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Abstract. The American WAKE experimeNt (AWAKEN) is a large-scale field campaign
focused on gathering new detailed observations of wind farm—atmosphere interactions for
improved understanding of wind farm physics and overall performance. The field campaign,
centered around five wind farms in northern Oklahoma, began in September 2022 and will run
through at least October 2023. This paper summarizes some of the initial observations and
simulations performed as part of the AWAKEN project.

1. Introduction

The focus of the American WAKE experimeNt (AWAKEN) project is centered around
observations and companion simulations relevant for seven testable hypotheses [1] geared toward
improved understanding of individual turbine wakes, turbulence within wind farms, larger-scale
wind farm wakes, wind farm blockage and the impacts of dynamic atmospheric events and
turbine operation on power production and turbine structural loads. The campaign includes a
variety of instruments deployed at 13 unique field sites and on four wind turbines in northern
Oklahoma. Most instruments are placed in and around a single wind farm (King Plains), but
some field sites are located in other wind farms in the area to capture larger-scale phenomena
such as wind farm wake interactions. In addition to observing the atmospheric flow fields,
structural loading information is being gathered from a suite of sensors installed on three turbines
in the King Plains wind farm. Researchers are also modifying the operational strategies of
subsets of turbines within the King Plains wind farm to quantify the impact of two different
types of wind farm control on wind farm performance and reliability.

In conjunction with the ongoing observations of the AWAKEN campaign, researchers are
executing complementary simulations using multiple tools with varying levels of fidelity. The
suite of simulations includes some of the highest fidelity wind farm models run to date using
the ExaWind simulation environment [2] and also lower fidelity engineering models important
for quick estimates of wind farm power production and control systems design, such as FLORIS
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[3]. The goals of the simulations are to help design the wind farm controls aspects of the
experiment and to perform validation studies to quantify the accuracy of models used to predict
flow fields and energy production under a variety of atmospheric and wind farm operational
conditions. Such simulations used in conjunction with observations will also provide improved
understanding of wind farm flow physics that continue to be a significant source of uncertainty
for wind farm energy prediction [4]. Researchers will use these simulations and observations to
create a set of publicly available benchmarks that will be valuable for the international wind
energy community.

In this paper, we provide a summary of the experimental setup in Section 2. We then
summarize some preliminary results from observational analysis and simulations in Sections 3
and 4, respectively, and provide conclusions in Section 5.

2. Experimental setup

The field sites located around three of the wind farms in the AWAKEN project are shown in
figure 1, with an enlarged view of the King Plains sites and instrumented turbines shown on
the right. The dominant wind direction is southerly [5], which dictates the experimental layout
of transects running north south through the King Plains wind farm to observe how different
atmospheric quantities vary as the wind flows through and out of the wind farm. Details of the
instrumentation deployed and the philosophy behind the field campaign design can be found in
Moriarty et al. [6].
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Figure 1. Layout of the AWAKEN instrumented sites. Black dots represent wind turbines
and black dots with red circles represent the AWAKEN instrumented turbines. Orange partial
circles on the left represent the range of the X-band radars.
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3. Observations

Initial observations from the AWAKEN experiment presented in this paper are from ground-
based profiling and scanning lidars and surface stations with sonic anemometers located either
upwind, within, or downwind of the King Plains wind farm, depending on the observed wind
direction.

The ground-based scanning lidars installed at sites A1l and H perform a six-beam vertical
profiling scan sequence [7] for the characterization of the first- and second-order statistics of the
wind velocity field as a function of height, z. Similar vertical profiles can be retrieved from the
profiling lidar deployed at site B. Wind speed and direction from these three lidars during one
selected day are reported in figure 2. All the instruments indicate the same mesoscale forcing,
with highly sheared NNW winds between 0000 and 0300 UTC (6-9 p.m. local time), shifting
to a westerly flow around 1200 UTC (6 a.m. local time). The nighttime wind speed at site A1l
(0600-1200 UTC) exhibits lower values compared to the other two lidars below 200 m, which
represent a clear signature of turbine wakes that are expected to impact site Al for wind blowing
from the north.
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Figure 2. (a) 10-minute-averaged time-height cross sections of wind speed retrieved from the
site B Windcube profiling lidar, (b) Halo XR+ scanning lidar at site Al, and (c) Halo XR+
scanning lidar at site H. The black arrows indicate the 10-minute-averaged wind direction. Blank
areas correspond to data rejected after the quality check based on [8], with the inconsistent data
availability being related to different lidar models and/or local aerosol conditions.

We also evaluate the lidar-derived turbulence kinetic energy (TKE) at a few selected heights
and compare it to its equivalent calculated from the 4-m sonic anemometer at site A2 (figure
3). A clear diurnal cycle can be observed both near the ground and aloft, with lower values
occurring in the first half of the day (nighttime, stable conditions) and higher turbulence level
in the second half (daytime, unstable convective conditions). It is noteworthy that the lidar
at site Al, i.e., the one more severely affected by wakes for the wind directions sampled here,
senses a TKE as high as 2-3 times that of the lidar at site H, which is interpreted as an effect
of wake-added turbulence.
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Figure 3. Turbulence kinetic energy retrieved from the lidars at (a) 100 m, (b) 150 m, (c)
200 m, and (d) 250 m above the ground, and the same quantity calculated from the 4-m sonic
anemometer at site A2. The wind direction at z = 100 m is also reported for reference (black
arrows).

The results from the scanning lidars, although qualitatively insightful, are possibly affected
by the poor accuracy of the selected scanning approach, which assumes horizontal homogeneity
of the flow, not expected to be valid in the presence of wakes. Therefore, the wake-generated
turbulence is investigated more thoroughly through a comparative analysis of sonic data collected
at multiple locations. Following the analysis of Bodini et al.[9], we calculate the percentage
difference in TKE as measured by the 4-m sonic anemometers at site G (within the wind farm)
and site A5 (outside the wind farm), as a function of wind direction (figure 4). We segregate
results based on atmospheric stability, quantified in terms of the Obukhov length L, and consider
stable conditions to be those when 0 m < L < 200 m, and unstable conditions to be those when
—200m < L < 0m. Also, to isolate periods when the King Plains turbines are expected to be
operating, we only consider times when the 4-m wind speed is larger than 3 m/s. We see that
near-surface TKE at site G is more than 50% larger than at site A5 in stable conditions for
south-southwesterly wind directions, i.e., when site G is downwind of multiple rows of turbines
and it is reasonable to expect a large impact of wakes. Conversely, a negligible difference in
TKE is observed in unstable conditions when wakes dissipate much faster. We note how the
wind direction sector highlighted in gray in figure 4 shows higher TKE at site A5 because of the
impact of the wake of a shipping container deployed at that location. Once all instruments are
deployed, a similar analysis will be refined by comparing sonic anemometer observations from
a larger number of sites across the King Plains wind plant, and we will also assess near-surface
impacts on different variables.

4. Simulations

A range of simulations have been performed for the AWAKEN experiment using large-eddy
simulations in preparation for validation exercises for high-fidelity tools and more simple
engineering models to help design the wind farm controls aspects of the AWAKEN project.
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Figure 4. Mean percentage difference in 4-m sonic anemometer TKE between sites G and A5,
for all 20-deg wind direction bins.

Researchers have performed large-eddy simulations of subsets and the entire AWAKEN
domain using AMR-Wind [2], as seen in figure 5. These simulations, detailed in Cheung et
al. [10], cover all five wind farms with a total of 541 turbines and installed rated power potential
of more than 1.1 GW. These simulations are run under unstable atmospheric conditions and
represent some of the largest wind farm simulations to date. The simulation domain is 100
km x 100 km x 2.5 km with a spatial resolution ranging from 2.5 m to 20 m and total mesh
count of 21B cells. For the unstable ABL condition, a surface roughness of zp = 0.15m and
surface temperature flux of 0.0442 K-m/s was chosen to match the shear and TI characteristics
of an unstable 10 m/s hub-height condition as measured by nearby instrumentation. The initial
flow-field was developed using a horizontally periodic precursor calculation which run for more
than 5 hours, before starting the simulations with active wind turbines.

The simulation can be broken into individual wind farms as shown in figures 6 and 7,
and the turbines in each wind farm are modeled through Joukowsi actuator disk models [11]
(Thunder Ranch, Armadillo Flats, Chisholm View, and Breckinridge), or OpenFAST-coupled
[12] actuator disks (King Plains). While the presence of individual turbine wakes is obvious in
these simulations, larger wind farm wakes break down quickly under unstable conditions and are
less obvious. We do expect longer larger wind farm wakes to be more predominant in the stable
atmospheric boundary layer simulations. Additional analysis of the LES calculations, including
averaged flow and power generation, can be found in [10], and all simulation parameters and
results are available online [13].

One unique aspect of the AWAKEN campaign is the study of wind farm controls in a
large wind farm. Wake steering, one of the wind farm control technologies investigated in
the campaign, is a control strategy wherein upstream wind turbines are misaligned with the
wind to deflect their wakes away from downstream turbines, which can increase total wind plant
power [14]. In preparation for the wind farm control experiment, numerous simulations in the
computationally efficient FLORIS engineering wind farm control modeling tool [3] have been
used to design the wake steering controller. To model wake interactions and wake steering
we use the Gauss-curl hybrid (GCH) model in FLORIS [15]. The GCH model combines the
self-similar Gaussian wake deficit model discussed by Niayifar and Porté-Agel [16] and the
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Figure 5. Contour of instantaneous horizontal velocity at the z = 90m plane for the five wind
farms in the AWAKEN simulation domain.

wake deflection model presented by Bastankhah and Porté-Agel [17] with aspects of the curl
wake model developed by Martinez-Tossas et al. [18], which captures the effects of large-scale
trailing vortices caused by yaw misalignment on wake recovery and secondary steering (whereby
the trailing vortices continue to deflect the wakes of downstream turbines with which they
interact). Specifically, in FLORIS V2.5 [3], we use the “gauss_legacy” velocity deficit model,
“gauss” deflection model, “crespo_hernandez” wake-added turbulence model, and “sosfs” wake
combination model (with default parameters). The power loss from yaw misalignment is modeled
in FLORIS by scaling the rotor effective wind speed by (cos~)P v/ 3 where ~ represents the yaw
misalignment and p, is a user-defined power-loss exponent (we use a value of p, = 2). Baseline
FLORIS flow fields (i.e., without wake steering) for the subset of the King Plains wind plant
where wake steering is implemented are shown in figure 8 for a wind speed of 8 m/s, wind
direction of 180 degrees, and turbulence intensities of 5%, 8%, and 11%. The 15 wind turbines
for which wake steering is implemented are circled. As turbulence intensity increases, the wakes
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Figure 6. Instantaneous horizontal velocity at z = 80m hub-height plane showing the turbine
wakes of the Armadillo Flats wind farm.
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recover faster, causing lower wake losses at downstream turbines.
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Figure 8. Streamwise velocity field a at hub height from FLORIS simulations at different
ambient turbulence intensity (TI) levels.

Figure 9 shows the baseline wake losses and potential increases in energy production from
wake steering in the experiment as a function of wind direction based on FLORIS simulations.
The potential energy gains are found by using the Serial-Refine method [19] in FLORIS to
identify the optimal yaw offsets for the set of wake steering turbines that maximize total wind
plant power as a function of wind speed (in 1 m/s steps) and wind direction (in 1 degree
increments). To allow safe operation, the yaw offsets are limited to between —24 degrees and
424 degrees at low wind speeds, and the maximum allowable offsets are reduced further as
wind speed increases. Energy production with and without wake steering is found by summing
the corresponding wind plant power values in each wind speed and wind direction bin by the
long-term wind rose frequencies for King Plains based on 7 years of hourly data from the WIND
Toolkit [20] wind resource data set. Note that the wake losses and energy gains are computed
for the entire wind plant, but wake steering is only active for the 15 turbines on the east side of
the plant shown in figure 8.

Figure 9 shows that the greatest benefits from wake steering arise for easterly and westerly
directions where wake losses are highest because of the close turbine spacing. In general,
larger wake losses provide more opportunity for wake steering to increase power production.
Unfortunately, flow from the east and west is not that common. However, there is still benefit
from wake steering in the most common wind direction from the south. Additionally, figure
9 reveals that wake losses as well as the predicted energy gains from wake steering are larger
at lower turbulence intensities. Wakes persist longer as turbulence decreases, which causes
greater power deficits at downstream turbines and thus greater potential for power gains from
wake steering. Further, wakes are narrower when turbulence intensity is lower; therefore,
wake deflection from wake steering has the potential to increase power more substantially
at downstream turbines during periods with lower turbulence. Consequently, we expect low-
turbulence conditions to provide the best opportunity to observe significant energy gains from
wake steering during the experiment, especially when the wind is from the south.

5. Conclusions
The AWAKEN project represents one of the largest wind farm field campaigns to date that also
includes wind farm control studies. Initial observations show a definitive presence of wakes from
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Figure 9. Baseline wake losses as well as relative and absolute energy gains from wake steering
for the King Plains wind plant based on FLORIS simulations and yaw offset optimizations for
turbulence intensities of 5%, 8%, and 11%. TI = turbulence intensity; AEP = annual energy
production.

lidar measurements and also an increase in turbulence kinetic energy under stable conditions
downwind of multiple rows of turbines. Initial simulations have been conducted in preparation
for model validation studies and also to help design the wind farm control studies. The wind
farm control studies show a potential energy gain dependent on inflow atmospheric turbulence
intensity. Data are continuously streamed to the U.S. Department of Energy’s Wind Data
Hub [21] located at http://a2e.energy.gov. Benchmarks are being developed for the AWAKEN
seven testable hypotheses that will be released for the benefit of the wind industry and research
community alike.
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