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Real-time Regional PV Spinning Reserve Estimator
with AGC Look-ahead Windows

Mengmeng Cai, Govind Saraswat, and Vahan Gevorgian
National Renewable Energy Laboratory (NREL), Golden, CO, USA.

Abstract—Curtailed PV generation is a zero-marginal cost
spinning reserve that can be used for a number of active
power control services. However, unlike the traditional spinning
reserve providers, i.e., fossil-fueled generators, who have well-
defined operating characteristics, e.g., available headroom or
potential high limit (PHL), PV plants have by nature variable
and uncertain operating characteristics. To ensure the effective
coordination between PV plants and the system operator during
an active power control event, accurate forecasts of the PV PHL
are essential. A novel reference-control grouping based scaling
method has been proposed by NREL to estimate the PV PHL
in real-time. This work further enhances the methodology by:
1) improving the model accuracy through machine learning; 2)
considering look-ahead windows introduced by the computation
and communication latencies; 3) applying the method to regional
spinning reserve estimation. A significant performance improve-
ment, around 2% less time when the estimation error falls below
1% of the capacity, has been observed based on real-world data
collected by CAISO and PV plant operators.

Keywords—PV, Spinning Reserves, Reliability Services, Poten-
tial High Limit

I. INTRODUCTION

The integration of variable energy resources (VERs) is
gaining momentum in the U.S., adding great variability and
uncertainty to the bulk power system. More system flexibil-
ities from various energy resources are therefore needed to
maintain the system reliability, including flexibility coming
from the wind and solar plants themselves [1]. To resolve
the emerging need, California independent system operator
(CAISO) recommended the active power control of VERs,
by which the VERs operate at curtailed generation points
following automated dispatch instructions in response to a
grid service need. Several demonstration projects conducted in
Texas, Puerto Rico, and California under the collaboration be-
tween the U.S. Department of Energy (DOE) and industry have
proven the capability of utility-scale PV plants in providing a
full spectrum of reliability services, i.e., primary frequency
response, automatic generation control, inertial response and
ramp control, etc., as opposed to being just a source of variable
bulk energy production [2], [3].
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However, unlike the traditional operating reserve providers
- fossil-fueled generators - who have well-defined operating
characteristics, e.g., available operation headroom, PV plants
by nature have variable and uncertain operating characteristics.
To ensure an optimal and feasible coordination between PV
plants and system operator during an active power control
event, it is important to accurately estimate the potential max-
imum available power output, or potential high limit (PHL),
of the plant at any moment even when the plant is curtailed to
a lower production level. The PHL is driven by the solar irra-
diation and the plant condition [4] and therefore varies across
time and cannot be measured directly. Estimating the PV plant
PHL in curtailed mode is not a trivial task, especially for large
PV plants spanning large geographical spaces. Both model-
based and data-driven methods have been proposed for the PV
plant PHL estimation [5]–[8]. However, all of them are highly
dependent on accurate knowledge of plant-level and device-
level parameters as well as the weather conditions. A simpler
and potentially more accurate method has been developed by
NREL that uses only a subset of inverters (control group)
to achieve desired levels of curtailment and uses the other
uncurtailed subset of inverters (reference group) to estimate
the plant-level PHL in real-time. This method demonstrates
superior performance compared to the ones found in the
literature given its robustness, simplicity, and independence of
PV modules, inverter types, array topology, solar irradiance
variation, cloud movements, panel temperatures, and panel
soiling, etc. Its real-world application has been shown in
[3] under clear-sky days for a single 300 MW PV plant in
California. Full detail of the NREL method can be found in
[9].

In this work, NREL further enhances the methodology by:

1) Improving the estimation accuracy through machine
learning (ML).

2) Accounting for look-ahead windows to reflect the
computation and communication latencies occurring
during the implement of the active power control.

3) Applying it for the regional reserve estimation.

II. METHODOLOGY

The NREL PV PHL estimation approach is enabled by
splitting inverters in a PV plant into a control group and
a reference group. While inverters in the control group are
curtailed to track with the dispatch instructions, inverters in
the reference group are reserved to operate at their maximum
operating limits. Fig. 1 illustrates how the group splitting
and PHL estimator fit into the PV plant active power control
application, taking the automatic generation control (AGC) as
the example.
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Fig. 1. Illustration of the automatic generation control enabled by the control-
reference grouping and PHL estimation.

As depicted in Fig. 1, the plant PHL estimator first collects
inverter-level generation data from the reference group and
estimates the plant-level PHL to be sent to the system operator
at time t. Then, the system operator calculates the optimal
AGC signals for all participating generators, including the
PV plant, based on their available headroom and response
speed, which are communicated back to the plant dispatcher at
time t+ ta. Finally, after receiving the AGC signal, the plant
dispatcher determines the PV curtailment instructions at the
inverter-level for the control group and executes the controls
at time t+ ta + tb.

Note that ta and tb reflect the computation and communi-
cation delays occurring in the AGC control loop. Since PV is
a variable generation, the actual available power of the plant
at time interval t + ta + tb could differ from the estimated
available power at t if no look-ahead window is considered,
which will increase the estimation error. In what follows, we
compare two mathematical models for estimating the PHL: 1)
the scaling model, originally proposed in [9], that is incapable
of considering the look-ahead window, and 2) the proposed
ML model, introduced in this study, with configurable look-
ahead windows.

A. Scaling Method

The scaling method simply estimates the plant-level PHL
at time t + ta + tb as a scaled value of the reference-group
PV generation at time t, based on the ratio between numbers
of inverters in the reference group versus in the PV plant, as
given in Eq. (1):

P̂ t+ta+tb
PHL =

N

Nref

Nref∑
k=1

P t,k
ref , (1)

where N and Nref indicate the numbers of inverters in the
plant and the reference group. P t,k

ref represents the measured
power output of reference inverter k at time t.

B. Machine Learning Method

Despite the fact that the scaling method has been success-
fully demonstrated and used in a number of projects, it has two
drawbacks: First, same weights are assumed for inverters in the
reference group when estimating the plant-level PHL, whereas
varying weights may actually apply given different modules,

capacities, and locations of the reference inverters. Second,
the scaling method does not have any foresight, given that it
by default assumes an equal relationship between generations
at two separate time steps. To address the above-mentioned
gaps, a linear regression based PHL estimation model, f(·), is
introduced. As stated in Eq. (2), given a linear model f(·)
whose coefficients are trained based on historical data, the
estimated plant-level PHL at time t + ta + tb, P̂ t+ta+tb

PHL , can
be computed as a weighted linear combination of reference
inverter generations at time t, Pt

ref , and two time indexes
corresponding to the forecasting time t, TIt, and execution
time t+ ta + tb, TIt+ta+tb .

P̂ t+ta+tb
PHL = f(Pt

ref , T I
t, T It+ta+tb) (2)

Note that the time index, TI , is innovatively introduced
in our study to capture the variation of the clear-sky gen-
eration across time, which is unique to each plant given its
geographical location and tracking technique being applied.
The intuition behind is that the ratio between all-sky generation
and clear-sky generation (caused by the cloud cover) should
keep relatively constant in near term as the cloud condition
won’t change drastically for a matter of seconds. Such that,
by taking the two time indexes into account, the model can
capture the trend of generation growth/drop between two time
steps. It is designed as a normalized upper envelope of PV
generation profiles collected from recent historical days, as
exampled in Fig. 2.

Fig. 2. Illustration of the time indexing.

C. Regional Estimation

Once the estimated plant-level PHLs for PV plants located
in the same balancing authority are obtained, the regional PHL
can be estimated by simply summing the plant-level values up,
as given in Eq. (3), assuming M PV plants are in the region.

P̂ t+ta+tb
PHL,regional =

M∑
m=1

P̂ t+ta+tb
PHL,m (3)

III. CASE STUDY

A. Dataset

A case study is performed applying a month-length high-
bandwidth inverter-level dataset, collected by 4 utility-scale PV
plants in California, to evaluate the performance of the pro-
posed PHL estimator. All data were cleaned and interpolated
to one-second resolution. In addition, CAISO provided plant-
level production and curtailment set points data covering the
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TABLE I. FREQUENCY WHEN THE ESTIMATION ERROR FALLS
BETWEEN +/-1% OF CAPACITY UNDER VARYING LOOK-AHEAD WINDOWS

Percentage of time ML-based approach Scaling-based approach

0 AGC step 99.30% 97.79%
1 AGC step 99.16% 97.65%
2 AGC steps 98.93% 97.32%
3 AGC steps 98.58% 97.00%

same month at 15-min interval to help identify periods with
curtailments. 25 out of the 31 days’ data are picked out after a
quality check. And we further split the 25 days’ data into the
training and testing datasets based on a 7:3 ratio. One linear
regression model is created for each PV plant for a particular
length of look-ahead window.

B. Performance Evaluation

Fig. 3 depicts the histograms of percentage errors (with
respect to the plant rated power) for four plants with 0-3 AGC
steps (0-12s) look-ahead windows, obtained by the proposed
ML-based method. It is noted that the percentage errors are
symmetrically centered around zero. For over 96% of time,
the estimation errors are below 1% of the rated power for all
four plants. Moreover, trivial performance drops are observed
as the look-ahead window grows.

Table. I compares the regional estimation performance
between the scaling-based and the ML-based methods, using
percentage of time When the estimation error falls between +/-
1% of the capacity as the performance metric. It is shown that
the ML-based approach provides a significant improvement in
regional spinning reserve estimation compared to the scaling-
based method at all three AGC intervals.

IV. CONCLUSION

A ML-based model is proposed to further enhance the
control-reference grouping based PHL estimation approach
developed at NREL. It demonstrates superior performance
compared with the original scaling-based model given real-
world data collected by CAISO and PV plant owners.
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