GMLC Technical Assistance to States

DER Interconnection Workshop

NREL Team: Michael Ingram, David Narang, and Xiang Li
Guest Speakers: Caitlin Marquis, Debbie Lew, and Sydney Forrester

Presented on December 15, 2022
Revised for publication on January 4, 2023
Agenda

- Introduction & Background (David Narang)
- Caitlin Marquis: FERC Order 2222 Overview & Implications for PUCs
- Debbie Lew: DER Aggregation & Integration Into Wholesale Markets & Operations
- Sydney Forrester: Allowing Aggregations & FERC Order 719
- David Narang: Adoption of DER Performance Standards to Support DER Aggregation
- Conclusion & Next Steps
Workshop Goals

1. Increase awareness of existing materials and support to help state public utility commissions (PUCs) move forward on distributed energy resource (DER) interconnection activities.

2. Help participants make connections to colleagues with similar challenges (and solutions!).

3. Help the GMLC/NREL project team understand context and implementation challenges.
Workshop Origin: GMLC Technical Assistance to State Public Utility Commissions

Purpose: Provide customized support on issues specific to state’s needs and unique situations.

Approach: Work with awardees on content and delivery method to maximize the efficacy of the TA.

Budget/scope: $2.25M across 37 different technical engagements in more than 20 states.
NREL at a Glance

Workforce, including
219 postdoctoral researchers, 60 graduate students, 81 undergraduate students

World-class
facilities, renowned technology experts

Partnerships
with industry, academia, and government

Campus
operates as a living laboratory

2,926

More than 900
Renewable Power
Solar
Wind
Water
Geothermal

Sustainable Transportation
Bioenergy
Vehicle Technologies
Hydrogen

Energy Efficiency
Buildings
Advanced Manufacturing
Government Energy Management

Energy Systems Integration
Grid Integration
Hybrid Systems
Security and Resilience
As we go through the discussion today, consider your own context.
Potential new capabilities and elements:

- Improved resiliency to weather events
- New energy technologies (e.g., energy storage)
- New markets and services
 - Improved communications and controls (e.g., AMI, ADMS)
 - Electrification of other sectors (e.g., transportation).
Consider your own coordination needs between policy/regulation and DER deployment.

DER Deployment Trajectory: “The Market”

Amount of DERs Deployed

Preparation
- Address institutional barriers.
- Establish market access (e.g., enabling legislation/regulation for third-party ownership).
- Increase transparency in permitting process and fees.
- Establish legislative/regulatory rules for compensation (e.g., net metering).
- Revise building energy codes to support DER deployment.
- Revise interconnection rules?

Creation
- Establish legislative/regulatory mandates (e.g., renewable portfolio standards).
- Establish financing mechanisms and funding sources.
- Encourage pilot and demonstration projects (“regulatory sandbox”?).
- Revise interconnection rules?

Expansion
- Direct monetary incentives for specific projects (e.g., rebates, grants, tax incentives, production incentives for DER energy, feed-in tariffs).
- Remove siting restrictions.
- Ensure broad market access (legislative action needed?).
- Streamline permitting.
- Revise interconnection rules?

Optimization
- New types of DERs or new applications of existing DERs?
- New actors or new roles for existing actors?
- Revise interconnection rules?

References:
Basis of this discussion: DER performance capabilities have advanced beyond traditional self-serve use.

Modern DER assets could provide a range of grid services that may improve system flexibility and reliability and reduce capital and operating costs.

Market-Level Functions (Bulk System)
Examples: system events, market orders/requests
Grid services—energy-related, regulation, reserve, ramping, frequency response

Operation-Level Functions (Distribution Grid)
Examples: local events, dispatch/aggregation
Grid services—energy-related, distribution voltage management

Grid-Edge Functions (Local Facility / Devices)
Examples: voltage/frequency control, device specifications
Grid services—distribution voltage management

Reference:

Reference:
Agenda

- **Introduction & Background** (David Narang)
- **Caitlin Marquis**: FERC Order 2222 Overview & Implications for PUCs
- **Debbie Lew**: DER Aggregation & Integration Into Wholesale Markets & Operations
- **Sydney Forrester**: Allowing Aggregations & FERC Order 719
- **David Narang**: Adoption of DER Performance Standards to Support DER Aggregation
- Conclusion & Next Steps (David Narang)
Content under separate cover
Agenda

- Introduction & Background (David Narang)
- Caitlin Marquis: FERC Order 2222 Overview & Implications for PUCs
- Debbie Lew: DER Aggregation & Integration Into Wholesale Markets & Operations
- Sydney Forrester: Allowing Aggregations & FERC Order 719
- David Narang: Adoption of DER Performance Standards to Support DER Aggregation
- Conclusion & Next Steps (David Narang)
Content under separate cover
Agenda

- Introduction & Background (David Narang)
- **Caitlin Marquis**: FERC Order 2222 Overview & Implications for PUCs
- **Debbie Lew**: DER Aggregation & Integration Into Wholesale Markets & Operations
- **Sydney Forrester**: Allowing Aggregations & FERC Order 719
- **David Narang**: Adoption of DER Performance Standards to Support DER Aggregation
- Conclusion & Next Steps (David Narang)
Content under separate cover
Agenda

- Introduction & Background (David Narang)
- **Caitlin Marquis**: FERC Order 2222 Overview & Implications for PUCs
- **Debbie Lew**: DER Aggregation & Integration Into Wholesale Markets & Operations
- **Sydney Forrester**: Allowing Aggregations & FERC Order 719
- **David Narang**: Adoption of DER Performance Standards to Support DER Aggregation

- Conclusion & Next Steps (David Narang)
Adoption of DER Performance Standards to Support DER Aggregation

Michael Ingram, Xiangkun Li, and David Narang
NREL Power Systems Engineering Center

DER Interconnection Workshop

Note: These slides were originally presented in part at the NARUC-NASEO Distributed Energy Resources Integration & Compensation Initiative Workshop in Washington D.C. on September 21, 2022
Key DER Capabilities That Support Aggregation

Topic Highlight
Complementing North American Reliability Standards

<table>
<thead>
<tr>
<th>FERC/NERC?</th>
<th>Transmission</th>
</tr>
</thead>
<tbody>
<tr>
<td>• FERC orders</td>
<td></td>
</tr>
<tr>
<td>• NERC reliability standards & guidelines</td>
<td></td>
</tr>
<tr>
<td>Test & Verification & Model Validation</td>
<td></td>
</tr>
<tr>
<td>• NERC compliance monitoring & enforcement</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NARUC/State PUCs?</th>
<th>Sub-Transmission</th>
</tr>
</thead>
<tbody>
<tr>
<td>• IEEE Std 2800-2022</td>
<td></td>
</tr>
<tr>
<td>• IEEE P2800.2 (in process)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Distribution (for DERs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• IEEE Std 1547-2018</td>
</tr>
<tr>
<td>• IEEE Std 1547a-2020</td>
</tr>
<tr>
<td>• IEEE 1547.1-2020</td>
</tr>
<tr>
<td>• UL 1741 (SB)</td>
</tr>
<tr>
<td>• IEEE ICAP</td>
</tr>
</tbody>
</table>

Only when adopted by the appropriate authorities, IEEE standards become mandatory
Aggregate performance:

- DER inverters are software-controlled systems.
- Unlike conventional rotating generators, software-controlled DERs can exhibit an “orchestral” response to abnormal conditions.
- At higher penetrations, computer models indicated that the aggregate DER response to abnormal voltage or frequency can contribute to the (in)stability of the bulk power system.
- This possibility prompted inclusion of ride-through requirements in IEEE Std 1547-2018.

Stakeholders for ride-through settings include “regional reliability coordinators” and the local utilities.
Grid Support Under Normal Grid Conditions
IEEE Std 1547-2018 Active Voltage Regulation Capability Requirements

Category A

Meets minimum performance capabilities needed for area electric power system (EPS) voltage regulation

Reasonably attainable by all state-of-the-art DER technologies.

Category B

Meets all requirements in Category A plus:

Supplemental capabilities for high DER penetration, where the DER power output is subject to frequent large variations

Attainable by most smart inverters.

<table>
<thead>
<tr>
<th>Mandatory Voltage Regulation Capabilities</th>
<th>Cat A</th>
<th>Cat B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant Power Factor Mode</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Constant Reactive Power Mode ("reactive power priority")</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Voltage-Reactive Power Mode ("Volt-VAR"):</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>• In this mode, the DER actively controls its reactive power output as a function of voltage.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Intended to supply VAR only when needed, push local voltage back toward nominal.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active Power-Reactive Power Mode ("Watt-VAR," "P-Q")</td>
<td>not required</td>
<td>✔</td>
</tr>
<tr>
<td>• In this mode, the DER actively controls the reactive power output as a function of the active power output.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Not widely discussed/deployed to date.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage-Active Power Mode ("Volt-Watt")</td>
<td>not required</td>
<td>✔</td>
</tr>
<tr>
<td>• In this mode, the DER actively limits the DER maximum active power as a function of the voltage.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• This mode can reduce the prevalence of very high voltages.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- IEEE Std 1547-2018: “The DER shall provide voltage regulation capability by changes of reactive power. The approval of the Area EPS Operator shall be required for the DER to actively participate in voltage regulation.”
- The area EPS operator shall specify the required voltage regulation control modes and the corresponding parameter settings. Modifications of the settings and mode selected by the EPS operator shall be implemented by the DER operator (min 44% injecting, 25% absorption (low), 44% (high)).
- Settings can be adjusted locally or remotely.
Interoperability: The capability of two or more networks, systems, devices, applications, or components to **externally exchange and readily use information securely and effectively** (IEEE Std 1547-2018 by reference to IEEE 2030)

Value of interoperability:
- Improves situational awareness/monitoring
- Provides more data for modeling and simulation
- Enables standardized control and advanced control
- Provides data for modeling and simulation.
- Enables “orchestrated response,” e.g., aggregation.

IEEE Std 1547-2018 support/requirements for interoperability:
- Communications requirements
- Identified functions to communicate
- Scope of interoperability
- Protocols.
Increased Capabilities Come With Increased Complexity

Topic Highlight
Regional reliability coordinator: Maintains real-time operating reliability of bulk power system within a reliability coordinator area

Authority Governing Interconnection Requirements (AGIR):
Codifies, communicates, administers, and enforces policies and procedures for allowing electrical interconnection of DERs to the grid. Examples: State regulatory agency, public utility commission, municipality, cooperative board of directors

Authority having jurisdiction: Has rights to inspect and approve of the design and construction. Examples: City or county inspectors

Images from DOE
Note: For a good discussion on bulk power system reliability, see the Federal Energy Regulatory Commission’s (FERC’s) Reliability Primer, https://www.ferc.gov/media/2135.
DER Capabilities Required in IEEE Std 1547 Cross Jurisdictional Boundaries

- Regulator (AGIR)
- Area EPS operator
- Regional reliability coordinator

Power quality
- Protection settings

Testing & certification

Performance categories
- Voltage regulation modes

Interoperability requirements
- Communications protocols

Performance categories
- Trip settings
- Ride-through

Application (beyond IEEE Std 1547 scope)
- Grid services
- Data access
- Cybersecurity

Grid services
- Bulk system reliability
- Resilience
- Black start

- Area EPS operator
- Regional reliability coordinator

- Regulator (AGIR)
Education and Support Resources

Topic Highlight
NREL’s IEEE Std 1547-2018 Resources Website

nrel.gov/grid/ieee-standard-1547

An online platform with educational resources to aid stakeholders in the successful adoption and implementation of IEEE Std 1547-2018.

Sponsored by:
Solar Energy Technologies Office

Partners and advisors:
- Sandia National Laboratories
- Institute of Electrical and Electronics Engineers
- Electric Power Research Institute
- National Association of Regulatory Utility Commissioners
- National Rural Electric Cooperative Association
- Interstate Renewable Energy Council
- Regulatory Assistance Project
- Western Interstate Energy Board

NREL’s well-catalogued and publicly accessible online platform includes presentations, industry white papers, and topic-specific NREL technical reports for utilities, states, solar developers, transmission operators, and other stakeholders.
Resources on the Site

nrel.gov/grid/ieee-standard-1547

- There are three main sections of the report:

 - **Step 1** Determining Context (stakeholders and major drivers)
 - **Step 2** Developing the Rule (including updating technical requirements)
 - **Step 3** Maintaining and Revising the Rule

- Key considerations include:
 - Has the governing authority sufficiently identified motivations for updating the interconnection rule? How do the identified technical requirements relate to the desired outcome?
 - Has the governing authority allowed for the use of DER capabilities (even if they are to be used in the future)?

Any state or local jurisdictions that are interested in adopting IEEE Std 1547-2018 should consult this resource!

Find the full report on NREL’s IEEE Std 1547-2018 resources website or at nrel.gov/docs/fy22osti/75290.pdf.
IEEE Standards Committee 21 (SC21)
Resources and Outreach

• **Public website on IEEE Std 1547:**
 - Discount/free copies of the standard for select stakeholders (e.g., regulators)
 - Education and training/reading material—papers, webinars
 - “Approved” presentation content for subject matter experts
 - Catalog of ISO/RTO T&D coordination activities
 - State activity map (maintained approx. quarterly)
 - Inverter rollout timeline (“regularly” maintained).

• **Informal industry/stakeholder coordination calls (quarterly)**

• **Coordination with other IEEE societies, committees, and related standards (constant).**
Additional Resources

National Association of Regulatory Utility Commissioners (NARUC):
- Home page: https://www.naruc.org/
- Publications: https://www.naruc.org/cpi-1/publications/

Interstate Renewable Energy Council (IREC):
- Blog: https://irecusa.org/blog/tag/ieee-1547/

Electric Power Research Institute (EPRI):
- Training by EPRI U: https://www.epri.com/epri-u
- DER Aggregation Participation in Electricity Markets: EPRI Collaborative Forum Final Report and FERC Order 2222 Roadmap: https://www.epri.com/research/products/000000003002020599

North American Electric Reliability Corporation (NERC):
Cybersecurity

Other activities:

https://sunspec.org/cybersecurity-work-group/
An EERE collaboration between SETO and WETO

Website: energy.gov/i2X
i2X Technical Assistance

Goal: To provide access to various interconnection technical assistance opportunities to support our partners in their implementation of developed reforms.

- **Interconnection office hours—Fridays:**
 - Direct access to i2X leadership
 - “Consultation” phone calls available to any interconnection stakeholder.

- **Preliminary i2X working groups:**
 - Energy Justice Working Group
 - *IEEE Std 1547-2018 Adoption Support Working Group*
 - Experienced peer learning webinar series.

- **Additional topics for consideration:**
 - Implementing queue management methods
 - Accelerated tool development and deployment
 - Best practices and training.

- **Others? Suggest a topic!**
Thank You

David Narang | David.Narang@NREL.gov
Michael Ingram | Michael.Ingram@NREL.gov
Xiang Li | Xiangkun.Li@nrel.gov

www.nrel.gov

NREL/PR-5D00-85239

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy (EERE) Solar Energy Technologies Office (SETO) Award Number 34808 and the DOE EERE SETO/Wind Energy Technologies Office Award Number 39630 (“i2X”). The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes. This research was supported by the Grid Modernization Initiative of the U.S. Department of Energy (DOE) as part of its Grid Modernization Laboratory Consortium, a strategic partnership between DOE and the national laboratories to bring together leading experts, technologies, and resources to collaborate on the goal of modernizing the nation’s grid.
Next for us

• Continued collaboration with our GMLC interconnection cohort for the next workshop
• Continued collaborative efforts with partners on all the topics discussed.
Discussion

www.nrel.gov