanwhile, we will keep working with utilities and demonstrating the 
use cases and capabilities of MIDAS tool.  

5.4 Development of the 240-bus WECC Test System  

For the 240-bus WECC Test System, our final goal is to develop a realistic (but not real) 
interconnection-level test system that enables both academia and industry users to 
address the challenges of integrating high penetrations of IBRs.  

To address different problems associated with various timescales, this test system has 
been designed to span multiple timescales with a set of inputs and model parameters. 
The overall development pathway at different timescales is shown in Figure 58. 

 

Figure 58. Development pathway of 240-bus WECC test system 

Under MIDAS project, we have developed a one-on-one matched reduced 240-bus 
WECC test system for both scheduling and dynamic simulation. Also, high IBR 
penetration scenarios are developed considering the UPV/DPV technical potentials in 
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each of the 11 U.S. states in this reduced WECC test system.  

As highlighted in Figure 58, compelling future works are summarized as follows:  

• Full EMT model development: We will include detailed GFL and GFM models. 
(An on-going effort supported by a LDRD) 

• High renewable penetration scenarios development: Future high renewable 
scenarios will require additional mapping from the WECC planning study, e.g., the 
future capacity expansion and time-series generation data of IBRs and load data. 

• IBR modeling: 2nd generation renewable dynamic models, which are the latest 
renewable dynamic model, are used for this work. These models have limitations 
and may encounter numerical issues under low short-circuit-ratio conditions. 
Newer renewable dynamic models addressing those numerical issues are 
available in academia and have been integrated to commercial software, including 
PSS/E which is used for this work. In addition, HVDC lines have been modeled as 
positive load and negative load so far. To investigate the dynamic interactions 
between HVDC lines and IBRs, we will replace them with the detailed inverter 
control models.  

5.5 Community Engagement 

The MIDAS-Maui study has identified some potential technical routes for 100% renewable 
pathways. These transitions (e.g., GFM deployment, hybrid PV and battery energy 
storage, ancillary services requirements, etc.), are less likely to be successful if the 
proposed methods are not adopted by utilities, approved by regulators, and welcomed by 
a local community. In this regard, next steps include: 

• For the short term, the results disseminations and discussion will be key to gain 
the public trust and get their support. 

• For the long term, to build up a long-term trustful collaboration relationship with 
utility partners, we will focus on their needs, develop customer-focused projects, 
and continuously deliver the high-quality research outputs.  
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6 Inventions, Patents, Publications, and Other Results 
Software Records 
[1] Multi-timescale integrated dynamic and scheduling model (NREL SWR-21-97) 
[2] Network Reduction Tool (NREL SWR-21-55). Available at 
https://github.com/NREL/PSSE_Network_Reduction  
[3] MIDAS-DC-AC Tool: Fully Automating the Acquisition of AC Power Flow Solution 
(SWR-21-39) 
[4] PyPSCAD: Library of Python code for interacting with parallelized PSCAD models, as 
well as detailed, scalable PSCAD grid-following and grid-forming inverter models,” (NREL 
SWR-20-64). Available at https://github.com/NREL/PyPSCAD  

Open-source Test Cases  
[1] Test Case Repository for High Renewable Study. https://www.nrel.gov/grid/test-case-
repository.html 

Journal Papers (8 published/accepted, 2 in preparation) 
[1] S. You, etc., Build Smart Grids on Big Data and Artificial Intelligence — a Real-world 
Example,” Energies, AIPES 2020 special issue.  

[2] S. Yin, J. Wang, Z. Li, and X. Fang, “State-of-the-art Electricity Market Operation with 
Solar Generation: A Review,” Sustainable and Energy Renewable.  

[3] A. Hoke, V. Gevorgian, S. Shah, P. Koralewicz, R. W. Kenyon, and B. Kroposki, “Island 
Power Systems with High Levels of Inverter-based Resources – Stability and Reliability 
Challenges,” IEEE Electrification Magazine, March 2021.  

[4] X. Fang, H. Yuan, and J. Tan, “Secondary Frequency Regulation from Variable 
Generation Through Uncertainty Decomposition: An Economic and Reliability 
Perspective,” IEEE Transactions on Sustainable Energy.  

[5] Y. Zhao, etc., “Deep Learning-based Adaptive Remedial Action Scheme with Security 
Margin for Renewable-Dominated Power Grids,” Energies. 

[6] L. Zhu, Y. Zhao, et al., “Adding Power of Artificial Intelligence to Situational Awareness 
of Large Interconnections Dominated by Inverter-Based Renewables,” High Voltages. 

[7] J. Cochran, C. Bak, P. Francos, etc., “Same Goal, Different Pathways for Energy 
Transition”, IEEE Power Magazine. (to be published) 

[8] J. Tan, H. Yuan, Y. Zhang, etc., “A Multi-Timescale Framework to Study the 
Performance of High-Penetration of Renewables Providing Frequency Ancillary 
Services,” (submitted to IEEE Trans on Sustainable Energy) 

https://github.com/NREL/PSSE_Network_Reduction
https://github.com/NREL/PyPSCAD
https://www.nrel.gov/grid/test-case-repository.html
https://www.nrel.gov/grid/test-case-repository.html
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[9] X. Liu, X. Fang, etc. “Machine Learning Based Frequency Stability Constrained Unit 
Commitment: An Island System Study” (plan to submit it to IEEE Trans on Sustainable 
Energy) 

[10] A Hoke, P. Koralewicz, B. Wang, and R. W. Kenyon, Li Yu, Kelcie Kawamura, Jin 
Tan, “Stability of Inverter-based Transmission Systems: Power Hardware-in-the-Loop 
Experiments with a Megawatt-scale Grid-forming Inverter,” IEEE Electrification Magazine, 
September 2022. 

Conference Papers (18 published/accepted; 1 submitted) 

[1] R. Biswas, J. Tan, H. Jain, V. Gevorgian, and Y. Zhang, “Equivalent Test Bed in 
PSCAD and PSLF for Studying Advanced Power Systems Controller Performance,” IEEE 
2019 ISGT North America Conference.  

[2] H. Xiao, S. Fabus, S. You, etc., “A Unified Machine Learning Approach for Data-driven 
Security Assessment of Power Grids,” presented in CIGRE. (FY20Q1) 

[3] H. Yuan, R. S. Biswas, J. Tan, and Y. Zhang, “Developing a Reduced 240-Bus WECC 
Dynamic Model for Frequency Response Study of High Renewable Integration,” T&D 
2020.  

[4] R. Kenyon, A. Hoke, J. Tan, and B. Hodge, “Grid-Following Inverters and Synchronous 
Condensers: A Grid-Forming Pair?” present on-line for 2020 IEEE Clemson University 
Power System Conference.  

[5] H. Jain, M. Sengupta, A. Habte, and J. Tan, “Quantifying Solar PV Variability at 
Multiple Timescales for Power Systems Studies,” presented at PVSC 2020. 

[6] S. You, etc., “Deploy Artificial Intelligence in Smart Grids — an FNET/GridEye 
Example,” submit to European Conference on Artificial Intelligence 2020. 

[7] S. You, etc., “A Review on Artificial Intelligence for Grid Stability Assessment,” In 2020 
IEEE International Conference on Communications, Control, and Computing 
Technologies for Smart Grids (SmartGridComm) (pp. 1-6). IEEE.  

[8] R. Kenyon, B. Wang, A. Hoke, J. Tan, and B. Hodge, “Validation of Maui PSCAD 
Model: Motivation, Methodology, and Lessons Learned,” NAPS 2020. 

[9] S. Yin, J. Wang, Y. Lin, X. Fang, H. Yuan, and J. Tan, “Practical Operations of Energy 
Storage Providing Ancillary Services: From Day-ahead to Real-time,” NAPS 2020. 

[10] X. Fang, J. Tan, H. Yuan, S. Yin, and J. Wang, “Providing Ancillary Services with 
Photovoltaic Generation in Multi-Timescale Grid Operation,” NAPS 2020. 
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[11] B. Wang, A. Hoke, and J. Tan, “Power System Network Reduction for Power 
Hardware-in-the-Loop Simulation,” IEEE Kansas Power and Energy Conference, 2021.  

[12] R. Kenyon, A. Sajadi, A. Hoke, and B. Hodge, “Introducing Generic PSCAD GFL and 
GFM Models: Demonstrated on the IEEE 9 Bus System,” IEEE Kansas Power and 
Energy Conference, 2021.  

[13] A. Habte, M. Sengupta, H. Yuan, G. Buster and J. Tan, “Simulation of PV Variability 
as a Function of PV Generation and Plant Size,” 2021 IEEE 48th Photovoltaic Specialists 
Conference (PVSC), 2021, pp. 2136-2140, doi: 10.1109/PVSC43889.2021.9518528. 

[14] Lizhi Ding, Xiaonan Lu, and Jin Tan,” Comparative Small-Signal Stability Analysis of 
Grid-Forming and Grid-Following Inverters in Low-Inertia Power Systems,” IECON2021. 

[15] R. W. Kenyon, A. Sajadi, B. Hodge, and A. Hoke, “Criticality of Inverter Controller 
Order in Power System Dynamic Studies – Case Study: Maui Island,” accepted by Power 
Systems Computation Conference. 

[16] L. Ding, X. Lu, and J. Tan,” Holistic Small-Signal Stability Analysis of Low-Inertia 
Power Grids with Inverter-Based Resources and Synchronous Condensers,” ISGT2022. 

[17] Y. Zhao, S. You, …, and J. Tan, “Fast and Accurate Transient Stability Assessment 
Method Based on Deep Learning: WECC Case Study,” submitted to Hawaii International 
Conference on System Sciences. 

[18] J. Ting, B. Wang, W. Kenyon, and A. Hoke, “Evaluating methods for measuring grid 
frequency in low inertia power systems”. (accepted by KPEC 2022) 

[19] X. Liu, J. Xie, X. Fang, H. Yuan, B. Wang, H. Wu, J. Tan, “A Comparison of Machine 
Learning Methods for Frequency Nadir Estimation in Power Systems” (accepted by KPEC 
2022) 

Invited Talks and Presentations (15 presentations) 

[1] J. Tan, “Multiple Timescale PV Model for Dynamics and Scheduling,” presented at 
ESIG Fall workshop 2019.  

[2] J. Tan, “Frequency Control and Modeling of Inverter-based Renewables for Grid 
Study: An Industry Perspective,” presented at PESGM 2019 Panel Session. 

[3] H. Yuan and J. Tan, “Multi-timescale Integrated Dynamics and Scheduling for Solar 
(MIDAS-Solar),” present at Panel Session/ISGT 2020, Washington DC. 
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[4] H. Yuan, “Machine Learning-based Security Assessment and Control for Bulk Electric 
System Operation,” present at Panel Session/ISGT 2020, Washington DC. 

[5] J. Tan, “Multi-timescale Integrated Dynamics and Scheduling (MIDAS)-Maui Study 
Cases,” 2020 ESIG Fall technical workshop, November 2020.  

[6] J. Tan, “A Machine-learning Approach for Dynamic Security Margin Assessment of 
Power Grids with High Penetration of Renewable Energy,” MATLAB Utilities & Energy 
Conference, Virtual, November 2020. (Panel session)  

[7] A. Hoke, “Advanced EMT Simulation for Modern Power Grids with GFM and GFL 
Controls: An Industry Perspective,” IEEE Energy Conversion Conference and Exposition 
(ECCE) Special Session October 2020.  

[8] A. Hoke,” Power HIL Evaluation of Inverter Controls for 100% Inverter-based Bulk 
Power Systems: A Power Electronics Grid Integration Case Study,” Power Electronic Grid 
Interface (PEGI) Platform Industry Workshop, NREL October 2020.  

[9] W. Kenyon, B. Wang, J. Tan, G. Yau, M. Asano, L. Dangelmaier, and A. Hoke, 
“Inverter-based Operation of Maui: Electromagnetic Transient Simulations,” NERC 
Inverter-based Resource Performance Working Group, March 2021  

[10] A. Hoke, “Grid Reliability and Inverter-based Resources,” Presented to Northeast 
Power Coordinating Council (NPCC) DER Forum, February 11, 2021. 

[11] W. Kenyon, B. Wang, J Tan, and A. Hoke, “Inverter-based Operation of Power 
Systems: Electromagnetic Transient Simulations and Grid-forming Inverters,” presented 
to FERC staff. 

[12] A. Hoke, “Operating Power Systems at Near 100% Instantaneous Inverter-based 
Generation,” EUCI Smart Inverter-based Resources Course. 

[13] A. Hoke, “High Penetration PV and Wind in Island Power Systems,” Workshop 
delivered to U.S. Virgin Islands Water and Power Authority. 

[14] A. Hoke, “Grid-Forming Technology: Current Applications and Future 
Considerations,” IEEE PES General Meeting Panel Session, July 26, 2021. 

[15] J. Tan “A Machine Learning Framework for Bridging the Gap Between the Steady-
State Scheduling and Dynamic Security Operation for Future Power Grid” IEEE PES 
General Meeting Panel Session, July 26, 2021. 
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Technical Report  

[1] Wang, Bin, and Jin Tan. “DC-AC Tool: Fully Automating the Acquisition of AC Power 
Flow Solution”. Golden, CO: National Renewable Energy Laboratory. NREL/TP-6A40-
80100.2022. 

[2] J. Tan, X. Fang, H. Yuan, J. Wang, S. Yin, Y. Lin “MIDAS TOOL MANUAL_V2.0”. 
NREL Internal Report. 

[3] X. Liu, X. Fang, J. Tan. “MIDAS GUI Manual” NREL Internal Report. 

[4] J. Tan, B. Wang, H. Yuan, X. Fang, etc. “240-bus WECC Test System” NREL Report 
(in development). 

[5] J. Tan, etc. “MIDAS Final Report” (in development). 

Media Report  

• “NREL Methods Assist Maui in Approaching 100% Renewable Operations -New 
Capabilities Demonstrate How Renewables Can Stabilize and Support the Power 
Grid” July 30, 2021 

• “As Maui approaches 100% renewables, NREL models grid options” PV magazine, 
August 2, 2021 

• “NREL supports Hawaii’s island of Maui on path to 100% renewables”, Renewable 
now, August 4, 2021 

  

https://www.nrel.gov/docs/fy22osti/80100.pdf
https://www.nrel.gov/docs/fy22osti/80100.pdf
https://www.nrel.gov/news/program/2021/nrel-methods-assist-maui-in-approaching-100-renewable-operations.html
https://www.nrel.gov/news/program/2021/nrel-methods-assist-maui-in-approaching-100-renewable-operations.html
https://www.nrel.gov/news/program/2021/nrel-methods-assist-maui-in-approaching-100-renewable-operations.html
https://pv-magazine-usa.com/2021/08/02/as-maui-approaches-100-renewables-nrel-models-grid-options/
https://renewablesnow.com/news/nrel-supports-hawaiis-island-of-maui-on-path-to-100-renewables-749814/


DE-EE00034224 
Jin Tan  

 

Page 69 of 73 

References 
[1] AEMO. (2019). Regulation FCAS changes. Available: https://www.aemo.com.au/-

/media/files/electricity/nem/security_and_reliability/ancillary_services/frequency-and-
time-error-reports/regulation-fcas-factsheet.pdf?la=en 

[2] N. G. E. Transmission, “Appendices to the Technical Report on the events of 9 
August 2019,” 2019, Available: 
https://www.ofgem.gov.uk/system/files/docs/2019/09/eso_technical_report_-
_appendices_-_final.pdf. 

[3] A. Groundy. (2019). National Grid ESO claims world first approach to inertia, 
awarding £328m in contracts. Available: https://www.current-
news.co.uk/news/national-grid-eso-claims-world-first-approach-to-inertia-awarding-
328m-in-contracts 

[4] V. Gevorgian, Y. Zhang, and E. Ela, “Investigating the impacts of wind generation 
participation in interconnection frequency response,” IEEE transactions on 
Sustainable Energy, vol. 6, no. 3, pp. 1004-1012, 2015. 

[5] A. Hoke and D. Maksimović, “Active power control of photovoltaic power systems,” 
in Technologies for Sustainability (SusTech), 2013 1st IEEE Conference on, 2013, 
pp. 70-77: IEEE. 

[6] E. Ela et al., Active Power Controls from Wind Power: Bridging the Gap. National 
Renewable Energy Laboratory, 2014. 

[7] J. Aho et al., “A tutorial of wind turbine control for supporting grid frequency through 
active power control,” in 2012 American Control Conference (ACC), 2012, pp. 3120-
3131: IEEE. 

[8] J. Morren, S. W. De Haan, W. L. Kling, and J. Ferreira, “Wind turbines emulating 
inertia and supporting primary frequency control,” IEEE Transactions on power 
systems, vol. 21, no. 1, pp. 433-434, 2006. 

[9] W. Hu, C. Su, J. Fang, Z. Chen, and Y. Hu, “Ancillary frequency control of direct 
drive full-scale converter based wind power plants,” in PowerTech (POWERTECH), 
2013 IEEE Grenoble, 2013, pp. 1-6: IEEE. 

[10] E. Ela, V. Gevorgian, A. Tuohy, B. Kirby, M. Milligan, and M. O’Malley, “Market 
designs for the primary frequency response ancillary service—Part I: Motivation and 
design,” Power Systems, IEEE Transactions on, vol. 29, no. 1, pp. 421-431, 2014. 

[11] L. Wang, D. Chen, S. PTI, and E. Siemens, “Automatic generation control (AGC) 
dynamic simulation in PSS/E," Siemens PTI eNewsletter, no. 107, 2011. 

https://www.aemo.com.au/-/media/files/electricity/nem/security_and_reliability/ancillary_services/frequency-and-time-error-reports/regulation-fcas-factsheet.pdf?la=en
https://www.aemo.com.au/-/media/files/electricity/nem/security_and_reliability/ancillary_services/frequency-and-time-error-reports/regulation-fcas-factsheet.pdf?la=en
https://www.aemo.com.au/-/media/files/electricity/nem/security_and_reliability/ancillary_services/frequency-and-time-error-reports/regulation-fcas-factsheet.pdf?la=en
https://www.ofgem.gov.uk/system/files/docs/2019/09/eso_technical_report_-_appendices_-_final.pdf
https://www.ofgem.gov.uk/system/files/docs/2019/09/eso_technical_report_-_appendices_-_final.pdf
https://www.current-news.co.uk/news/national-grid-eso-claims-world-first-approach-to-inertia-awarding-328m-in-contracts
https://www.current-news.co.uk/news/national-grid-eso-claims-world-first-approach-to-inertia-awarding-328m-in-contracts
https://www.current-news.co.uk/news/national-grid-eso-claims-world-first-approach-to-inertia-awarding-328m-in-contracts


DE-EE00034224 
Jin Tan  

 

Page 70 of 73 

[12] E. Ela and M. O'Malley, "Studying the variability and uncertainty impacts of 
variable generation at multiple timescales," IEEE Transactions on Power Systems, 
vol. 27, no. 3, pp. 1324-1333, 2012. 

[13] H. Chavez, R. Baldick, and J. Matevosyan, "The Joint Adequacy of AGC and 
Primary Frequency Response in Single Balancing Authority Systems," Sustainable 
Energy, IEEE Transactions on, vol. PP, no. 99, pp. 1-8, 2015. 

[14] V. Trovato, A. Bialecki, and A. Dallagi, "Unit commitment with inertia-dependent 
and multispeed allocation of frequency response services," IEEE Transactions on 
Power Systems, vol. 34, no. 2, pp. 1537-1548, 2018. 

[15] E. Ela, V. Gevorgian, A. Tuohy, B. Kirby, M. Milligan, and M. O'Malley, "Market 
designs for the primary frequency response ancillary service—Part I: Motivation and 
design," IEEE Transactions on Power Systems, vol. 29, no. 1, pp. 421-431, 2014. 

[16] W. Li, P. Du, and N. Lu, "Design of a new primary frequency control market for 
hosting frequency response reserve offers from both generators and loads," IEEE 
Transactions on Smart Grid, vol. 9, no. 5, pp. 4883-4892, 2017. 

[17] X. Fang, J. Tan, H. Yuan, S. Yin, and J. Wang, “Providing Ancillary Services with 
Photovoltaic Generation in Multi-Timescale Grid Operation,” 2020 52nd North Am. 
Power Symp. NAPS 2020, Apr. 2021. 

[18] S. Yin, J. Wang, Y. Lin, X. Fang, J. Tan, and H. Yuan, “Practical Operations of 
Energy Storage Providing Ancillary Services: From Day-Ahead to Real-Time,” 2020 
52nd North Am. Power Symp. NAPS 2020, Apr. 2021. 

[19] California ISO, “Flexible Ramping Product,” 2016. 

[20] Q. Wang, W. Hongyu, T. Jin, B. M. Hodge, W. Li, and C. Luo, “Analyzing the 
impacts of increased wind power on generation Revenue Sufficiency,” in IEEE 
Power and Energy Society General Meeting, 2016, vol. 2016-Novem, pp. 1–5. 

[21] B. Wang, A. Hoke, J. Tan, "Power System Network Reduction for PHIL 
Simulation," Kansas Power and Energy Conference, 2021. 

[22] J. E. Price and J. Goodin, "Reduced network modeling of WECC as a market 
design prototype," 2011 IEEE Power and Energy Society General Meeting, Detroit, 
MI, USA, 2011, pp. 1-6, doi: 10.1109/PES.2011.6039476. 

[23] H. Yuan, R. S. Biswas, J. Tan and Y. Zhang, "Developing a Reduced 240-Bus 
WECC Dynamic Model for Frequency Response Study of High Renewable 
Integration," 2020 IEEE/PES Transmission and Distribution Conference and 
Exposition (T&D), Chicago, IL, USA, 2020. 



DE-EE00034224 
Jin Tan  

 

Page 71 of 73 

[24] S. Maslennikov, B. Wang, "Creation of simulated test cases for the oscillation 
source location contest," 2022 PES General Meeting, accepted. 

[25] “Test Case Repository for High Renewable Study,” Mar. 2021. [Online] Available: 
https://www.nrel.gov/grid/test-case-repository.html 

[26] J. Tan, B. Wang, X. Fang, H. Yuan, etc. , Development of a Reduced 240-Bus 
Western Electricity Coordinating Council (WECC) Test System and High IBR 
Penetration Scenarios, under construction. 

[27] Y. Zhao, S. You, M. Mandich, L. Zhu, C. Zhang, H. Li, Y. Su, C. Zeng, Y. Zhao, 
Y. Liu, H. Jiang, H. Yuan, Y. Zhang, J. Tan, “Deep learning-based adaptive remedial 
action scheme with security margin for renewable-dominated power grids,” Energies, 
vol. 14, no. 20, 2021. 

[28] J. Tan and Y. Zhang, "Coordinated Control Strategy of a Battery Energy Storage 
System to Support a Wind Power Plant Providing Multi-Timescale Frequency 
Ancillary Services," in IEEE Transactions on Sustainable Energy, vol. 8, no. 3, pp. 
1140-1153, July 2017, doi: 10.1109/TSTE.2017.2663334. 

[29] J. Tan, H. Yuan, Y. Zhang, etc., “A Multi-Timescale Framework to Study the 
Performance of High-Penetration of Renewables Providing Frequency Ancillary 
Services,” submitted to IEEE Trans on Sustainable Energy. 

[30] B. Wang and J. Tan, in DC-AC Tool: Fully Automating the Acquisition of AC 
Power Flow Solution, NREL/TP-5D00-80100, 2022. 

[31] “IEEE-NASPI Oscillation Source Location Contest,” 
https://www.naspi.org/node/890 

[32] “MIDAS DC-AC Tool,” https://github.com/NREL/DC2AC. 

[33] “PSSE Network Reduction,” https://github.com/NREL/PSSE_Network_Reduction  

[34] R. W. Kenyon, A. Sajadi, A. Hoke, and B.-M. Hodge, “Open-Source PSCAD 
Grid-Following and Grid-Forming Inverters and A Benchmark for Zero-Inertia Power 
System Simulations,” in 2021 IEEE Kansas Power and Energy Conference (KPEC), 
Apr. 2021, pp. 1–6. 

[35] R. W. Kenyon, B. Wang, A. Hoke, J. Tan, C. Antonio, and B.-M. Hodge, 
“Validation of Maui PSCAD Model: Motivation, Methodology, and Lessons Learned,” 
in 2020 52nd North American Power Symposium (NAPS), Apr. 2021, pp. 1–6. 

[36] R. W. Kenyon, A. Hoke, J. Tan, and B. Hodge, “Grid-Following Inverters and 
Synchronous Condensers: A Grid-Forming Pair?,” in 2020 Clemson University 
Power Systems Conference (PSC), 2020, pp. 1–7. 

https://www.nrel.gov/grid/test-case-repository.html
https://www.naspi.org/node/890
https://github.com/NREL/DC2AC
https://github.com/NREL/PSSE_Network_Reduction


DE-EE00034224 
Jin Tan  

 

Page 72 of 73 

[37] R. W. Kenyon, A. Sajadi, A. Hoke, and B.-M. Hodge, “Criticality of Inverter 
Controller Order in Power System Dynamic Studies – Case Study: Maui Island,” 
Accepted, 2022. 

[38] J. Tan, X. Fang, H. Yuan, J. Wang, S. Yin, Y. Lin “MIDAS TOOL 
MANUAL_V2.0”. NREL Internal Report. 

[39] X. Liu, X. Fang, J. Tan. “MIDAS GUI Manual” NREL Internal Report. 

[40] R. W. Kenyon, B. Wang, A. Hoke, J. Tan, B. M. Hodge, "Comparison of 
Electromagnetic Transient and Phasor Dynamic Simulations: Implications for 
Inverter Dominated Systems," in preparation. 

[41] A Hoke, P. Koralewicz, B. Wang, and R. W. Kenyon, Li Yu, Kelcie Kawamura, Jin 
Tan, “Stability of Inverter-based Transmission Systems: Power Hardware-in-the-
Loop Experiments with a Megawatt-scale Grid-forming Inverter,” IEEE Electrification 
Magazine, to appear, 2022. 

[42] J. T. Bin Wang, "DC-AC Tool: Fully Automating the Acquisition of the AC Power 
Flow Solution," National Renewable Energy Lab 2022. 

[43] B. Wang, A. Hoke, J. Tan, “Power System Network Reduction for Power 
Hardware-in-the-Loop Simulation,” IEEE Kansas Power and Energy Conference, 
2021 

  

https://www.nrel.gov/docs/fy21osti/78372.pdf
https://www.nrel.gov/docs/fy21osti/78372.pdf


DE-EE00034224 
Jin Tan  

 

Page 73 of 73 

Appendix 

6.1 Appendix A – 18-bus 4-areaTest System 

6.2 Appendix B – Machine-learning based dynamic stability assessment. 



Appendix A-1 

Appendix A – 18-Bus Test System 
A.1  System Layout 
The four-area system given in GE PSLF is shown in Figure 1. 

 
Figure 1. Four-area system 



Appendix A-2 

The voltage levels for the buses with the blue color, the red color and the purple color are 16 kV, 230 kV and 500 kV, 
respectively. Here, buses 101, 1 and 2 are used as examples to illustrate the meaning of the legends around the buses. 

 
 

Figure 2. Illustration of the legends 
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A.2. Summary of the System 

 Number 

Areas 4 

Buses 18 

Lines 18 

Transformers 6 

Generators 4 

Loads 7 
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A.3. System Data 

The power base for the system is 100 MVA. 

1) Bus Data 

Bus No Bus Name 
Voltage Base 

(kV) 
Bus 
Type 

VSched 
(p.u.) 

V 
(p.u.) 

Angle 
(deg) 

Vmax 
(p.u.) 

Vmin 
(p.u.) 

Area 

1 NORTH-01 230 1 0.9897 0.9854 -5.08 1.0397 0.9397 1 

2 NORTH-02 230 1 0.9586 0.9464 -12.91 1.0086 0.9086 1 

3 NORTH-03 230 1 0.9675 0.957 -12.9 1.0175 0.9175 1 

11 WEST--01 230 1 0.9795 0.9787 6.30 1.0295 0.9295 2 

12 WEST--02 230 1 0.9097 0.9065 -9.35 0.9597 0.8597 2 

13 WEST--03 230 1 0.9129 0.9099 -9.32 0.9629 0.8629 2 

14 WEST--04 500 1 0.9241 0.9218 -9.62 0.9742 0.8741 2 

21 SOUTH-01 230 1 0.9794 0.9776 -13.75 1.0294 0.9294 3 

22 SOUTH-02 230 1 0.9854 0.9843 -11.35 1.0354 0.9354 3 

23 SOUTH-03 230 1 0.9956 0.9951 -9.15 1.0456 0.9456 3 

24 SOUTH-04 500 1 0.983 0.9818 -11.2 1.0330 0.9330 3 

31 EAST--01 230 1 0.9977 0.9974 -11.38 1.0476 0.9477 4 

32 EAST--02 230 1 0.9996 0.9992 -11.67 1.0496 0.9496 4 

33 EAST--03 230 1 0.9998 0.9994 -10.95 1.0498 0.9498 4 

101 NORTH-G1 16 0 1.0000 1.0000 0 1.0500 0.9500 1 

111 WEST--G1 16 2 1.0000 1.0000 11.19 1.0500 0.9500 2 

231 SOUTH-G1 16 2 1.0000 1.0000 -4.35 1.0500 0.9500 3 

311 EAST--G1 16 2 1.0000 1.0000 -6.58 1.0500 0.9500 4 
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Bus No Bus Name 
Voltage Base 

(kV) 
Bus 
Type 

VSched 
(p.u.) 

V 
(p.u.) 

Angle 
(deg) 

Vmax 
(p.u.) 

Vmin 
(p.u.) 

Area 

35 EAST-05 230 1      3 

351 EAST-BESS 25 1 1 1    3 

352 EAST-DFIG1 25 2 1 1    3 

353 EAST-DFIG2 25 2 1 1    3 

354 EAST-DFIG3 25 2 1 1    3 

355 EAST-DFIG4 25 2 1 1    3 

Bus No: bus number 
Bus Name: bus name 
Voltage Base: the voltage base for the bus (kV) 
Bus Type:  0 - slack bus (voltage magnitude and phase angle fixed 

1 - load bus (PQ bus, unconstrained voltage phase angle and magnitude) 
2 - generator bus (PV bus, voltage control within generator limits) 

VSched: scheduled voltage magnitude (p.u.) 
V:  actual voltage magnitude (p.u.) 
Angle:  actual voltage phase angle (degree) 
Vmax:  voltage checking upper limit (p.u.) 
Vmin:  voltage checking lower limit (p.u.) 
Area:  area to which the bus belongs 
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2) Line Data 

From Bus To Bus  Resistance 
(p.u.) 

Reactance 
(p.u.) 

Susceptanc
e 

(p.u.) 

First Branch 
Rating 
(MVA) 

Area 
No Name V Base (kV) No Name V Base (kV) 

1 NORTH-01 230 2 NORTH-02 230 0.01 0.05 0 600 1 

1 NORTH-01 230 3 NORTH-03 230 0.01 0.05 0 600 1 

2 NORTH-02 230 3 NORTH-03 230 0.01 0.05 0 600 1 

2 NORTH-02 230 12 WEST--02 230 0.02 0.2 0.1 600 1 

2 NORTH-02 230 13 WEST--03 230 0.03 0.3 0.15 600 1 

3 NORTH-03 230 21 SOUTH-01 230 0.02 0.2 0.1 600 1 

3 NORTH-03 230 31 EAST--01 230 0.05 0.5 0.25 600 1 

11 WEST--01 230 12 WEST--02 230 0.01 0.05 0 600 2 

11 WEST--01 230 13 WEST--03 230 0.01 0.05 0 600 2 

12 WEST--02 230 13 WEST--03 230 0.01 0.05 0 600 2 

14 WEST--04 500 24 SOUTH-04 500 0.06 0.4 0.2 2000 2 

21 SOUTH-01 230 22 SOUTH-02 230 0.01 0.05 0 600 3 

21 SOUTH-01 230 23 SOUTH-03 230 0.01 0.05 0 600 3 

21 SOUTH-01 230 32 EAST--02 230 0.04 0.4 0.2 600 3 

22 SOUTH-02 230 23 SOUTH-03 230 0.01 0.05 0 600 3 

23 SOUTH-03 230 33 EAST--03 230 0.02 0.2 0.1 600 3 

31 EAST--01 230 32 EAST--02 230 0.01 0.05 0 600 4 

31 EAST--01 230 33 EAST--03 230 0.01 0.05 0 600 4 
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From Bus To Bus 
R1 

(p.u.) 
R0 

(p.u.) 
L1 

(p.u.) 
L0 

(p.u.) 
C1 

(p.u.) 
C0 

(p.u.) 

First 
Branch 
Rating 
(MVA) 

Area 
No Name V Base 

(kV) No Name V Base 
(kV) 

31 EAST-01 230 35 EAST-05 230 0 0 0 0 0 0  3 

351 EAST-
BESS 25 352 EAST-

DFIG1 25 0.1153 0.413 1.05e-3 3.32e-3 11.33e-9 5.01e-9  3 

351 EAST-
BESS 25 353 EAST-

DFIG2 25 0.1153 0.413 1.05e-3 3.32e-3 11.33e-9 5.01e-9  3 

351 EAST-
BESS 25 354 EAST-

DFIG2 25 0.1153 0.413 1.05e-3 3.32e-3 11.33e-9 5.01e-9  3 

351 EAST-
BESS 25 355 EAST-

DFIG2 25 0.1153 0.413 1.05e-3 3.32e-3 11.33e-9 5.01e-9  3 

 

R1: branch section positive sequence resistance (p.u.) 
R0:  branch section zero-sequence resistance (p.u.) 
L1: branch section positive sequence inductance (p.u.) 
L0: branch section zero-sequence inductance (p.u.) 
C1:     branch section positive sequence capacitance (p.u.) 
C0:     branch section zero-sequence capacitance (p.u.) 
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3) Transformer Data 
 

From Bus To Bus Power
Base 
(MVA) 

Primary 
Winding 

Nominal V 
(kV) 

Secondar
y Winding 
Nominal V 

(kV) 

Tap 
Ratio 

R 
(p.u.) 

X 
(p.u.) 

B 
(p.u.) 

First 
Branch 
Rating 
(MVA) 

Area 
No Name V Base 

(kV) No Name V Base 
(kV) 

1 NORTH-01 230 101 NORTH-G1 16 600 230 16 1 0 0.1 0 600 1 

11 WEST--01 230 111 WEST--G1 16 1200 230 16 1 0 0.1 0 1200 2 

13 WEST--03 230 14 WEST--04 500 100 230 500 1 0.01 0.05 0 100 2 

22 SOUTH-02 230 24 SOUTH-04 500 100 230 500 1 0.01 0.05 0 100 3 

23 SOUTH-03 230 231 SOUTH-G1 16 600 230 16 1 0 0.1 0 600 3 

31 EAST--01 230 311 EAST--G1 16 1200 230 16 1 0 0.1 0 1200 4 

35 EAST-05 230 351 EAST-BESS 25 500 230 25 1 0.002
6 0.08 0  3 

Power Base: transformer power base (MVA) 
R:  resistance primary to secondary (p.u. value on transformer bases) 
X:  reactance primary to secondary (p.u. value on transformer bases) 
B:  Magnetizing susceptance (p.u. value on transformer bases) 
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4) Generator Data 
 

Bus 
Control 
Mode 

PGen 
(MW) 

QGen 
(MVar) 

Qmax 
(MVar) 

Qmin 
(MVar) 

Regulating Bus 
VSched 

(p.u.) 
V 

(p.u.) 
Area 

No Name V Base 
(kV) No Name V Base 

(kV) 

101 NORTH-G1 16 0 523.4 110.8 999 -999 101 NORTH-G1 16 1 1 1 

111 WEST--G1 16 0 1000 298.3 500 -500 111 WEST--G1 16 1 1 2 

231 SOUTH-G1 16 0 500 50.6 250 -250 231 SOUTH-G1 16 1 1 3 

311 EAST--G1 16 0 1000 72.6 500 -500 311 EAST--G1 16 1 1 4 

Control Mode: 0 - voltage at the regulated bus is held constant within Q limits of generators specified by Qmax and 
Qmin 
PGen:   actual active power output of the generator (MW) 
QGen:   actual reactive power output of the generator (MVar) 
Qmax:   maximum reactive power output of the generator (MVar) 
Qmin:   minimum reactive power output of the generator (MVar) 
Regulating Bus: the bus at which the voltage is regulated by the generator 
VSched:  generator scheduled voltage magnitude (p.u.) 
V:   generator actual voltage magnitude (p.u.) 
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Bus 
Control 
Mode 

 
Capacity 

(MW) 

PGen
0 

(MW) 

QGen0 
(MVar) 

Regulating Bus 
VSched 

(p.u.) 
V 

(p.u.) 
Area 

No Name V Base 
(kV) No Name V Base 

(kV) 

352 DFIG 25 1 135 40 1.95 351 DFIG 25 1 1 3 

353 DFIG 25 1 135 40 1.95 352 DFIG 25 1 1 3 

354 DFIG 25 1 135 40 1.95 353 DFIG 25 1 1 3 

355 DFIG 25 1 135 40 1.95 354 DFIG 25 1 1 3 

351 BESS 25 2 4 0 0      3 

Control Mode: 1- Voltage regulation; 2-Reactive power regulation and Q=Qset. 
PGen0:  Initial actual active power output of the generator (In this case, wind speed=9m/s). 
QGen0:  Initial reactive power output of the generator. 
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5) Load Data 

Bus Constant Power Load Constant Current Load Constant Admittance Load 
Load Type Area 

No Name V Base 
(kV) 

PLoad 
(MW) 

QLoad 
(MVar) 

IPLod 
(MW) 

IQLod 
(MVar) 

GLoad 
(MW) 

BLoad 
(MVar) 

2 NORTH-02 230 0 0 0 0 334.93 0 0 1 

3 NORTH-03 230 0 0 0 0 272.96 0 0 1 

12 WEST--02 230 0 0 0 0 547.56 0 0 2 

13 WEST--03 230 0 0 0 0 543.53 0 0 2 

21 SOUTH-01 230 0 0 0 0 261.58 0 0 3 

23 SOUTH-03 230 0 0 0 0 252.49 0 0 3 

31 EAST--01 230 0 0 0 0 1005.15 0 0 4 

Each load has three components: a constant power component, a constant current component and a constant admittance 
component. 
PLoad: active power consumed by the constant power component (MW) 
QLoad: reactive power consumed by the constant power component (MVar) 
IPLod:  active power consumed by the constant current component at 1 p.u. voltage (MW) 
IQLod: reactive power consumed by the constant current component at 1 p.u. voltage (MVar) 
GLoad: active power consumed by the constant admittance component at 1 p.u. voltage (MW) 
BLoad: reactive power consumed by the constant admittance component at 1 p.u. voltage (MVar) 

Load Type: 1 - non-conforming (fixed) 
  0 - conforming (scalable) 
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I. LITERATURE REVIEW ON USING ARTIFICIAL INTELLIGENCE FOR STABILITY ASSESSMENT 

Power grid stability consists of transient stability, frequency stability, small signal stability, 
and voltage stability (Figure 1) [1-2]. Fast assessment of system stability is useful in many 
places, including day-ahead scheduling, real-time operation, and long-term planning. 
Traditional methods for power system stability assessment are based on time-domain 
simulation, which heavily relies on the availability of real-time power system dynamic 
models and requires significant simulation computational resources [3-7].  

Beside model simulation, another category of methods for stability assessment is data-
driven methods, as shown in Figure 2. Data-driven methods for stability assessment 
consists of measurement-based methods and artificial-intelligence-based methods. 
Measurement-based methods use measurement data to develop simplified models (such 
as transfer functions or reduced models) for stability assessment, which require less 
computation time compared with time-domain simulation based on detailed models [10-
13]. However, the development of measurement-based simplified models is a non-trivial 
task [16]. In contrast, artificial-intelligence-based stability assessment is data-driven and 
not directly based on physical principles [17-19]. After trained using simulation or 
measurement data, artificial intelligence models can perform stability assessment based 
on system feature inputs. 

A number of studies have already tried applying artificial intelligence into power system 
stability assessment [16-20]. This chapter provides a literature review on existing studies. 
Most existing machine learning based approaches can only assess one type of stability. 
Input features are usually selected based on trial and error on a specific machine learning 
model. This work proposed an artificial intelligence tool using the same set of input data 
to assess power system transient stability, small signal stability, and frequency stability, 
simultaneously. The accuracy and efficiency of the proposed approach in stability 
assessment is verified on an 18-bus system. 



DE-EE00034224  

Jin Tan 

Appendix B-4 

 
Figure 1. Stability topics in power grids 

 
Figure 2. Power grid stability assessment approach categorization 

A. AI-based Transient Stability Assessment 
Transient stability is the power system ability to maintain synchronism when subjected to 
a severe disturbance, such as a short circuit on a transmission line [23]. Existing literature 
that applies artificial intelligence to assess transient stability mainly uses three categories 
of methods: neural network, support vector machine [24-26], and decision tree [1], as 
summarized In Table 1, Table 2, and Table 3, respectively. Most of these studies used 
the New England 10-machine system as the test system. These methods showed high 
accuracy in classifying stable and unstable cases: all methods achieved higher than 96% 
accuracy and some even reached 100% in accuracy. Additionally, a few studies tried 
considering the change of topology in artificial intelligence models [2,29].  

A summary of these methods considering topologies is shown in Table 4. The most 
commonly used methods include: using the current topology to build the dynamic model 
and then generate the training dataset [2]; and generating a training dataset that covers 
all possible system topologies before training the artificial intelligence model [29]. Several 
other artificial intelligence methods other than the three categories in transient stability 
assessment are listed in Table 5. These methods achieved similar accuracy levels in 
transient stability assessment.  
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Table 1. Neural Network (NN) Based Methods for Transient Stability Assessment 

Ref Model Test System Samples Training Testing # Features Accuracy 
(%) 

[2] Extreme learning 
machines (ELM) 

IEEE 50-bus 
system 6,345 5,076 1,269 50 100 

[9] 
Extreme learning 
machine (ELM) + 

trajectory fitting (TF) 

New England 10-
machine 10,000 N/A N/A 100 (269) 99.1 

[15] 

Extreme learning 
machine (ELM) + a 

decision-making 
process 

New England 10-
machine 4,000 2,000 2,000 N/A 97.92 – 

98.38 

[21] 
An array of neural 

networks (NN) + an 
interpreter 

PSB4 system + 
New England 10-

machine 
248/300 208/250 40/50 N/A 99.85/100 

[22] Probabilistic neural 
network (PNN) 

IEEE 68-bus, 16-
generator system 

+ three wind 
generation units 

190 
operation 
conditions 
and three-

phase faults 

N/A N/A 244, 
150,100,50 > 99 

[27] 

Recurrent neural 
network (RNN) + long 

short-term memory 
network (LSTM) 

New England 10-
machine 5,000 3,750 1,250 N/A 100 

[29] 

Long-short Term 
Memory (LSTM) 
ensemble neural 

network + decision 
machine 

New England 10-
machine 4,058 3,044 1,014 N/A 100 

[31] 
Extreme learning 
machine (ELM) + 
Boosting learning 

New England 10-
machine 68,640 N/A N/A 50 (183) 100 

[32] Extreme learning 
machine(ELM) 

New England 10-
machine 1,240 864 376 62 98 

[34] 

Convolutional neural 
network (CNN) + 

stacked auto-encoders 
(SAEs) 

New England 10-
machine 4,014 2,689 1,325 22 96.78 – 

98.68 

[35] Neural network (NN) + 
incremental learning 

Shandong power 
system- 362 

buses 
945 540 405 N/A 96.6 
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Table 2. Support Vector Machine (SVM) Based Methods for Transient Stability Assessment 

Ref Model Test System Samples Training Testing # 
Features 

Accuracy 
(%) 

[36] SVM + transient energy 
function (TEF) 

New England 
10-machine 700 500 200 36, 18 97.5 – 

100 

[39] Ball vector machine 
(BVM) 

New England 
10-machine 5,500 4,000 1,500 200 97.1 

[41] SVM Priba system: 
2484 buses 1,242 994 248 224, 150, 

100, 50 94.4 

[26] 
SVM + DT + rotor 
angles trajectory 

clustering 

New England 
10-machine 

and IEEE 145-
bus 

3,672 1,099 2,573 19 

90.74 – 
98.15 

94.75 – 
95.41 

[42] SVM, Naïve Bayes, 
decision tree IEEE 14-bus 8000 N/A N/A 23 88.2 – 

98.8 

[43] 
SVM + Cost-sensitive 

ensemble learning 
classifier 

New England 
10-machine 4,290 4,000 290 23 96.4 – 

99.4 

[44] 
Least Square Support 
Vector Machine (LS-

SVM) 

New England 
10-machine 6,600 4,620 1,980 39 100 

[45] 

Reformed support 
vector machines + 
sequential minimal 
optimization (SMO) 

New England 
10-machine 20,000 16,000 4,000 15 96.9 

[46] 
Fuzzy C-means 

clustering algorithm + 
SVM 

IEEE 39-bus 
system 726 556 170 10 100 

 

Table 3. Decision Tree (DT) Based Methods for Transient Stability Assessment  

Ref Model Test System Samples Training Testing # 
Features 

Accuracy 
(%) 

[1] Decision tree (DT) + 
regression tree (RT) 

Salt River Project 
(SRP) power system 41,412 33,130 82,82 N/A 99.13 

[8] Weighted random 
forest (WRF) 

New England 10-
machine 2,000 1,300 700 263 98.79 

[14] Random forest (RF) New England 10-
machine 2,000 1,300 700 45 99.1 

[20] Decision tree (DT) 
9-bus dynamic network 
and 1,696-bus Iran 
national grid 

513/1,080 N/A N/A 5 

79.92 – 
100 

94.91 – 
99.91 
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Table 4. Literature Considering Topology Change in Artificial Intelligence Based Transient Stability Assessment 

Ref Method to consider topology change 

[2] The network is trained based on the current system topology and the loading conditions 

[29] Small-height DTs are periodically updated by incorporating the possible changes of the system topology 
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Table 5. Other Artificial Intelligence Based Methods for Transient Stability Assessment 

Ref Model Test System Samples Training Testing # Features Accuracy 
(%) 

[28] Deep belief 
network (DBN) 

A real regional 
power system in 
China, consisting 
of 1300 buses, 
3215 transmission 
lines 

10,000 8,330 1,670 1,762 98.02 

[30] 

Least Absolute 
Selection and 
Shrinkage 
Operator 
(LASSO) 

A practical 470-bus 
system  1,199 800 399 939 99.75 

[33] Type-2 fuzzy 
neural network 

New England 10-
machine 2,000 1,500 500 56 97.51 – 

98.31 

 

B. AI-based Frequency Stability Assessment 
According to the definition from IEEE and CIGRE, frequency stability refers to the ability 

of a power system to maintain a steady frequency following a severe system upset 
resulting in an imbalance between generation and load [23]. Frequency instability occurs 
in the form of sustained frequency swings or large frequency deviations that eventually 
lead to tripping of generating units and/or loads, and system losing stability [38]. However, 
very few studies focused on frequency stability assessment using AI. In [31] (Table 6), an 
artificial neural network and power flow information were used to predict the frequency 
stability. The accuracy reaches 97.5%.  

Table 6. Artificial Intelligence Based Frequency Stability Assessment 

Ref Model Test System Samples Training Testing # Features Accuracy 
(%) 

[31] 

Single-hidden 
layer 
feedforward 
network 
(SLFN) 

IEEE 14-Bus 
System; New 
England 39-bus 
system 

600 480 120 N/A 97.5% 

 

C. AI-based Small-signal Stability Assessment 
Small-disturbance (or small-signal) rotor angle stability is concerned with the ability of the 
power system to maintain synchronism under small disturbances [23]. The disturbances 
in the small signal stability domain are considered to be sufficiently small, so that stability 
analysis can be performed based on a linearized representation of the system. Reference 
[37] in Table 7 used neural network to study the small-signal stability of a single-machine 
infinite-bus system under different power output and power factor conditions, as well as 
power system stabilizer settings. Reference [40] used a decision tree to predict the 
eigenvalue region of critical modes. These studies also reached satisfactory (higher than 
90%) accuracy in small signal stability assessment.  
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Table 7. Artificial Intelligence Based Small Signal Stability Assessment 

Ref Model Test System Samples Training Testing # 
Features 

Accuracy 
(%) 

[37] Artificial neural 
network 

Single machine 
infinite bus system N/A N/A N/A 4 ~90% 

[40] Decision tree PST 16-machine test 
system 2,500 N/A N/A 252 99.77% 

D. Summary  
In general, it can be seen that most AI-based stability assessment approaches achieved 

high accuracy already. Overall, neural network has the highest accuracy. decision tree 
and SVM have slightly lower accuracy (Figure 3). However, in existing literature, most 
machine learning approaches focus on one type of stability and select input features 
based on trial and error on a specific machine learning model. Few studies can use the 
same set of input data to assess the system frequency, transient, and small signal stability 
simultaneously.  

 
Figure 3. Average accuracy comparison of different AI methods 

Challenges in using AI for stability assessment identified in this literature review include: 

1. Most existing machine learning based approaches can only assess one type of 
stability. The inputs of machine learning are selected based on trial and error using 
a specific machine learning model on a specific system. 

2. Existing machine learning models don’t have datasets from realistic systems for 
validation. Their accuracy in practical application is not guaranteed, limiting their 
applications in the real world. 

3. Existing machine learning models need a large amount of training data to reach 
high enough accuracy. However, these data are not always available due to 
computational resource constraints. 
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II. AN ARTIFICIAL INTELLIGENCE TOOL FOR FREQUENCY, TRANSIENT, AND SMALL-SIGNAL STABILITY 
ASSESSMENT  

A. Framework and Methods of AI-Based System Stability Assessments 
Machine learning-based DSA can help determine when it is necessary to trigger a 
dynamic simulation; it can bridge the gap between a short-term full dynamic simulation 
and long-term scheduling simulation. The framework of this method is illustrated in Figure 
4.  

 
Figure 4. Framework of machine learning-based DSA 

First, dispatch data from the scheduling model are used to run AC power flow. The 
scenarios for the whole year are obtained; these will be used for the machine learning 
model training. After that, the machine learning model can be used to predict the stability 
margin for a specific updated scenario. If the estimated stability margin indicates an 
unstable system, a command signal will be sent to the scheduling model to generate new 
dispatch data. If the system is stable and the stability margin is large enough, the 
simplified steady-state model will be activated for simulation. If the system is stable but 
within the stability margin, a detailed dynamic model is required for full dynamic 
simulation. 
Figure 5 shows the detailed DSA flowchart based on the machine learning approach 
proposed in this study. In general, the DSA process includes three steps: 

One year 
PV, load 

data

Scheduling 
model Run power flow Scenarios

Machine learning based DSA model

Is system stable and 
within stability margin?

0-unstable
1-stable 

but within 
the margin

2-stable 
and out of 

margin

Redo economic 
dispatch

Activate detailed 
dynamic model

Dispatch data 
updated every five 

minutes

Data-driven based security assessment

Model tranning

Activate simplified 
steady-state model
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• Step 1: Extract informative features relevant to the system stability metrics from 
the load dispatch. 

• Step 2: The extracted features are used to train the machine learning model to 
learn the underlying relationship between the informative features and the system 
stability metrics. The multivariate random forest regression (MRFR) and neural 
network models are used for the machine learning tool in this study. 

• Step 3: The trained MRFR or neural network model is further implemented to 
estimate the system stability metrics using the load dispatch. 

 

 
Figure 5. Flowchart of machine learning-based DSA (using MRFR as an example) 

Since neural network is a commonly used machine learning model, here, we give a brief 
introduction about the other model used in this study: the MRFR model. 
The MRFR is an ensemble of decision trees trained by bootstrap sampling and random 
feature selection. It aims to build a large collection of regression trees and average the 
output of each tree to reduce the variance of the prediction results and boost the 
performance of the final model. Figure 6 shows a diagram of the MRFR algorithm. 
Considering a training data set X = [X1, X2 … Xn] and the corresponding response Y = [Y1, 
Y2 … Yn], MRFR first uses bootstrap to draw a set of samples with size m from the training 
data set. Then it establishes a regression Tree-i based on these bootstrapped data. The 
following steps are recursively repeated for each terminal node of the tree, until the 
minimum node size is attained. 

1) Randomly select D dimension features of each bootstrapped sample in the 
training data set.  

Obtain information of load dispatch

Extract informative features relevant to system 
stability metrics

Construct training data set based on informative 
features

Train multivariate random forest regression 
based on sub-data set 

Estimate system stability metrics by using the 
load dispatch

Step 1

Step 3

Step 2

.
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2) Split the parent node into two children nodes based on the information gain ratio 
criterion.  

This iterative procedure is repeated for k times, and the output of the forest is the average 
of the predictions from each regression tree, as shown in (1). 

 ( )
1

1ˆ ˆ
k

i
i

Y Y
k =

= Χ∑       (1) 

Besides neural network, MRFR is used as the other machine learning model in this study 
because of its ease of implementation, high robustness to the input data, and capability 
to avoid overfitting the problem during the training process. 

 
Figure 6. Diagram of multivariate random forest algorithm 

In this study, the input of the DSA machine learning tool is the dispatch data updated 
every 5 minutes. Its outputs are system stability metrics, including critical clearing time, 
frequency nadir, and damping ratio of oscillation modes. A summary of inputs, outputs, 
data generation, and assessment approaches for three stability issues are show in Table 
8. 

Table 8. Summary of Inputs, Outputs, Data Generation, and Assessment Approaches for Three Stability Issues 

Stability 
Problem 

Input Output Contingency Assessment Approach 

Frequency Generation dispatch 
results 

Frequency nadir 
for the RCC 
contingency 

Generation trip • Generate a series of cases 
with different dispatch and 
inertia levels. 

• Evaluate frequency response 
using dynamic simulation. 

Transient Generation dispatch 
results, transmission 
network 

Transient stability 
margin 

3-phase fault on 
transmission line 

• Generate a series of cases 
with different unit 
commitment and dispatch 
results. 

Tree-1
Prediction 1 

Tree-2

Prediction 2 

Tree-m
Prediction m

( )1 1Ŷ f X= ( )2 2Ŷ f X= ( )m̂ mY f X=

( )1 2
ˆ ˆ ˆ ˆ, , , mY f Y Y Y= 

   

  
X
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Stability 
Problem 

Input Output Contingency Assessment Approach 

• Evaluate transient stability 
using Standard TPL-001-4 
and dynamic simulation. 

Small-
Signal 

Generation dispatch 
results, transmission 
network 

Small-signal 
stability margin 

N/A • Generate a series of cases 
with different unit 
commitment and dispatch 
results. 

• Evaluate small-signal stability 
using small-signal analysis 
and dynamic simulation. 

The stability assessment approach is implemented in two systems: the 18-bus test 
system and the 240-bus reduced WECC system. 

B. Test systems for AI based stability assessment 
1) 18-bus test system 

The 1) 18-bus test system has four areas, each with one conventional generator. One 
additional PV power plant is in the east area, as shown in Figure 7.  

 
Figure 7. 18-bus test system 

The NREL team provided load and generation data for the 18-bus system over a 24-hour 
period. Although individual load and machine data was given for every 4 seconds of the 
24-hour period, saved cases were only generated for every 5 minutes. Therefore, 288 
PSS/E saved cases were created. The developed saved cases were used in frequency, 
transient, and small-signal analysis. A Python script was used to extract generation and 
load data from input files, scale each machine’s and load’s real power, and save the 
results in individual PSS/E saved case files for each 5-minute period. 
2) 240-bus reduced WECC system 

The 240-bus system model developed by NREL is a reduced model of the WECC system. 
The system model has one year dispatch data obtained from unit commitment and 
optimal power flow. The reduced 240-bus WECC model reflects the generation resource 
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mix of the WECC system as of 2018. This reduced WECC system has 8,784 scenarios. 
Each of them represents a power flow snapshot of every hour in one year. Moreover, the 
developed dynamic model is validated against field frequency events measured by 
FNET/GridEye and preserves the dominant inter-area oscillation mode in WECC. Figure 
8 shows the system overall topology. Figure 9 shows the total generation and renewable 
generation profiles of the system in one year. Its maximum instantaneous renewable 
penetration is around 30%. The system peak load is in summer, when air conditioner load 
reaches its maximum value. 

 
Figure 8. 240-bus reduced WECC system topology 

 
Figure 9. Total generation and renewable generation profiles 
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III. ARTIFICIAL INTELLIGENCE BASED TRANSIENT STABILITY ASSESSMENT 

A. AI based transient stability assessment on the 240-bus reduced WECC system 
This work studied the transient (angle) stability prediction. Transient stability is the power 
system ability to maintain synchronism when subjected to a severe disturbance, such as 
a short circuit on a transmission line. The maximum allowable value of the fault-clearing 
time for the system to remain stable are known as critical clearing time (CCT). A larger 
CCT value generally indicates higher angle stability.  

In stability assessment of practical large systems, some small generators may lose 
synchronism and be tripped by out-of-step relays, without causing system-level stability 
issues. Therefore, in this study, the system’s transient angle stability is defined as the 
relative rotor angles of all large generators (e.g. units with a capacity larger than 1,000 
MVA for the reduced 240-bus system) do not change more than 180 degrees referring to 
pre-fault relative rotor angles at any time.  

Generator 𝑖𝑖’s relative rotor angle is defined as: 

𝛿𝛿𝑖𝑖(𝑡𝑡) = ∆𝑖𝑖(𝑡𝑡) −𝑀𝑀𝑀𝑀𝑀𝑀{∆(𝑡𝑡)} (1) 

where: 

𝛿𝛿𝑖𝑖(𝑡𝑡) is generator i’s relative rotor angle (using the system median rotor angle of all large 
generators as the reference) at time t; 

∆𝑖𝑖(𝑡𝑡) is generator i’s rotor angle; 

𝑀𝑀𝑀𝑀𝑀𝑀{∆(𝑡𝑡)} is the median rotor angle of all large generators at time t. 

The generator is deemed as lost synchronization if: 

𝑎𝑎𝑎𝑎𝑎𝑎�𝛿𝛿𝑥𝑥�𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝−𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓� − 𝛿𝛿𝑥𝑥�𝑡𝑡𝑓𝑓𝑓𝑓𝑓𝑓𝑝𝑝𝑝𝑝−𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓�� > 180 

where 𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝−𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  is the time right before the fault; 𝑡𝑡𝑓𝑓𝑓𝑓𝑓𝑓𝑝𝑝𝑝𝑝−𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  is with several seconds 
(here, 2 seconds is used) after the fault. 

To find the critical clearing time, we apply a binary search algorithm with 1ms resolution. 
The binary search algorithm’s time complexity is 𝑂𝑂(log𝑛𝑛), which can efficiently find the 
CCT value. For example, in our study, for a maximum 2,000ms fault lasting time, the time 
complexity is log2 2000 (or around 10.97). Therefore, 11 PSS/E simulations are enough 
to find the critical clearing time with an 1ms resolution if it is located within the 0-2 second 
range. Table 9 is an example of calculating a CCT value. Figure 10 shows two cases with 
different fault time duration: one stable case and the other unstable case. 
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Table 9. An Example of CCT Simulation Steps in PSS/E 

Simulation steps Fault lasting time (ms) Transient Stability Status 

1st 1,000 Unstable 

2nd 500 Unstable 

3rd 250 Unstable 

4th 125 Stable 

5th 188 Stable 

6th 219 Stable 

7th 234 Unstable 

8th 227 Stable 

9th 231 Stable 

10th 233 Unstable 

11th 232 Stable 

 

  
(a) Clear time is 232ms (stable) (b) Clearing time is 233ms (unstable) 

Figure 10. Clearing time and system angle stability of the 240-bus reduced WECC system 

In the 8,784 power flow scenarios, some cases have small signal stability issues. These 
cases bring some difficulties in transient angle stability assessment. For example, as 
shown in Figure 11, a small fault at 1.0 second does not cause the system to lose 
synchronism at the beginning. However, the system suffers from small-signal instability 
and becomes unstable after several seconds.  
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(6) 0-2.5 second 0-20 second  

Figure 11. Angle and frequency profiles after a small disturbance (0.001s fault duration) 

Since the small-signal instability will cause the system instability, it will influence the CCT 
value calculation. To provide a clean transient angle stability prediction problem in this 
study, we filtered out around 2,000 cases with small-signal instability issues, which will 
be used in the future small-signal stability prediction study. In these small-signal-unstable 
cases, generator rotor angle oscillations will grow or are poorly damped after a small 
disturbance. The criteria below are used to filter out these cases.  

1. A small disturbance (a short-duration fault) is applied to the system at 1.0 second. 
The maximum oscillation magnitude at the first two seconds (1.0-3.0 second) after 
the disturbance is denoted as 𝑀𝑀𝑓𝑓1.  

2. The simulation was continued to 20 seconds. The magnitude of the largest 
oscillation between 18.0-20.0 seconds is denoted as 𝑀𝑀𝑓𝑓2. 

3. If 𝑀𝑀𝑓𝑓2 > 30%𝑀𝑀𝑓𝑓1, the oscillation is considered a poorly damped oscillation and this 
case is considered as a small-signal unstable case and removed from the CCT 
prediction dataset. 
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(a) Case 1 (b) Case 2 

Figure 12. Two exemplar cases that are small-signal unstable 

After removing these cases, the distribution of CCT values of Bus 1002 in the 240-bus 
system is shown in Figure 13. (Bus 1002 was selected because of lower CCT values 
compared with other buses.) It can be seen that the CCT values in summer peak hours 
are obviously lower. This is probably because of the higher loading levels of generators 
during summer peak hours.  

 
Figure 13. Distribution of the CCT values in one year 

We applied neural network to predict CCT values of the 240-bus reduced WECC system. 
The input and output data information are given in Table 10. The dataset is divided into 
two subsets: 80% data are used for training (68%) and validation (12%); the rest 20% 
data are used for testing.  
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Table 10. Data Entries for CCT Prediction 

Input/Output Data Number of Data Entries 

Input Total generation  1 

Total load real power 1 

Total system inertia 1 

Generator power output 146 (number of generators) 

Load power 139 (number of loads) 

Generator’s inertia contribution 146 (number of generators) 

Output CCT 1 

The CCT prediction performance and error distribution are shown in Figure 14. The Mean 
Absolute Error (MAE) of all prediction points is 0.00607s, which is around 4% of the 
average CCT value. The distribution of the error is almost symmetric to the Y axis. This 
indicates a desired feature that errors have a close-to-zero expectation. In addition, it can 
be noticed that the CCT prediction error is smaller when the CCT value is smaller, which 
is also a preferable feature since scenarios with low CCT values are more important for 
operators.  

Figure 15 shows the CCT prediction performance of the four selected days. It is noted 
that although the CCT values change dramatically with the power flow within one day, the 
machine learning tool can assist real-time fast stability assessment by predicting the 
angle stability margin accurately. It can also verify the observation that the prediction 
errors are smaller for smaller CCT values.  

  

(a) CCT prediction results for multiple 
days 

(b) CCT prediction error 

Figure 14. CCT prediction performance and error distribution 
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(a) Jan. 20 (b) Aug. 5 

 
 

(c) Aug. 20 (d) Sept. 9 

Figure 15. CCT prediction results of four selected days 

B. AI based transient stability assessment on the 18-bus System  
To obtain a complete picture of the transient stability of the 18-bus system, the transient 
stability margin is measured by the minimum critical clearing time (CCT) of the whole 
system. The critical bus in each area is defined as the bus that results in the minimum 
CCT. The CCT values of the critical buses in each area are shown as the colored solid 
line in Figure 16. The blue line shows the minimum CCT of the whole system, obtained 
by selecting the minimum CCT of the critical bus in each area. 
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Figure 16. Change CCT values with dispatch for critical buses in the 18-bus system 

The minimum CCT of the system is predicted using the artificial intelligence model. The 
comparison of the simulated CCT values with neural network and random forests results 
are shown in Figure 17 and Figure 18, respectively. Both artificial intelligence methods 
can achieve highly accurate CCT prediction. 

  
Figure 17. Actual and predicted CCT (neural network) Figure 18. Actual and predicted CCT (random forests) 
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C. Data-driven Stability Assessment Tool Improvement Considering Topology Change 
The DAS tool is improved to incorporate system topology change. The 18-bus system is 
used to generate topology change scenarios and test its performance in stability 
assessment. 
In the 18-bus system, 288 power flow cases are generated based on the scheduling 
result, which consists of real power dispatch information for every 5 minute time snapshot 
in a 24-hour time range. In terms of its topology, this 18-bus system has 17 230kV AC 
lines and one 500kV AC line. Outages of these 18 high voltage transmission lines are 
used to simulate N-1 topology change. Combining 288 dispatch scenarios and 18 N-1 
transmission outages, 5,184 case files are generated as the topology change dataset. 
Especially, the system power flow does not converge for the line outage between Bus 2 
and 12 during 2:55-4:55 am, reducing the total number of cases to 5,159. According to 
previous research results, 4 critical buses, i.e. Bus 1, 11, 21 and 31, are buses with the 
smallest critical clearing time (CCT) in each area, as shown in Figure 16. Due to their 
small CCT values, faults on these four buses are of operators’ primary concern and are 
used in developing and testing the transient stability assessment based on dispatch and 
topology information. 
CCT values of these four critical buses are simulated for each of the 5,159 cases 
representing different combinations of dispatch and the system topology, totaling 20,636 
CCT values. Each CCT value calculation involves multiple simulation runs with varying 
fault clearing time to pinpoint the turning point from stable to unstable simulation runs. In 
each simulation run, rotor angles of all machines are monitored. If the change of the rotor 
angle difference between any two generators exceeds 180 degrees, this simulation run 
is considered unstable. Otherwise, it is deemed stable. 
To speed up the dataset generation, this work utilizes the python multiprocessing module 
to run all simulation cases in parallel on 6 computation cores, speeding up 3 times 
compared with running a single core. In addition, a 5ms accuracy is applied considering 
a balance between computation speed, practical needs and safety margins. Figure 19 
shows the CCT values of a 3-phase fault on Bus 11 when dispatch and topology change. 
The black line in each graph represents the CCT values in the N-0 topology case (without 
a line outage), while different colored lines represent CCT values in different N-1 topology 
change scenarios. The profile of each line represents the impact of dispatch on CCT. 
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(1) Bus 1 CCT values with an N-1 line outage (2) Bus 11 CCT values with an N-1 line outage 

  

(3) Bus 21 CCT values with an N-1 line outage (4) Bus 31 CCT values with an N-1 line outage 

Figure 19. CCT values with an N-1 line outage 

The machine learning based stability assessment model is enhanced by adding another 
demension of input to incoprate topology change information. The informaiton of machine 
learning based stability assessment is shown in Table 11. The dataset generated on the 
18-bus system is used to test its performance in stability assessment. As an example, the 
CCT values of Bus 11 predicted by neural network and random forests are shown in 
Figure 20. It can be seen the machine learning stability assessment approach has high 
accruacy in predicting CCT given a dispatch and system topolgy senario. In terms of 
computation time, trained mahine learning models can provide CCT estimation results 
instantly, making them valuable for various applications that needs real-time system 
stability informaiton. 
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Table 11. Information on Machine Learning Based Stability Assessment With System Topology Change 

Input Output Dataset generation 
Machine 
learning 
models 

Training and 
testing 

Generation 
dispatch 
information;  
Topology 
information. 

Transient stability 
margin 
represented by 
CCT values 

Generate a series of 
cases including 
different dispatch 
and topology 
scenarios; 
3-phase fault on 
selected critical bus 
(with and without a 
line outage); 
Evaluate transient 
stability margin 
(CCT) 

Neural 
network;  
Random 
forests. 

70% data are 
selected randomly 
for training; the rest 
30% data are used 
in testing. 

Figure 21 shows the root mean square errors (RMSE) of transient stability prediction 
using neural network and random forests. It is noticed that while neural network and 
random forests have similar accuracy on matching the actual CCT in training, neural 
network has a 40% smaller error in validation compared with random forests. This result 
indicates neural network generally has a better performance in transient stability 
assessment. A closer examinaition on Figure 20 finds that neural network has significantly 
better performance at the turning points of the CCT curve compared with random forests. 
It indicates that neural network can better capture and model the non-linear relation 
between CCT and its impact factors. This is also consistant with previous observations 
on these two machine learning approaches when the system topology change was not 
considered.  
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(a) Neural network result 

 
(b) Random forests result 

Figure 20. Machine learning based CCT prediction with topology change (3-phase fault on Bus 11) 
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Figure 21. Root Mean Square Errors (RMSE) of transient stability prediction using neural network and random forests 

(3-phase fault on Bus 11) 

D. Summary  
We used the 240-bus reduced WECC system to study machine-learning-based transient 
angle stability prediction. The transient angle stability of the 240-bus system at 8,784 
power flow scenarios were assessed using PSS/e simulation and binary search. Some 
power flow scenarios with small-signal instability issues were identified and removed from 
the 8,784 cases for the transient angle stability prediction study. The DSA tool based on 
neural network and random forests was applied to predict the CCT values and the 
prediction results show a high accuracy. This result indicates the capability of the tool in 
predicting system transient angle stability fast and accurately.  
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IV. ARTIFICIAL INTELLIGENCE BASED FREQUENCY STABILITY ASSESSMENT 

A. AI-based frequency stability prediction on the 240-bus reduced WECC system 
In this study, the 240-bus reduced WECC system model with one year (8,784 hours) 
dispatch scenarios are used to test the performance of the AI-based frequency stability 
prediction. In addition, because of the large number of scenarios considered in this study, 
a dispatch based clustering approach is introduced to reduce the training dataset. 

To study its frequency stability, Figure 22 gives its inertia distribution in one year, and 
Figure 23 presents a box plot of its distribution in each month. The inertia distribution 
shows a clear seasonal pattern, in which the summer has the highest inertia level while 
spring and autumn have some low inertia periods. This is primarily due to the differences 
in load and renewable generation in different seasons. For example, several low inertia 
periods in spring and autumn are caused by low load and high renewable generation. 
These months also have larger variations of inertia. 

 

  
Figure 22. Inertia points in one year Figure 23. Inertia change in a box graph 

The yearly distribution of the inertia data of the reduced WECC system is compared with 
the WECC inertia data in 2017, as plotted in Figure 24 and Figure 25. It can be seen that 
the reduced WECC system has lower inertia during daytime over the whole year. This is 
primarily due to higher solar generation in the reduced model. Some periods during night 
also see inertia decrease because of higher wind power penetration in the reduced model.  
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Figure 24. WECC system inertia Figure 25. Reduce 240-bus WECC system inertia 

In an N-1 contingency, a nuclear unit with 1,000 MW loading in California is used to 
simulate the frequency stability of the reduced system over the one year horizon. The 
simulated frequency nadir at each hour is shown in Figure 26. The distribution of 
frequency nadir has some correlation with the system inertia distribution (Figure 22). For 
example, periods with lower inertia and lower loads (March and April) generally have 
lower frequency nadirs. This phenomenon is reasonable since lower system inertia leaves 
less time for various frequency response mechanisms to deploy and arrest frequency 
decay, leading to a lower frequency nadir. In addition, lower inertia generally cooresponds 
to less generation and governor response, which also make the nadir lower. 

 
Figure 26. Frequency nadir distribution 

For frequency stability study, the system inertia and dispatch pattern would be the most 
influential factors. In this project, we select each generator’s real power output and inertia 
as clustering features. The 240-bus system has 146 generators in total, among which 109 
are conventional generators and 37 are renewable generators including solar and wind 
power. 



DE-EE00034224  

Jin Tan 

Appendix B-29 

Since generator power output and inertia have different measurement units and value 
scales, the features need to be normalized before clustering, otherwise features with large 
magnitudes will play a dominant role in the clustering result. 

Zero-mean normalization and min-max normalization are two typical normalization 
methods. In this work, since min-max normalization results do not generate negative 
values, it has more physical meaning than zero-mean normalization in normalizing the 
real power output. For example, normalizing feature 𝑝𝑝, the output of one generator, using 
the min-max normalization, can be represented as follows: 

𝑝𝑝 =  
𝑝𝑝 − min (𝑝𝑝)

max(𝑝𝑝) − min (𝑝𝑝)
 

After normalization, each feature will have a 0 to 1 magnitude scale. For generator inertia, 
it will be either 0 or 1 after normalization depending on whether a generator is committed 
or not in a dispatch scenario. 

Random forest is used to predict the system frequency nadir of the 240-bus reduced 
WECC system. 70% of the 8,784 dispatch scenarios are used for training; the rest 30% 
are spitted randomly and equally for validation and testing. Figure 27 shows the predicted 
and actual frequency nadir results. Figure 28 shows the error distribution of the prediction 
results. It can be seen that the prediction error is quite small: smaller than 0.1% (or 0.06 
Hz).  

 
 

Figure 27. Predicted and actual frequency nadir 
distribution 

Figure 28. Distribution of the prediction error of 
frequency nadir 

B. Clustering-based AI training dataset reduction on the 240-bus reduced WECC system 
In practice, generating the training dataset is a time-consuming work even if parallel 
computation is used for acceleration. For the 8,784 scenarios in the 240-bus reduced 
WECC system, 8 CPUs in one machine were used in parallel to generate the simulation 
cases. It still took 10 hours to generate the training dataset. For transient stability 
prediction, the time consumption to generate the training dataset will be even larger (it is 
estimated at 160 hours for the 240-bus system) because multiple simulations are needed 
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to nail down the critical clearing time. Due to the substantial computation time needed for 
generating the training dataset, it has significant practical value to reduce the training 
dataset and save the simulation time in generating the training dataset. Therefore, this 
work will study clustering approaches in constructing the training dataset for AI based 
stability prediction to save time. 

As an unsupervised machine learning, clustering is used to discover the data pattern 
based on features of interests and then group data based on similar features. Clustered 
data groups have similar features within each group and different features across different 
groups.  

Many clustering approaches exist. Each approach has its application scope for the best 
performance. Some clustering approaches require a target number of clusters. Others 
require determining the maximum distance in one cluster. Here, two common clustering 
approaches: K-means++ clustering and affinity propagation are studied to reduce the 
training dataset. 

(1) K-means++ clustering 

K-means clustering presents the most commonly used category of clustering 
methods. It aims at minimizing the sample variance within a cluster by grouping data 
points based on their Euclidean distances. The samples in one cluster are always 
close to the center of this cluster compared with other cluster centers. In K-means 
clustering methods, the clustering number needs to be pre-determined. Its initial 
cluster center will also impact the clustering result. As an improved version of basic 
K-means clustering, K-means++ assigns the clustering center more optimally and 
reasonably than the basic K-means clustering approach. 

(2) Affinity propagation 

Different from K-means methods that require a pre-determined number of clusters, 
affinity propagation (AP) method can find an optimal number of representative cases 
that best summarize the data. In AP, real-valued messages are exchanged between 
data points until a high-quality set of exemplars and corresponding clusters gradually 
emerges. Due to the need to build an 8,784 by 8,784 matrix, the AP method requires 
more memory and computation time compared with other clustering method. In this 
study, since the desktop computer with 16GB could not meet the memory 
requirement, we run the affinity propagation program on the Google cloud with 60GB 
memory.  

K-means ++ clustering is applied to cluster dispatch scenarios. The result shows the 
clustering can identify different dispatch patterns (summer peak, shoulder, off-peak, etc.), 
some of which are aligned continuously and concentrated in time. Figure 29 show the 
distribution of clusters in one year. Different sub-graphs represent the aggregation of 
clusters when different number of clusters are used. For example, in Figure 29 (a), all 
dispatch scenarios are clustered into two clusters: one cluster is concentrated in daytime 
periods while the other cluster in nighttime periods. The seasonal effect can also be 
noticed: most scenarios in summer belong to the “daytime cluster”, which covers only a 
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short period of peak load time during winter. This clustering result is primarily determined 
by the PV output and load level. As the number of clusters increases, it can further divide 
the clusters into more sub-clusters. As shown in Figure 29 (b), the “daytime cluster” is 
further divided into two clusters, one of which represents dispatch scenarios with relatively 
higher load and the other with lower load. With the increase of the cluster number, these 
clusters can be further divided into more sub-clusters. Each cluster will represent a 
smaller group of dispatch scenarios with similar features (with a finer resolution). 
Compared with Figure 25, it can be seen the clustering result has a similar pattern as the 
inertia. As the cluster number increases to 50, the one year dispatch scenarios are 
partitioned into even finer groups, as shown in Figure 30. 

  
(a) 2 clusters (b) 5 clusters 

  
(c) 10 clusters  (d) 20 clusters 

Figure 29. Clustering results visualized in hours/months 
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Figure 30. The clustering result of 1-year hourly dispatch  

Figure 31 is the clustering result from affinity propagation clustering method, which 
clustered all the data into 443 clusters. It can be seen that most adjacent days and 
adjacent hours were grouped together, while a distinct seasonal pattern of change can 
be noticed primarily due to load and renewable variations. And because of the 
uncertainties and randomness of exact these variations, some swapping between 
dispatch scenarios in different seasons can be noticed in the clustering result.  

 
Figure 31. Affinity propagation clustering results visualized in hours/months  

(different colors represent different clusters) 

The 443 cluster-center data from the AP clustering result are used in the AI based 
frequency stability prediction. These data are used to train the machine learning model 
and 67 additional data points randomly selected from the 8,784 dataset are used to test 
the accuracy. Figure 32 and Figure 33 show the predcition result and accuracy. It can be 
seen that the maximum error is less than 0.08% (or 0.05 Hz). Comparing this result with 
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the Figure 28, the error range using the 443 clustered data is within the error range of 
using 6,146 (70% of the total data) randomly selected data.  

  
Figure 32. AI-based frequency stability prediction results 

based on 443 data obtained from AP clustering 
Figure 33. Percentage error distribution of AI-based 
frequency stability prediction based on AP clustering 

data 

For comparison, Figure 34 and Figure 35 show the result using 443 randomly selected 
data from the original 8,784 dataset. The maximum error is around 0.18% (or around 0.11 
Hz), which is much larger than the maximum error in the case using 6,164 randonly 
selected data in training. This comparision result proves that data clustering will effectively 
reduce the training data size while maintaining sufficiently high accuracy in the machine 
learning based stability assessment.  

  
Figure 34. AI-based frequency stability prediction results 

based on 443 randomly selected data 
Figure 35. Percentage error distribution of AI-based 

frequency stability prediction based on 443 randomly 
selected data 

C. Data-driven frequency stability on the 18-bus system 
The data-driven frequency stability assessment was also applied to the 18-bus system. 
Details of frequency stability assessment considering inertia change are described as 
follows: 
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• Dataset description: frequency nadirs at different inertia conditions 

• Dataset size:  

o (Inertia change only) 288 power flow scenarios (a 5-minutes step over 24 
hours) 

o (Inertia + governor change) 288 power flow scenarios * 15 combinations of 
governors 

• Input features: active power of all generators, total power generation of the system 

• Estimation metric: frequency nadir (frequency stability margin) 

• Training/testing sample number:  

o (Inertia change only) 200/88 

o (Inertia + governor change) 3,000/1,320 

The estimation results of frequency nadirs when inertia changes are shown in Figure 36 
and Figure 37. From these figures we can see that the developed machine learning tool 
can accurately predict frequency nadirs, and the estimation errors of frequency nadirs are 
less than 6 mHz. 

  
Figure 36. Frequency nadir of testing cases Figure 37. Frequency nadir estimation error distribution 

The results of frequency stability assessment with different governor combinations and 
inertia changes are shown in Figure 38 and Figure 39. Results show that the developed 
machine learning tool can accurately predict frequency nadirs considering governor 
status. The largest error is around 0.06Hz. 
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Figure 38. Modelled and estimated frequency nadir with 

different governor combinations 
Figure 39. Frequency nadir estimation error distribution 

with different governor combinations 

D.  Summary  
This section developed the technology to use AI to predict the frequency stability of power 
systems. The new approach was applied to 240 plus reduced WECC system and the 18-
bus system. Results show that the proposed mastered has high accuracy in predicting 
frequency stability, and clustering datasets may help reduce the size of training data set 
and increase the model training efficiency. 
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V. ARTIFICIAL INTELLIGENCE BASED SMALL SIGNAL STABILITY ASSESSMENT 

A. AI-based stability assessment on the 240-bus system. 
1) Oscillation Mode Study and Target Oscillation Mode 

Small signal stability is the ability of the power grid to keep in synchronism after small 
disturbances. This quarter studied the machine learning based small signal stability 
prediction on the 240-bus reduced WECC system. In this study, we focused on the well-
known N-S mode in WECC (N-S mode A and B merge to one mode because of the 
absence of the Alberta-U.S. connection in the reduced model). This oscillation mode has 
an oscillation frequency at around 0.3 Hz. The North area oscillates against the South 
area, Mexico area, and California area. The oscillation frequency and damping ratio of 
that mode were used to quantify the system small signal stability during different operation 
conditions.  
For small signal stability, the 240-bus system SSAT analysis result has the same south-
north oscillation mode (with 0.365Hz oscillation frequency, and 9.646% damping ratio) 
observed in the time domain simulation results. Figure 40 and Figure 41 show the mode 
shape and participation factors of the south-north oscillation mode of SSAT analysis 
results for the 240-bus system. This result validated that SSAT analysis results on the 
240-bus system are trustworthy and laid a foundation for testing the DSA tool on small 
signal stability assessment using larger systems. 

 
Figure 40. Oscillation mode shape of the south-north mode in the 240-bus WECC system 
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Figure 41. Oscillation mode participation factor of the south-north mode in the 240-bus WECC system 

2.1.1 Oscillation Observation Channel Selection 

We performed time-domain simulation in PSS/E to calculate the oscillation frequency and 
damping ratio. In this simulation, we applied a small probing disturbance to one 
generator’s exciter. By analyzing the generators’ rotor speed, we can get the oscillation 
frequency and the damping ratio of the target oscillation mode.  

The system has multiple oscillation modes, some of which have oscillation frequencies 
that are close to that of the target oscillation. In addition, the target mode’s oscillation 
frequency varies substantially with power flow. In order to select the exact target 
oscillation mode in each power flow scenario, we performed SSAT analysis and selected 
10 generators’ rotor speed as the observation channels. Among the 10 generators, five 
generators have the largest participation factors from one side of the oscillation mode 
shape and the other five generators’ on the opposite side of the mode shape. The first 
five signals’ oscillation phase angles lie in the range between -90 degrees to 90 degrees, 
while the rest five signals’ oscillation phase lie in the range between 90 degrees to 270 
degrees. Since the target mode’s oscillation frequency is around 0.3 Hz and it varies with 
power flow, oscillation modes that have a frequency between 0.1 Hz to 0.5 Hz are 
included in the result to cover the target mode. The oscillation mode that meets the two 
standards is regarded as the target oscillation mode. 

1. The first five signals’ oscillation phase angles lie in the range between -90 degrees 
to 90 degrees, while the rest five signals’ oscillation phase lie in the range between 
90 degrees to 270 degrees. 

2. The oscillation mode has an oscillation frequency between 0.1 Hz to 0.5 Hz.  
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Figure 42 shows the oscillation analysis result of one dispatch result. The yellow-colored 
rows are selected to belong to the target oscillation mode. After pinpointing the target 
oscillation mode, its oscillation frequency and damping ratio are retrieved and further used 
to construct the machine learning database.  

 
Figure 42. Select the oscillation components in the target oscillation mode  

In the 8,784 power flow scenarios, some cases have the small signal stability issue. The 
system under these operation conditions will not be able to maintain stability even after a 
small disturbance. These cases show instability after applying a small disturbance. Figure 
43 gives two examples of the simulation result of unstable cases. We identified around 
2,000 such cases. Since the oscillation analysis method can not accurately analyze 
oscillation modes of unstable cases, these cases are removed from the quantitative 
prediction study. After removing, the rest 6,000 power flow scenarios have valid oscillation 
frequency and damping ratio information to train and test the machine learning model. 

 
Figure 43. The simulated frequency and angle of small-signal-unstable scenarios 
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2) AI-based Small Signal Stability prediction for the 240-bus reduced WECC system 

We applied neural network to predict the small signal stability of the 240-bus reduced 
WECC system. The input and output data information are given in Table 12. The dataset 
is divided into two subsets: 80% data are used for training (68%) and validation (12%); 
the rest 20% data are used for testing.  

Table 12. Data Entries for CCT Prediction 

Input/output Data Number of Data Entries 

Input Total generation  1 

Total load real power 1 

Total system inertia 1 

Generator power output 146 (number of generators) 

Load power 139 (number of loads) 

Generator’s inertia contribution 146 (number of generators) 

Output Oscillation frequency 1 

Oscillation damping ratio 1 

The oscillation frequency prediction performance and error distribution are shown in 
Figure 44 and Figure 45. The prediction performance for the oscillation damping ratio is 
shown in Figure 46 and Figure 47. It can be seen that the oscillation frequency prediction 
has a relatively higher accuracy compared with oscillation damping ratio. The distribution 
of the prediction error is almost symmetric to the Y axis for both the oscillation frequency 
and the damping ratio, implying a desired feature that errors have a close-to-zero 
expectation. In addition, the result shows that when the damping ratio is small, the 
machine learning prediction result tends to have a larger error. 
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Figure 44. Oscillation frequency prediction result Figure 45. Oscillation frequency prediction error 

distribution 

  
Figure 46. Oscillation damping ratio prediction result Figure 47. Oscillation damping ratio prediction error 

distribution 

B. Stability assessment on the 18-bus system. 
The 288 saved cases of the 18-bus system were also used in the small-signal stability 
assessment. Because power flow files had already been generated in PSS/E, these files 
were inputted into SSAT to create a case for each dispatch level. Each SSAT case 
accepts a single PSS/E power flow file in RAW format, along with a single dynamic (DYR) 
file. Because 288 power flow files were generated, every five minutes over a 24-hour 
period, 288 SSAT cases were also created. The dynamic file inputted was the same for 
all 288 SSAT cases. Since SSAT does not have an application programming interface 
(API) to easily create a batch of dynamic cases, a MATLAB script was used to change 
the filename of the PSS/E RAW file to be inputted, since SSAT cases can also be read 
with a text editor.  
After SSAT cases were created for each dispatch level, a small-signal stability 
computation was run on each case. The selected computation was full eigenvalue 
analysis. All modes, with corresponding frequencies and damping ratios, were outputted 
for each SSAT case. SSAT has a tool called Case Scheduler to run batch simulations. A 
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list of SSAT cases were loaded into the Case Scheduler and run at once. Damping ratio 
was selected as the metric of small signal stability. The damping ratio is a dimensionless 
measure describing how oscillations in power system decay after a disturbance. Ideally, 
the system is stable if the damping ratio is positive and unstable if the damping ratio is 
negative. 
The data-driven small signal stability assessment was performed on the 18-bus system. 
Firstly, full eigenvalue analysis was performed on the 18-bus system in SSAT. All the 
eigenvalues of the 18-bus system are shown in Figure 48. There are 47 oscillation modes 
in total. Three of them have low damping ratio which is marked as mode 1, mode 2 and 
mode 3, respectively, in Figure 48. These three oscillation modes affect the system 
performance most. Therefore, the small signal stability assessment mainly focuses on 
these three modes. The participation factors for three oscillation modes are listed in Table 
13. 

 
Figure 48. Eigenvalues of the 18-bus system 

Table 13. Participation Factors for the Three Oscillation Modes 

Generator 
Participation factor 

Mode 1 Mode 2 Mode3 

North G1 0.01 1.00 0.15 

West G1 1.00 0.41 0.01 

SOUTH G1 0.09 0.26 1.00 

East G1 0.60 0.63 0.13 

From Table 13, it is seen that WEST G1 and EAST G1 are involved most in Mode 1 
(which is two generators’ oscillation); all generators are involved in Mode 2 (which is inter-
area oscillation); only SOUTH G1 is involved in Mode 3 (which is single generator 
oscillation). The detailed information of small signal stability assessment can be described 
as follows: 

• Dataset description: damping ratio subjected to system dispatch 

• Dataset size: 288 power flow scenarios with 5 minutes step over 24 hours 

• Input features: active power of all generators, total power generation of the system 
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• Estimation metric: damping ratio 

• Training/testing sample number: 200/88 
The results of small signal stability assessment for these three oscillation modes are 
illustrated in Figure 49 to Figure 54. From these figures, we can see that the estimated 
results agree well with the modelled results. The maximum damping ratio estimation 
errors of these modes range from 0.18% to 0.35%.  

  
Figure 49. Modelled and estimated damping ratio in 

testing dataset for mode 1 
Figure 50. Damping ratio estimation error distribution for 

mode 1 

  
Figure 51. Modelled and estimated damping ratio in 

testing dataset for mode 2 
Figure 52. Damping ratio estimation error distribution for 

mode 2 

  

Figure 53. Modelled and estimated damping ratio in 
testing dataset for mode 3 

Figure 54. Damping ratio estimation error distribution for 
mode 3 

0 50 100 150 200 250 300

Case #

-0.5

0

0.5

1

1.5

2

2.5

D
am

pi
ng

 R
at

io
 (%

)

Modelled
Estimated

-0.2 -0.1 0 0.1 0.2 0.3

Estimation Error

0

5

10

15

N
um

be
r o

f C
as

es

0 50 100 150 200 250 300

Case #

5

5.5

6

6.5

7

D
am

pi
ng

 R
at

io
 (%

)

Modelled
Estimated

-0.2 -0.1 0 0.1

Estimation Error

0

5

10

15

20

25

30

N
um

be
r o

f C
as

es

0 50 100 150 200 250 300

Case #

5.8

6

6.2

6.4

6.6

6.8

D
am

pi
ng

 R
at

io
 (%

)

Modelled
Estimated

-0.1 -0.05 0 0.05 0.1 0.15

Estimation Error

0

5

10

15

N
um

be
r o

f C
as

es



DE-EE00034224  

Jin Tan 

Appendix B-43 

Table 14 summarized the accuracy and computation time of stability assessment using 
artificial intelligence in the 18-bus system. It can be seen that both random forests and 
neural network reach high accuracy for the three stability assessment tasks using the 
same set of power flow input data. Neural network has higher accuracy than random 
forest except for small signal stability assessment. In addition, the artificial intelligence-
based method significantly reduces the computation time compared with conventional 
stability assessment methods. This result indicates that artificial intelligence has good 
capability in stability assessment. This approach can save the data preparation efforts 
and benefit multiple applications in which accurate and fast stability assessment is 
desired, such as real-time security margin assessment, short-term stability prediction for 
system adjustment, stability-related resource procurement and stability validation in day-
ahead markets, and stability margin assessment of multiple power flow scenarios in long-
term planning.  

Table 14. Accuracy of Different Testing of Artificial Intelligence Based Stability Assessment  

Stability Estimation accuracy Time for stability assessment (86 dispatch scenarios) 

Random 
forests 

Neural 
network 

Time domain simulation Artificial intelligence based 

Frequency 98.30% 99.72% ~1 h ~0.18 ms (with trained model) 

Transient 98.44% 99.29% ~16 h 

Small-Signal 98.61% 98.59% ~1 h 

C. Summary 
In this quarter, we used the 240-bus reduced WECC system and the 18-bus system to 
study machine-learning-based small signal stability prediction. In the 240-bus system, we 
focused on the well-known WECC N-S inter-area oscillation mode, whose frequency and 
damping ratio are quantified by PSS/E time-domain simulation and signal processing in 
Matlab and python. The DSA tool based on the neural network algorithm was applied to 
predict the oscillation frequency and damping ratio. The result shows that both oscillation 
frequency and damping ratio can be predicted fairly accurately based on power flow data. 
The oscillation frequency has a higher prediction accuracy compared with the damping 
ratio. Work in the next quarter will be enhance the tool to identify unstable cases and 
predict transient stability considering N-1 topology change. 
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VI. AI-BASED WECC-1 REMEDIAL ACTION SCHEME (RAS) IMPROVEMENT 

A. WECC-1 RAS-1 Introduction 
This study is based on the reduced WECC 240-bus system model developed by NREL, 
which has generation of different fuel types, e.g., coal, gas, bio, nuclear, hydro, wind, and 
solar. The renewable (wind and solar) generation penetration level varies from 0.2% to 
49.2% across 8,786 hourly dispatches of an entire year of 366 days.  

WECC-1 RAS is selected for this study. As shown in Figure 55, the tie lines connecting 
the south area (California, Arizona, and New Mexico) and the north area (Origen, Nevada, 
Utah, and Colorado) are tripped to mimic the actions of WECC-1 RAS and followed by 
corrective actions to maintain the system stability. In reality, load shedding and generation 
trip at predetermined locations in two islands respectively are used to maintain the two 
islands’ frequency between 59.5 Hz and 60.5Hz. For simplicity, proportional load 
decrease in one island and proportional load increase in the other island are used to 
generate the training database in this study.  

 
Figure 55. One-line diagram of 240-bus WECC test system model 

B. AI Based RAS 
The dataset is comprised of 8,784 total power flow scenarios. Approximately 2,000 of 
these cases were identified to have stability issues, and were excluded from the training 
dataset. Two examples of unstable power flow cases are shown in Figure 56.  
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Figure 56. Cases with stability issue  

In order to get the optimal MW amount, we perform the iterative simulations and fine tune 
the MW amount until the two systems’ maximum/minimum frequencies marginally reach 
59.5 Hz and 60.5 Hz respectively according to the following procedures. 

1) Adjust (increase or decrease) load in two systems according to their tie-line power 
flow MW after RAS activation. 

2) If two systems’ maximum/minimum frequencies do not marginally reach 59.5 Hz 
and 60.5 Hz respectively, change the MW adjustment amount based on the 
frequency nadir of the last simulation. Run multiple simulations until we get the 
optimal MW amount for load adjustment for two separate systems. 

Figure 57(a) shows the frequencies of the two islanded systems when RAS performs load 
adjustment according to tie-line flows. In this case, the tie-line flows for the PNW and CA 
system are 6,177.922 MW and -6,073.320 MW respectively. Figure 57(b) shows the 
frequency of the two islanded systems when RAS performs the optimal load adjustment. 
The optimal load adjustment are 2996.882 MW and -4928.92 MW respectively. Optimal 
power is cost effective compared to tie line flow, and in this example case, it avoids an 
extra 3181.04 MW load increase and 1144.4 MW load decrease in the two islanded 
systems. 
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(a) (b) 

Figure 57. (a) Load adjustment power equals tie line flows; (b) Optimal Load adjustment power maintains two 
islanded system at 59.5Hz and 60.5Hz respectively. 

Deep learning was used to predict the active power needed in two separated systems 
after WECC-1 RAS. The input and output data information are given in Table 15. The 
dataset is divided into two subsets: 80% of data is used for training (68%) and validation 
(12%), while the remaining 20% is used for testing. 

Table 15. Data Entries for Load Adjustment Prediction 

Input/output Data Number of Data Entries 

Input Total generation  1 

Total load real power 1 

Total system inertia 1 

Generator power output 146 (number of generators) 

Load power 139 (number of loads) 

Generator’s inertia contribution 146 (number of generators) 

Output Load Increase 1 

Load Decrease 1 

The active power prediction performance and error distribution are shown in Figure 58 
and Figure 59. It can be seen that the standard deviation for the MW increase prediction 
error is around 96MW, meaning that there is a 66% probability that the load increase 
prediction error is 96 MW or less. This error standard deviation is larger for load decrease 
prediction, at 146 MW. 
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Figure 58. Load Increase Power prediction result 

  
Figure 59. Load increase power prediction result 

1) Deep Learning Neural Network Structure for Adaptive RAS 

Deep learning neural network can use multiple layers to abstract the information based 
on the previous layer, and progressively abstract the input features, resulting in better 
generalization. As shown in Figure 60, this study uses a fully connected feedforward 
neural network with more than one hidden layer to map the operating conditions to the 
optimal WECC-1 RAS corrective actions. The operating conditions include total 
generation, total load, total inertia, power output of each generator, inertia of each 
generator, and each load. The outputs are the corrective actions, such as load increase 
MW amount and load decrease MW amount in two islands, respectively. 

 
Figure 60. Neural network structure for RAS study 
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2) Customized Loss Function 

In this study, a customized loss function is proposed to make the model favor the positive 
error more than the negative error. The customized loss function is shown in (2).  

𝐸𝐸 = �
��̂�𝑍 − 𝑍𝑍�2 𝑖𝑖𝑓𝑓 ��̂�𝑍� > |𝑍𝑍|

�𝑁𝑁 ∗ ��̂�𝑍 − 𝑍𝑍��
2

 𝑖𝑖𝑓𝑓 ��̂�𝑍� < |𝑍𝑍|,𝑁𝑁 > 1
(2) 

where 𝑍𝑍 is the ground truth of load increase or load decrease, �̂�𝑍 is predicted load increase 
and load decrease, and 𝑁𝑁 is the penalizing factor. 

When �̂�𝑍 is greater than 𝑍𝑍, the two islands’ frequency will not trigger under-frequency load 
shedding or over-frequency generation trip. When ��̂�𝑍� is less than |𝑍𝑍|, the loss function 
will be penalized by enlarging 𝑁𝑁 times. 𝑁𝑁 decides the degree of conservativeness. The 
greater the penalizing factor 𝑁𝑁, the more conservative of the prediction results.  

Although the model result is highly accurate, error is measured as the distribution around 
the mean of zero. This means that load increase cases with negative error will trigger an 
over-frequency generation trip, and load decrease cases with positive error will trigger 
under-frequency load shedding. To solve this issue, the neural network model should not 
only minimize the loss, but also make the loss selection behavior conservative. A 
customized loss function is proposed to make the model favor positive error during load 
increase and negative error during load decrease.  

In equation (2), 𝑍𝑍 is the ground truth of load adjustment in MW to maintain the two 
islanded systems at their respective frequencies. �̂�𝑍  is the load adjustment in MW 
calculated by the neural network during the training process. When the absolute value of 
the output of model �̂�𝑍 is greater than the ground truth 𝑍𝑍, error is simply the squared error 
of the two Z values. When the absolute value of the model �̂�𝑍 output is less than ground 
truth 𝑍𝑍, the loss function will penalize the error 𝑁𝑁 times as the squared error.   

By customizing the loss function in equation (2) , the model will predict the load 
adjustment amount conservatively. The penalizing factor 𝑁𝑁  in the loss function will 
determine the degree of conservatism. The greater the penalizing factor 𝑁𝑁, the more 
conservative the model prediction. Although high penalty factors result in more cases 
within the safety margin, higher penalty factors also cause the error to be more scattered, 
indicating a less accurate neural network model. 
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(a) N=1                                  (b) N=2                               (c) N=3 

 
(d) N=10                                (e) N=15                             (f) N=20 

Figure 61. Load increase power prediction result 
In this study, N=10 is selected as the penalization factor for the loss function. The data in 
Figure 62 and Figure 63 show the frequencies of the islanded systems with and without 
a customized loss function. Approximately 58% of cases fall within the safety margin with 
non-customized loss function. This value jumps to 92% with the customized loss-function, 
a considerable improvement. 

 
Figure 62. Two islanded system frequency without customized loss function 

  
Figure 63. Two islanded system frequency with customized loss function 
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3) Evaluation Metrics  

Root of mean squared percentage error (RMSPE) and mean absolute percentage error 
(MAPE) are used for evaluation metrics which can make comparisons between data with 
different scales. The RMSPE and MAPE calculation is given in (3) and (4). 

𝑅𝑅𝑀𝑀𝑅𝑅𝐸𝐸 =  �
1
𝑚𝑚
��

𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖
𝑦𝑦𝑖𝑖

�
2𝑚𝑚

𝑖𝑖=1

(3) 

𝑀𝑀𝑀𝑀𝑀𝑀𝐸𝐸 =  
1
𝑚𝑚
��

𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖
𝑦𝑦𝑖𝑖

�
𝑚𝑚

𝑖𝑖=1

(4) 

4) Prediction Performance Comparison Between Proposed Adaptive Remedial Action 
Scheme (RAS) and Conventional RAS 

This section is to verify that the proposed adaptive Remedial Action Scheme (RAS) is 
better than the conventional RAS.  

Proposed Adaptive RAS. Figure 64(a) shows the maximum and minimum frequency in 
two islanded systems respectively based on the prediction results without penalization (N 
= 1). The shadow area is the security region where UFLS and OVGT are not triggered. If 
no penalization, only 58.09% of cases are in the security region. Figure 64(b) and (c) 
show the histogram of maximum frequency in Island 1 and the histogram of minimum 
frequency in Island 2.  

Similarly, Figure 65 and Figure 66 show the maximum and minimum frequency of the two 
islanded systems respectively, and also shows the histogram of maximum frequency in 
Island 1 and the histogram of minimum frequency in Island 2 when N =10 and N =20. In 
92.36% (or 97.77%) of the total cases, the maximum and minimum frequency are inside 
the secure region, when N = 10 (or N = 20). 

 

  

(a) Max. and Min. frequency (b) Max. frequency histogram in Island 1 (c) Min. frequency histogram in Island 2 

Figure 64. Max. & Min. frequency and histograms of Island 1 and Island 2: N = 1. (purple: outside secure region, 
green: inside secure region, shaded area: secure region) 
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(a) Max. and Min. frequency (b) Max. frequency histogram in 
Island 1 

(c) Min. frequency histogram in 
Island 2 

Figure 65. Max. & Min. frequency and histograms of Island 1 and Island 2: N = 10. (purple: outside secure region, 
green: inside secure region, shaded area: secure region) 

 

  

(a) Max. and Min. frequency (b) Max. frequency histogram in 
Island 1 

(c) Min. frequency histogram in 
Island 2 

Figure 66. Max. & Min. frequency and histograms of Island 1 and Island 2: N = 20. (purple: outside secure region, 
green: inside secure region, shaded area: secure region) 

Table 16 gives the performance of the model with different penalizing factor N. The 
frequency between 59.5 Hz and 60.5 Hz is considered the secure region. As shown in 
Table 16, with larger N, RMSPE and MAPE are getting larger, but in more cases the 
frequency is inside the security region. This means the customized loss function can 
make the predicted value more conservative by penalizing the values out of the security 
region. For instance, when N = 20, the frequency will be inside the security region in 
97.77% of the cases. 

Table 16. Prediction Errors With Different Penalizing Factors 

N RMSPE  
Island 1 / Island 2 

MAPE  
Island 1 / Island 2 

Inside Security 
Region (%) 

1 7.15% / 4.94% 3.50% / 3.04% 58.09 

2 8.37% / 5.43% 4.73% / 3.49% 76.70 

3 6.90% / 5.09% 3.84% / 3.14% 73.14 

10 14.10% / 7.89% 8.86% / 5.93% 91.78 

15 14.23% / 9.50% 9.40% / 6.83% 92.36 
20 28.23% / 14.54% 18.36% / 11.44% 97.77 
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Traditional RAS. In contrast, traditional RAS is designed based on the rate of active 
power change to frequency change to estimate the generation trip and load shedding for 
each operating condition. 

Since the WECC system is separated into two islands after the activation of WECC-1 
RAS, the rate of active power change to frequency change is calculated separately for 
two islanded systems. Two scenario simulations are performed in order to calculate the 
rate 𝑟𝑟11 and 𝑟𝑟21 for one dispatch. 

In scenario 1, if load decrease 𝑀𝑀1 and load increase 𝑀𝑀2 performed in two islanded systems 
equal to the power flow of the tie lines connecting these two systems before RAS, the two 
islanded systems’ frequency nadir and frequency maximum will be 𝑓𝑓11 and 𝑓𝑓21. 

In scenario 2, if optimal load decrease 𝑀𝑀𝑜𝑜1 and optimal load increase 𝑀𝑀𝑜𝑜2 are performed 
in two islanded systems, the two islanded systems’ frequency nadir and frequency 
maximum will be 59.5Hz and 60.5Hz. The rate 𝑟𝑟11 and 𝑟𝑟21 for two islanded systems can 
be calculated as follows.  

𝑟𝑟11 =
𝑀𝑀1 − 𝑀𝑀𝑜𝑜1
𝑓𝑓11 − 59.5

, (5) 

𝑟𝑟21 =
𝑀𝑀2 − 𝑀𝑀𝑜𝑜2
𝑓𝑓21 − 60.5

. (6) 

The average rates of four typical scenarios: heavy load case, light load case, high 
renewable penetration case, and low renewable penetration case are calculated and used 
as the final rates of active power change to frequency change for two islanded systems 
in WECC system in equation (7). The average frequency nadir and frequency maximum 
of four typical scenarios in two islanded systems after RAS when performing load 
decrease and load increase using tie line flows, are calculated in equation (8). 

⎩
⎨

⎧𝑟𝑟1 = � 𝑟𝑟1𝑖𝑖
4

𝑖𝑖=1

𝑟𝑟2 = � 𝑟𝑟2𝑖𝑖
4

𝑖𝑖=1

(7) 

⎩
⎨

⎧𝑓𝑓1 = � 𝑓𝑓1𝑖𝑖
4

𝑖𝑖=1

𝑓𝑓2 = � 𝑓𝑓2𝑖𝑖
4

𝑖𝑖=1

(8) 

In actual system operation, tie line flows between two subsystems 𝑀𝑀1𝑝𝑝 and 𝑀𝑀2𝑝𝑝 can be 
monitored and obtained once RAS is detected. Then, the optimal load decrease amount 
𝑀𝑀𝑜𝑜1𝑝𝑝 and load increase amount 𝑀𝑀𝑜𝑜2𝑝𝑝 in two islanded systems for that operation condition 
can be calculated in (9) and (10). 

𝑀𝑀𝑜𝑜1𝑝𝑝 = 𝑀𝑀1𝑝𝑝 − 𝑟𝑟1 ∗ (𝑓𝑓1 − 59.5) (9) 
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𝑀𝑀𝑜𝑜2𝑝𝑝 = 𝑀𝑀2𝑝𝑝 − 𝑟𝑟2 ∗ (𝑓𝑓2 − 60.5) (10) 

Where 𝑟𝑟1, 𝑟𝑟2, 𝑓𝑓1 and 𝑓𝑓2 can be calculated in equation (7) and (8) using offline simulations 
on four typical scenarios. 𝑀𝑀1𝑝𝑝 and 𝑀𝑀2𝑝𝑝 are known for each operating condition. 

Based on traditional RAS calculation, Table 17 shows the performance on the traditional 
RAS. Only in 33.78% of the cases, the frequency is inside the security region. 

Table 17. Performance on Testing Data Based on Traditional RAS Calculations 

RMSPE  
Island 1/2 

MAPE  
Island 1/2 

Inside Security  
Region (%) 

9.65% / 19.70% 5.65% / 14.09% 33.78 

Figure 67 shows the frequency distributions of two islanded systems based on traditional 
RAS. The frequency of one system is scattered in a larger range compared with the other 
system. 

 

 

 

 

(a) Max. and Min. frequency (b) Max. frequency histogram in 
Island 1 (c) Min. frequency histogram in Island 2 

Figure 67. Max. & Min. frequency and histograms of Island 1 and Island 2: Traditional RAS. (purple: outside secure 
region, green: inside secure region, shaded area: secure region) 

By comparing Table 17 with Table 16, we can see that the error level of the conventional 
RAS is comparable to cases when N=10 and N=15 in the proposed adaptive RAS. 
However, the security levels are 91.78% (N=10) and 92.36% (N=15) for the adaptive 
RAS, in comparison with the 33.78% security level in the conventional RAS. This implies 
that the adaptive RAS has better performance in estimating the optimal MW change 
amount while maintaining the frequency in the desired region as much as possible. This 
difference can also be noticed by comparing the distribution of frequency distributions in 
Figure 65 and Figure 67.  

5) Layer Number and Node Number Selection 

Another work done in this quarter is exploring the best layer and node numbers in deep 
learning. The deep learning neural network model is trained with 80% of the total dataset. 
This work uses TensorFlow, which is an open-source software for machine learning. Early 
stopping technique is used to prevent overfitting. The rest 20% dataset is used for 
performance evaluation. The model can have different layer numbers and different node 
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numbers in each layer. A model with too many weights tends to be over fitting, but with 
insufficient weights tends to be under fitting. In this study, models with 2, 5, and 7 hidden 
layers and with 50, 100, 300, 500, 800, 1000, 1500, 2000 and 3000 nodes are compared. 

Figure 68 shows different models’ performances. The model with 2 hidden layers and the 
model with 5 hidden layers has similar performance. Both are better than the model with 
7 hidden layers. For the model with 2 hidden layers, its performance does not improve 
significantly if the node number is larger than 300. As more complex model is more likely 
to overfit, the 2 hidden layers with 300 nodes in each layer is selected as the optimal 
model structure. 

 
 2 layers 5 layers 7 layers 

Island  
1 

 

 

 

Island 
2 

 

 

 

Figure 68. Model performance with different layers and nodes  

6) Regularization Hyper Parameter Tuning 

This quarter’s work also includes exploring the impact of the regularization hyper 
parameter on system prediction error. Table 18 shows the performance of the trained 
model with different L1, L2 regularization techniques. When both L1 and L2 are equal to 
1, the model can achieve the best performance. Table 19 and Table 20 show the 
performance of the trained model with different dropout regularization techniques and 
Gaussian noise levels, respectively. Neither dropout regularization nor Gaussian noise 
can help significantly improve the model performance, and thus they are not used in this 
study.  
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Table 18. Performance of Trained Model With L1 and L2 Regularization Techniques 

Hidden Layers 
/Nodes L1, L2 RMSE (MW) 

Island 1 / Island 2 
MAE (MW) 

Island 1 / Island 2 

2/300 

0 182.31 / 275.62 112.05 / 169.51 
0.0001 185.24 / 276.63 116.20 / 173.58 
0.001 187.58 / 280.95 116.65 / 173.68 
0.01 185.62 / 279.33 116.19 / 175.02 
0.1 175.12 / 259.69 107.88 / 163.45 
1 132.23 / 206.36 87.64 / 134.07 
5 133.17 / 209.35 89.67 /136.25 
10 134.49 / 206.92 91.50 / 135.64 
20 142.41 / 224.85 101.61 / 152.53 

Table 19. Performance of Trained Model With Dropout Regularization Techniques 

Hidden Layers 
/Nodes 

Dropout rate  
(%) 

RMSE (MW) 
Island 1 / Island 2 

MAE (MW) 
Island 1 / Island 2 

2/300 

0 182.31 / 275.62 112.05 / 169.51 
0.001 182.02 / 275.30 113.62 / 172.90 
0.01 182.51 / 276.03 114.89 / 171.89 
0.05 191.58 / 281.00 124.78 / 181.59 
0.1 193.39 / 277.66 127.18 / 179.49 
0.3 208.59 / 298.81 141.53 / 197.86 

 

Table 20. Performance of Trained Model With Gaussian Noise Regularization Techniques 

Hidden Layers 
/Nodes 

Gaussian Noise  
(std) 

RMSE (MW) 
Island 1 / Island 2 

MAE (MW) 
Island 1 / Island 2 

2/300 

0 182.31 / 275.62 112.05 / 169.51 
0.0001 185.90 / 279.24 116.81 / 175.06 
0.001 185.53 / 277.87 116.65 / 173.68 
0.01 179.49 / 262.96 115.21 / 172.00 
0.1 212.98 / 315.83 149.92 / 217.31 
1 454.10 / 656.37 345.28 / 494.78 

C. Summary 
In this quarter, the 240-bus reduced WECC system was used to study deep learning 
based WECC-1 RAS load adjustment amount prediction. To maintain the system 
frequency range between 59.5 Hz and 60.5 Hz with the minimum load adjustment in MW, 
the more economic strategy was developed based on deep learning and compared with 
the tie-line-flow-based technique. Analysis revealed that due to negative errors in the 
neural network’s loss function, almost half of the cases triggered under frequency load 
shedding or over-frequency generation trip. After implementing the customized loss 
function to penalize the cases when the absolute value of the prediction is greater than 
ground truth, the percentage of cases within the safety margin jumped from 58% to 92%. 
We also provided a more detailed comparison with conventional RAS. The comparison 
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shows that the proposed RAS has better performance in estimating the optimal MW 
change amount while maintaining the frequency in the desired region as much as 
possible. In addition, the layer and node numbers, and the regularization hyper 
parameters in deep neural network were tuned to optimize the performance of the 
proposed RAS. 
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