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a b s t r a c t 

Renewable energy (RE) generation systems are rapidly being deployed on the grid. In parallel, electrified devices 

are quickly being added to the grid, introducing additional electric loads and increased load flexibility. While 

increased deployment of RE generation contributes to decarbonization of the grid, it is inherently variable and 

unpredictable, introducing uncertainty and potential instability in the grid. One way to mitigate this problem is 

to deploy utility-scale storage. However, in many cases the deployment of utility-scale battery storage systems 

remain unfeasible due to their cost. Instead, utilizing the increased amounts of data and flexibility from electrified 

devices on the grid, advanced control can be applied to shift the demand to match RE generation, significantly 

reducing the capacity of required utility-scale battery storage. This work introduces the novel forecast-aided 

predictive control (FAPC) algorithm to optimize this load shifting in the presence of forecasts. Extending upon an 

existing coordinated control framework, the FAPC algorithm introduces a new electric vehicle charging control 

algorithm that has the capability to incorporate forecasted information in its control loop. This enables FAPC to 

better track a realistic RE generation signal in a fully correlated simulation environment. Results show that FAPC 

effectively shifts demand to track a RE generation signal under different weather and operating conditions. It is 

found that FAPC significantly reduces the required capacity of the battery storage system compared to a baseline 

control case. 
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. Introduction 

Aggressive clean energy incentives and goals have recently become
ore widespread across the United States and the world. As a result, the
enetration of renewable energy (RE) devices across the United States
nd the world continue to break records. According to the U.S. Energy
nformation Administration (EIA), 2020 was the first year RE and nu-
lear combined produced more energy than coal. That being said, the
ominant technologies in RE generation are wind and solar [1] . While
his indicates that the grid is quickly moving toward decarbonization,
t’s available generation is becoming more intermittent and unreliable.
ecause wind and solar generation both depend on stochastic weather
onditions, these RE-generated energy sources are nondispatchable. In
 system dependent on this intermittent generation, peak demand may
ccur at different times than peak generation, leading to demand not
atching generation. This is a major issue in the eyes of the power

ystem (grid), potentially leading to dangerous frequency and voltage
nstabilities [2] . 
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One solution to the generation-demand mismatch caused by intermit-
ent RE generation is to deploy utility-scale battery energy storage sys-
ems (BESS) [3] . In times when RE generation exceeds demand, excess
nergy can be stored. This energy can then be dispatched in times when
emand exceeds generation. This storage and release of energy is nearly
nstantaneous, providing highly responsive ancillary services to the grid
4] . While BESSs are able to provide ancillary services and improve dis-
atchability, current BESS technologies have several challenges. These
hallenges include, but are not limited to, an inadequate safety valida-
ion, degradation of the BESS, and most crucial, cost of BESSs [3,4] . Due
o these challenges, it may be beneficial to limit the total BESS capacity
equired for deployment. 

Another solution to the generation-demand mismatch is to shift the
emand. In addition to using RE generation sources, decarbonizing the
rid requires electrification of fuel-based energy consumers. For in-
tance, electric vehicles (EVs) and hybrid EVs accounted for 11% of
ll light-duty vehicle sales in the United States at the end of 2021 and
re expected to increase to 58% by 2040 [6,5] . In another example,
bout 40% of a building’s energy consumption comes through its heat-
ng, ventilation and air-conditioning (HVAC) system, and nearly 40% of
.S. buildings are now heated electrically [7] . As of 2021, commercial
uildings and transportation accounted for nearly 50% of total U.S. en-
arch 2023 
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Nomenclature 

General 

( ⋅) 𝑚 Subscript denoting LC-DMPC subsystem index 
( ⋅) 𝑏 Subscript denoting building subsystem 

( ⋅) 𝑐𝑠 Subscript denoting charging station subsystem 

( ⋅) 𝑔𝑎 Subscript denoting grid aggregator subsystem 

𝛼 Renewable energy generation scaling factor 
�̇� 𝐺𝐻𝐼 Global horizontal irradiance (GHI) 
𝐸 𝐵,𝐷𝐴 Energy consumed in the building load forecast 
𝐸 𝐸𝑉 ,𝐷𝐴 Energy consumed in the EVDAP 
𝐸 𝑅𝐸,𝐷𝐴 Energy consumed in the renewable energy generation 

forecast 
𝑘 LC-DMPC communication iteration 
𝑁 Total number of immediate neighboring subsystems to 

the grid aggregator subsystem 

𝑃 𝐵,𝐷𝐴 Building forecast 
𝑃 𝑏 Current building load 
𝑃 𝑅𝐸,𝐷𝐴 Renewable energy generation forecast 
𝑃 𝑟𝑒𝑓 Bulk power reference signal from the grid 
𝑃 𝑠𝑒𝑡 Power set point from the grid aggregator 
𝑇 Total time duration of simulation 
𝑡 Discrete time 

Building Subsystem 

( ⋅) 𝑑 Subscript denoting external disturbances 
( ⋅) 𝑢 Subscript denoting control inputs 
( ⋅) 𝑣 Subscript denoting upstream disturbances 
�̄� Upper bound on input vector 
�̇� 𝑠 Mass flow rate of the building HVAC system 

�̇� 𝐻𝑉 𝐴𝐶 The heat flow from the building HVAC system 

�̇� 𝑠𝑜𝑙𝑎𝑟 Solar heat flow into the building 
Λ Diagonal weight matrix for control action energy 

minimization 
Ψ Set of received sensitivity vectors across predic- 

tion horizon 
𝑄 

𝐻𝑉 𝐴𝐶 
, �̄� 𝐻𝑉 𝐴𝐶 Lower and upper bounds on the HVAC heat flow 

in the building forecast algorithm 

𝑇 
𝑏 
, �̄� 𝑏 Lower and upper building internal temperature 

comfort bounds 
𝑈 Lower bound on input vector 
𝑢 1 , ̄𝑢 1 Lower and upper bounds on the first control in- 

put building forecast algorithm 

𝑢 2 , ̄𝑢 2 Lower and upper bounds on the second control 
input building forecast algorithm 

{ 𝐴, 𝐵, 𝐶, 𝐷} System state, input, output, and disturbance ma- 
trices 

𝑑 External disturbance vector 
𝑓 𝑏 ( ⋅) Function encompassing the building thermody- 

namic model 
𝐽 Objective function 
𝑄 Diagonal weight matrix for quadratic error cost 
𝑅, 𝑟 Reference vector, set of reference vectors across 

prediction horizon 
𝑆 Weight matrix for quadratic control input cost 
𝑇 𝑏 Building internal temperature 
𝑇 𝑟𝑒𝑓 The desired building internal temperature (tem- 

perature reference) 
𝑇 𝑠𝑎 Supply air temperature from the building HVAC 

system 

𝑢 , 𝑈 Control input vector, set of control input vectors 
across prediction horizon 
i  

2 
𝑣 , 𝑉 Input disturbance from upstream neighbors, set 
of input disturbances from upstream neighbors 
across prediction horizon 

𝑥 0 Initial state vector 
𝑦 , 𝑌 Output vector, set output vectors across predic- 

tion horizon 
𝑧 , 𝑍 Output disturbance sent to downstream subsys- 

tems, set of output disturbances sent to down- 
stream subsystems across prediction horizon 

Charging Station Subsystem 

( ⋅) 𝑎 Denotes arrival index of a variable 
( ⋅) 𝑑 Denotes departure index of a variable 
�̄� Maximum charging rate for all EVs 
𝛿 Amount to shift the initial EVDAP plan to ensure 

feasibility 
Δ𝑇 Length of time step (one minute) 
 Set of EVs at the charging station 
𝜔 1 , 𝜔 2 , 𝜔 3 , 𝜔 4 , 𝜔 5 Weight on EVCS objective components 1–5 
𝜁𝐷𝐴 The real-time scaling factor for the EVDAP 
𝐸 

𝑡 
𝐸𝑉 ,𝑈 

Total energy from time 0 to 𝑡 used by specified 
EVs at EVCS 

𝑗 Individual EV index 
𝑝 EV charging rate 
𝑃 𝑡,𝑘 Aggregate charging rate at time 𝑡 and commu- 

nication iteration 𝑘 
𝑃 𝑑𝑖𝑓𝑓 Difference between 𝑃 𝑟𝑡 and 𝑃 𝐸𝑉 ,𝐷𝐴 
𝑃 𝐸𝑉 ,𝐷𝐴 EVDAP 

𝑃 
𝑡,𝑘 
𝑟𝑡 − 𝑡𝑟𝑎𝑐𝑘 Augmented reference signal from building sub- 

system at time 𝑡 and communication iteration 𝑘 
𝑃 𝑟𝑡 Aggregate day-ahead profile using the real-time 

algorithm 

𝑆𝑜𝐶 State of charge 

Acronyms 

3 𝑅 2 𝐶 3-resistor 2-capacitor 
𝐴𝐷𝑀 𝑀 alternating direction method of multipliers 
𝐴𝐻𝑈 air handling unit 
𝐵𝐸𝑀𝑆 building energy management system 

𝐵𝐸𝑆 𝑆 battery energy storage system 

𝐸𝑉 electric vehicle 
𝐸𝑉 𝐶𝑆 electric vehicle charging station 
𝐸𝑉 𝐷𝐴𝑃 electric vehicle day-ahead plan 
𝐹 𝐴𝑃 𝐶 forecast-aided predictive control 
𝐹 𝐿𝑂𝑅𝐼𝑆 FLOw Redirection and Induction in Steady state 
𝐺𝐴 grid aggregator 
𝐻𝑉 𝐴𝐶 heating, ventilating and air conditioning 
𝐿𝐶 − 𝐷𝑀𝑃 𝐶 limited communication distributed model predic- 

tive control 
𝑀𝑃 𝐶 Model Predictive Control 
𝑁𝑅𝐸𝐿 National Renewable Energy Laboratory 
𝑁𝑆𝑅𝐷𝐵 National Solar Radiation Database 
𝑅𝐸 renewable energy 

rgy consumption [8] . As devices on the grid continue to electrify, EVs
nd buildings will represent a large fraction of total energy consump-
ion on the grid. Therefore, research focused on shifting the demand of
Vs and buildings is imperative. The advanced control proposed in this
ork provides a framework to do just that. 

.1. State of the art: Single application methods 

Both EV charging and building control to achieve various goals have
een topics of investigation for some time. Due to their rapidly grow-
ng penetration and impact on the grid, many different strategies for EV
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harging control have been investigated. These strategies include but are
ot limited to load shifting [9–12] , demand-side management [13,14] ,
nd reinforcement learning [15] . Apart from EV charging control, works
uch as in [16–20] , and [21] investigate the complex problem of fore-
asting EV charging events [ 16–21 ] dive deeper into the social aspects
f EV event forecasting, the data that should be used, and their meth-
ds (probability-based models to complex machine learning methods).
owever, none discuss or quantify their direct effect on or contribution

o the power system, a research gap that this work addresses. Last, the
ork in [22] combines EV charging control and forecasting by numeri-

ally evaluating two different optimization and forecasting approaches
o minimize cost in a day-ahead electricity market. 

In buildings, model predictive control (MPC) has proven to be a suc-
essful method to control building HVAC systems. In building HVAC
ontrol, MPC can incorporate various objective functions and con-
traints such as in [ 23–26 ]. Distributed model predictive control (DMPC)
llows the possibility of parallel control of more complex building mod-
ls, multi zone buildings, and multibuilding systems. DMPC has pro-
ided significant positive impacts in addressing the complexity and scal-
bility issues of building control. Some examples of DMPC for buildings
an be seen in [27–29] . More recently, advances in learning-based and
earning-enhanced control for buildings have also been gaining traction,
s in works [30] and [31] . 

.2. State of the art: Multi-application methods 

In addition to individual building and EV charging control, studies
ave also investigated the coordinated control between buildings and
Vs to benefit the grid. In this section, we first highlight two works that
re most similar to the work introduced in this paper. Then, some other
apers exploring similar concepts are summarized. 

The work in [32] introduces a Dantzig-Wolfe decomposition algo-
ithm (DWDA) that allows a building and EV charging station to coor-
inate their power consumption via coupled constraints. The idea is to
inimize the cost of energy (COE) due to an energy tariff. This work
odels building thermodynamics and models the 𝑆𝑜𝐶 and degradation

f EV batteries. This work also uses perfect forecasts to estimate EV
vents and disturbances to the building. However, this work presents
 scheduling algorithm, thus the DWDA solves one-shot optimization
roblem across an entire control horizon. A dynamic programming type
f problem may break down with non-perfect forecasts and modelling
rror, something that an online, MPC-based algorithm (such as in this
ork) can better handle. Also, work in [32] is price-driven and does not

ocus on grid stability. 
Like the work in this paper, [33] presents a DMPC method in which

eterogeneous devices solve a local MPC problem as well as coordinate
o satisfy a global constraint. The DMPC algorithm is demonstrated us-
ng buildings, EV charging stations, and energy storage however has the
apability to include different devices. The buildings are modeled using
hermodynamics and the EV and storage are modeled by monitoring
heir respective 𝑆𝑜𝐶 ’s. Forecasts with uncertainty, a critical component
ot considered in this paper, are used to compute PV generation which is
sed to determine a global power flow constraint. However their DMPC
lgorithm requires a centralized location (a “blackboard ”) for subsys-
ems to publish and receive information, something not required in this
aper. The authors of [33] acknowledge that this “blackboard ” intro-
uces a single point of failure, a major drawback of their algorithm. 

Other works have also explored the coordinated building – EV charg-
ng problem. The work in [34] introduces a two-stage stochastic mixed
nteger program to minimize COE usage between group of buildings
nd EVs. The work in [35] introduces a two layer optimization prob-
em that uses a genetic algorithm to determine optimal EV charge rates
nd a nonlinear program to find optimal sharing of onsite RE and en-
rgy storage with respect to EV demand, reducing COE to buildings. The
ork in [36] develops a stochastic simulation-based policy improve-
ent method using Markov decision processes. The goal is to explore
3 
ow stochastic rooftop wind energy mixed with flexible onsite EV charg-
ng can maximize profit of the buildings. The work in [37] introduces a
nergy management system as a mixed integer linear program (MILP) to
oordinate between different distributed energy resources to minimize
otal COE. The work in [38] presents a two-step, transactive algorithm
here a building energy management system (BEMS) first computes a
re-schedule to maximize its profit subject to uncertain generation and
harging events. The BEMS then solves an MPC problem in real-time to
etermine optimal EV charge rates such that the pre-schedule is tracked.
he works in [39] and [40] are very similar in that they introduce a
ethod to reduce the COE to a BEMS aggregator. While [39] accounts

or the COE to each EV owner, [40] accounts for other electrical equip-
ent costs and EV owner preferences (amount of adherence to the BEMS
olicy) while tracking a pre-computed load signal. Last, the work in
41] introduces a two stage stochastic optimization model to determine
nergy bids for the day ahead (DA) and reserve markets accounting for
ncertain real-time demand and generation outcomes. 

The aforementioned works [ 34–41 ] each include unique contributions

o the building – EV coordination problem, but exhibit research gaps ad-
ressed in this paper. [ 34–37 , 41 ] solve a one-shot scheduling problem
ith full communication. In this paper, an online limited communica-

ion problem is solved. While all references [ 34–40 ] include a coordi-
ation scheme, the building to EV focus is lopsided. None model build-
ng thermodynamics, focusing more on the EV charging flexibility. This
ork models and controls all subsystems equally. Additionally, a sub-

et do not use forecasts [36,39] or do not incorporate RE generation
34,39,40] . Both the use of forecasts and RE generation are an integral
art of this paper. An exception is [41] , which computes a DA market
lan using forecasting algorithms and incorporates uncertain PV gener-
tion. However, evidence of a coordination method in [41] is unclear.
ast, these works only concern demand shifting to minimize COE. This
aper concerns shifting demand to match RE generation to increase grid
eliability. 

.3. System overview 

Fig. 1 displays the overall framework introduced in this paper. The
APC algorithm (black dashed block at the top of Fig. 1 ) includes three
ubsystems: EV charging station (EVCS), building, and grid aggrega-
or. Each subsystem includes a local controller (orange, blue, and red
locks, respectively) that uses real-time data (charging events, build-
ng occupancy, RE generation, and weather blocks) to shift demand.
he EV charging controller incorporates information from the Forecast
omponent (bottom left block in Fig. 1 ). The Forecast Component uses

orecasted EV charging events (orange circle), building occupancy (blue
ircle), and RE generation (red circle) to compute an optimal trajectory
or the EV charging controller to follow. Once demand is shifted by the
APC algorithm, the remaining tracking error is sent to the Storage Com-
onent (bottom right block in Fig. 1 ). The Storage Component decides
he amount of power to inject or withdraw from the system to enable
erfect tracking, all while monitoring the BESS 𝑆𝑜𝐶. 

.4. Contributions 

To motivate the work in this paper, we highlight the Network Lasso
DMM - limited communication - DMPC (NALD) algorithm introduced

n [42] . The NALD algorithm allows the coordination between locally
ontrolled subsystems, namely a building and a cluster of charging
tations, to track a reference signal from the grid. The success of the
ALD algorithm for a specific scenario was proven in [42] and was up-
ated in [43] to handle more general scenarios using arbitrary reference
ignals. 

In this work, we introduce the forecast-aided predictive control
FAPC) algorithm (dashed black box in Fig. 1 ). FAPC is an extension of
he NALD algorithm discussed in [42] and [43] . Specific contributions
f this work include: 
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Fig. 1. Flowchart describing the novel framework implemented in this paper. This consists of a Forecast Component (bottom-left block), the novel FAPC algorithm 

(top block), and the Storage Component (bottom-right block). The Forecast Component is first computed offline, then used in the novel, real-time FAPC algorithm. 

The Storage Component then determines the amount of storage power the utility-scale BESS dispatches into the system to perfectly track the RE generation. 
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• Updated EV charging control algorithm 

This paper replaces the Network Lasso - ADMM charging station con-
trol algorithm in the NALD algorithm with a simplified centralized
control algorithm. The new EV charging control algorithm is less
complex, more realistically represents a charging station connected
to a building, and has the ability to use forecasts (see orange EV
Charging Controller block in Fig. 1 ). 

• Forecast component 

A benefit of the new charging station control algorithm is that it has
the ability to utilize a day-ahead charging plan (Forecast Component
in Fig. 1 ), built from neighboring subsystem forecasts, to improve the
load shifting abilities of both the EVCS and the system as a whole.
The Forecast Component uses perfect forecasts, creating an upper
bound to the optimal EV charging plan. 

• Tracking realistic reference signal 

This paper evaluates the performance of FAPC by tracking a realistic

RE generation signal as opposed to an arbitrary reference signal like
in [42] and [43] . The RE generation signal is constructed from the
same weather data that is used as disturbances to subsystems in the
system (a fully correlated simulation environment). This enables the
opportunity to analyze FAPC performance in a realistic scenario with
intermittent generation, a challenging but realistic phenomenon. 

• Robustness analyses 

This paper analyzes the robustness of FAPC to different weather and

RE generation conditions , different occupancy schedules , and different
day-ahead plan accuracy . 
4 
• Storage component 

In this paper, it is assumed that perfect tracking of the RE generation
will ensure grid stability (demand equals generation). For this to be
possible, we include a utility-scale BESS to account for the FAPC
tracking error. The performance of FAPC is quantified as the size of
the required BESS needed such that the demand perfectly tracks the
RE generation. The amount of BESS power to inject or remove, in
addition to the state ( 𝑆𝑜𝐶) of the BESS, is determined in the Storage
Component (see Fig. 1 ). 

The remainder of this report is organized as follows: Section 2 sum-
arizes the building and grid aggregator (GA) subsystems, discusses the
ew EV charging controller, and introduces the forecasting and storage
omponents. The simulation environment, data correlation, and simu-
ation use case used to generate results are then discussed in Section 3 .
he tracking performance of FAPC is analyzed in Section 4 , followed by
he robustness analysis and forecast importance in Section 5 . Finally,
he paper is summarized in Section 6 . 

. Forecast-aided predictive control 

As mentioned in Section 1.4 , FAPC is an extension of the NALD
lgorithm [42,43] . Because the grid aggregator and building subsys-
ems remain unchanged from [42] and [43] , these subsystems are first
riefly introduced. Then, the new EV charging controller is described in
etail. 
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Fig. 2. Block diagram of the GA subsystem. The thick black line represents a mux operation where multiple vector signals are combined into a larger vector. 
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.1. Building and grid aggregator subsystems 

In limited communication-DMPC (LC-DMPC), an upstream subsys-
em’s disturbance 𝑍 is sent to a downstream subsystem. That down-
tream subsystem then returns a value indicating the effect of the up-
tream subsystem’s disturbance on its local objective, the sensitivity 𝛾.
eceived values 𝑍 and 𝛾 are injected into each subsystem’s local objec-

ive function as the vectors 𝑉 and Ψ, respectively. Then, each subsystem
 solves its own local optimization problem, which can be stated gen-
rally as 

𝑖𝑛 𝑈 𝑚 𝐽 𝑚 = 𝑒 𝑇 𝑚 𝑄𝑒 𝑚 + 𝑈 

𝑇 
𝑚 𝑆𝑈 𝑚 + Ψ𝑇 𝑚 𝑍 𝑚 

s.t. 𝑌 𝑚 = 𝐹 𝑦,𝑚 𝑥 0 ,𝑚 + 𝑀 𝑦,𝑚 𝑈 𝑚 + 𝑁 𝑦,𝑚 𝑉 𝑚 + 𝑃 𝑦,𝑚 𝐷 𝑚 

𝑍 𝑚 = 𝐹 𝑧,𝑚 𝑥 0 ,𝑚 + 𝑀 𝑧,𝑚 𝑈 𝑚 + 𝑁 𝑧,𝑚 𝑉 𝑚 + 𝑃 𝑧,𝑚 𝐷 𝑚 

𝑈 

𝑚 
≤ 𝑈 𝑚 ≤ �̄� 𝑚 

(1) 

here 𝑒 = 𝑟 − 𝑦 is the error vector, 𝑟 is the reference signal vector (typi-
ally a function of the incoming disturbance 𝑉 ) and 𝑦 is the subsystem’s
utput vector. Here, 𝐽 is the local objective function where 𝑈 is the
ontrollable input vector, 𝑄 and 𝑆 are diagonal weight matrices corre-
ponding to each penalty term in (1) (actual values shown in Table 4 in
he Appendix), and 𝐷 is the external disturbance matrix. Note that in
his work, 𝑆 is a matrix of zeros, and thus the second term is elim-
nated from (1) . 𝐹 , 𝑀 , 𝑁 , and 𝑃 are local model prediction matrices,
nd subscripts ( ⋅) 𝑢 , ( ⋅) 𝑣 , and ( ⋅) 𝑑 denote matrices corresponding to control
nputs, upstream disturbances, and external disturbances, respectively.
ost notable from (1) is the penalty term Ψ𝑇 𝑚 𝑍 𝑚 . This penalty term helps

etermine the leeway in the squared error term 𝑒 𝑇 𝑚 𝑄𝑒 𝑚 , eventually pro-
oting convergence of the LC-DMPC algorithm to the centralized solu-

ion. To promote this convergence, subsystems communicate for mul-
iple communication iterations between time steps. Note that time step
nd communication iteration superscripts are omitted in (1) for simplic-
ty. Since this is an MPC-based algorithm, each variable represents that
ignal stacked across a vector with a length corresponding to the MPC
orizon. 

The next two subsections briefly describe the GA and building sub-
ystems and how their individual physics-oriented models, control-
ased models, and objectives fit into the general LC-DMPC structure
n (1) . The authors refer the reader to reference [44] for details regard-
ng LC-DMPC theory and stability analysis and to reference [45] for an
pplication of LC-DMPC to distributed building control. 

.1.1. Grid aggregator 

Fig. 2 shows a block diagram of the GA subsystem. This subsystem
s a static system and thus assumes instantaneous dynamics with no
hysical model [45] . For the GA subsystem, (1) is implemented in the
bjective function block in Fig. 2 . In general, the error vector 𝑒 for the
A subsystem contains 𝑁 + 1 components 

 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 
𝑃 𝑟𝑒𝑓 − 

∑𝑁 
𝑚 =1 𝑃 𝑠𝑒𝑡,𝑚 

𝑃 𝑠𝑒𝑡,𝑚 − 𝑃 𝑚 
⋮ 

𝑃 𝑠𝑒𝑡,𝑁 − 𝑃 𝑁 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
(2)
5 
here 𝑃 𝑠𝑒𝑡,𝑚 is the power set point sent to a downstream subsystem 𝑚 ,
 𝑚 is the power output of subsystem 𝑚 , and 𝑁 is the total number of
ubsystems directly connected to the GA. Conceptually, the GA subsys-
em works to distribute the bulk reference signal 𝑃 𝑟𝑒𝑓 to each of its
eighbors while considering their individual needs. For results in this
ork, the building is the only downstream subsystem, and thus 𝑁 = 1 ,
𝑃 𝑠𝑒𝑡,𝑚 = 𝑃 𝑠𝑒𝑡,𝑏 , and 𝑃 𝑚 = 𝑃 𝑏 where 𝑃 𝑏 is the power consumption of the

uilding. 

.1.2. Building 

The building subsystem can be represented by the block diagram in
ig. 3 . Like the GA subsystem, its local controller (i.e., MPC controller
ection in Fig. 3 ) also contains a two-component error vector 𝑒 as de-
icted by the mux component in Fig. 3 : 

 = 

[ 
𝑃 𝑠𝑒𝑡,𝑏 − 𝑃 𝑏 
𝑇 𝑟𝑒𝑓 − 𝑇 𝑏 

] 
(3)

here 𝑃 𝑠𝑒𝑡,𝑏 is the power set point received from the GA subsystem, 𝑃 𝑏 
s the power consumption of the building, 𝑇 𝑟𝑒𝑓 is the desired internal
uilding temperature (see Table 4 in the Appendix), and 𝑇 𝑏 is the actual
nternal building temperature. Note that in addition to tracking 𝑇 𝑟𝑒𝑓 ,
here are hard constraints on 𝑇 𝑏 ( 𝑇 𝑏 and �̄� 𝑏 ), referred to as the comfort
ounds. 

To model the bulk building dynamics, a one-zone, 3-resistor 2-
apacitor (3R2C) equivalent circuit model as shown in the plant sec-
ion of Fig. 3 is used. This is a linear discrete-time dynamical model
here the states are the internal and wall temperatures of the building,
 𝑏 and 𝑇 𝑒 , the outputs are 𝑇 𝑏 and 𝑃 𝑏 , and the input is the cooling load
rom the HVAC system in the building 𝑄 𝐻𝑉 𝐴𝐶 . 
𝑄 𝐻𝑉 𝐴𝐶 is a function of the mass flow rate �̇� and the supply air tem-

erature 𝑇 𝑠𝑎 (i.e., 𝑄 𝐻𝑉 𝐴𝐶 = �̇� ( 𝑇 𝑏 − 𝑇 𝑠𝑎 ) ). �̇� and 𝑇 𝑠𝑎 serve as inputs to the
uilding’s air handling unit (AHU). These inputs are additionally used in
he AHU Model block in the plant section of Fig. 3 to estimate the power
onsumption of the building. Using equations and parameters derived
n [45] along with the 3R2C model, the three inputs 𝑄 𝐻𝑉 𝐴𝐶 , �̇� , and 𝑇 𝑠𝑎 
re used to determine the building subsystem outputs 𝑇 𝑏 and 𝑃 𝑏 . 

To make predictions across the MPC horizon, a more simple linear
arametric model is identified from the 3R2C model. This is referred to
s the control model and is located directly below the Objective Function
lock in the MPC controller section of Fig. 3 . Here, the only state is the
nternal temperature. The power dynamics are not considered. Because
he computation for 𝑄 𝐻𝑉 𝐴𝐶 is bilinear, the control model is linearized
bout the current building temperature 𝑇 𝑏 at each discrete time step.
or more details on the 3R2C model and linear parametric model, the
eader is referred to [45] . 

.2. Electric vehicle charging station subsystem 

In this section, the new EV charging control algorithm is introduced.
he novelty of this algorithm is in its objective function, where an EV
ay-ahead plan (EVDAP) is tracked in real time. The computation of this
lan is discussed in more detail in Section 2.3 . 
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Fig. 3. Control system block diagram of the building subsystem. 

Fig. 4. Block diagram of the updated EVCS controller. 
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Fig. 4 shows the block diagram for the EVCS subsystem. First, three
ignals (past aggregate EV load, forecasted aggregate EV load, and
ower reference signal) are passed to the EV Objective Function block.
he EV Objective Function block serves as the controller for the EVCS
ubsystem and computes the optimal aggregate EV load at time 𝑡 and
ommunication iteration 𝑘 , 𝑃 𝑡,𝑘 , by solving the optimization problem 

in 
𝑃 𝑡,𝑘 

𝑓 
(
𝑃 𝑡,𝑘 

)
= 𝜔 1 

(
𝑃 
𝑡,𝑘 

rt − track 
− 𝑃 𝑡,𝑘 

)2 

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Comp onent 1 

+ 𝜔 2 
(
𝑃 𝑡 −1 − 𝑃 𝑡,𝑘 

)2 
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Comp onent 2 

+ 𝜔 3 

(
𝑃 𝑡 +1 

EV , DA 
− 𝑃 𝑡,𝑘 

)2 

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Comp onent 3 

+ 𝜔 4 max 
{ 

𝑃 1∶ 𝑡 
EV 
, 𝑃 𝑡,𝑘 , 𝑃 𝑡 +1∶ 𝑇 

EV , DA 

} 

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Comp onent 4 

+ 𝜔 5 Ψ𝑡,𝑘 𝑃 𝑡,𝑘 
⏟⏞⏞⏞⏟⏞⏞⏞⏟
Comp onent 5 

s. t. 𝑃 𝑡,𝑘 
lb 

≤ 𝑃 𝑡,𝑘 ≤ 𝑃 
𝑡,𝑘 

ub 
(4) 

ote that, unlike in (1) , the time step and communication iteration su-
erscripts are included in (4) for ease of understanding the different
ignals. 

The objective function in (4) has five different components: 1) the
ower reference tracking component, 2) the previous time step’s ag-
regate power tracking component, 3) the EVDAP tracking component,
) the peak load minimization component, and 5) the sensitivity com-
onent. Component 1 tracks an augmented reference signal 𝑃 𝑟𝑡 − 𝑡𝑟𝑎𝑐𝑘 =
 𝑠𝑒𝑡,𝑏 − 𝑍 𝑏 . Component 2 serves as a smoothing parameter, limiting the
hange in charging rate from one time step to the next. The power signal
elayed by one time step is fed back to the controller through the time
elay block in Fig. 4 . Component 3 tracks the next time step value in
he EVDAP 𝑃 𝐸𝑉 ,𝐷𝐴 . Loosely inspired by work in [46] , the previous ( 𝑡 − 1 )
nd next ( 𝑡 + 1 ) time step tracking in Components 2 and 3, in a sense,
6 
ull and guide the trajectory of (4) through time. Component 4 imposes
 penalty on the peak load of the aggregate EV charge load. This max-
mum peak load includes either a past observed peak, 𝑃 1∶ 𝑡 , the current
onsumption, or a future forecasted peak, 𝑃 𝑡 +1∶ 𝑇 

𝐸𝑉 ,𝐷𝐴 
. Last, Component 5 is

he sensitivity penalty. Components 1–5 each have their own associated
eight 𝜔 , which can be arbitrarily selected based on user preferences.
e note that different choices of 𝜔 will result in different outcomes of

4) due to the conflicting nature of each component. Therefore, care-
ul choices of 𝜔 will dictate the user’s desired balance between compo-
ents. The weight values used in this work are shown in Table 4 in the
ppendix. 

While (4) acts as the controller in Fig. 4 for the EVCS subsystem, it
nly computes the optimal aggregate charging load for the EVCS at time
 (and communication iteration 𝑘 ). To compute the optimal individual

harging rates of each EV 𝑝 𝑡 
𝑗 
, the relation in (5) is applied to each EV

in the set of EVs currently plugged in  . Here, superscripts ( ⋅) 𝑎 and
 ⋅) 𝑑 represent arrival and departure indices, respectively. 𝑇 represents a
xed time ( 𝑇 is the simulation length, 𝑇 𝑎 is the arrival time, and 𝑇 𝑑 is
he departure time), 𝑆𝑜𝐶 is the state of charge, Δ𝑇 is the discrete time
tep, and �̄� is the maximum charge rate. 

 

𝑡 
𝑗 ( 𝑓 ) = 

[ 
1 
Δ𝑇 

( 𝑆 𝑜𝐶 𝑑 𝑗 − 𝑆 𝑜𝐶 𝑎 𝑗 ) − ( 𝑇 𝑑 𝑗 − 𝑡 )( ̄𝑝 𝑗 − 𝑓 ) 
] �̄� 𝑗 
0 
∀𝑗 ∈  (5)

Equation (5) ensures that each EV is fully charged upon its departure
ime while maintaining flexibility for each EV in the future by use of a
ex parameter, 𝑓 . In (5) , the individual charging rates are a function of
he flex parameter where a large 𝑓 represents more flexibility and vice
ersa. The first term in (5) is the total power each EV must consume by
ts departure time. The second term represents the deviation from this
otal power as a function of the flex parameter (i.e., the optimal charging
ate between 0 and �̄� 𝑗 ). Since 𝑓 is the only parameter in (5) not fixed at
ime 𝑡 , as 𝑓 increases, the second term decreases. If the second term is
maller, then the charging rate to apply, 𝑝 𝑡 

𝑗 
( 𝑓 ) , is larger and vice versa.
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herefore, 𝑝 𝑡 
𝑗 
( 𝑓 ) monotonically increases as a function of 𝑓 , and thus

imple bisection is used to determine the optimal flex parameter 𝑓 𝑜𝑝𝑡 as
hown in Algorithm 1 in the Appendix. Note that 𝑓 𝑜𝑝𝑡 is the same across
ll EVs and thus equalizes the amount of flexibility among all EVs. After
he individual charging rates are determined ( “Eq. (5) ” in Fig. 4 ), the
𝑜𝐶 of each EV battery is updated in the Plant block. Note that the sum
f each charging rate 𝑝 𝑗 must equal the “aggregate EV power ” signal
hown in Fig. 4 ) determined by (4) , as this serves as the “EVCS power ”
utput of the EVCS subsystem. 

In order to coordinate with the building and GA subsystems, we in-
orporate the EVCS subsystem into the LC-DMPC framework. Instead of
aving the form of (1) , the combination of (4) and (5) is used as the lo-
al objective. However, the same information is communicated between
he EVCS subsystem and building subsystem. Specifically, 𝑃 𝑡,𝑘 

𝑟𝑡 − 𝑡𝑟𝑎𝑐𝑘 ≡ 𝑉 ,
𝑡,𝑘 ≡ Ψ, 𝑃 𝑡,𝑘 ≡ 𝑍, and the sensitivity sent to the building subsystem is
omputed using 

= 

( 𝑓 ( 𝑃 𝑡 −1 ,𝑘 ) − 𝑓 ( 𝑃 𝑡,𝑘 )) 
( 𝑃 𝑡 −1 ,𝑘 
𝑟𝑡 − 𝑡𝑟𝑎𝑐𝑘 − 𝑃 

𝑡,𝑘 
𝑟𝑡 − 𝑡𝑟𝑎𝑐𝑘 ) 

= 

Δ𝑓 
Δ𝑃 𝑟𝑡 − 𝑡𝑟𝑎𝑐𝑘 

≡
𝜕𝐽 

𝜕𝑉 
(6)

.3. Forecast component 

An important contribution of this work is the Forecast Component.
hile the building and GA subsystem control actions are determined

hrough receding horizon control (i.e. MPC) with respect to forecasted

isturbances , EV charging controllers in [42] and [43] solve for a real-
ime control action with respect to current disturbances only. However,
his new EV charging control algorithm uses an offline-computed EVDAP
s a guide. This enables the real-time control policy to be informed of
uture disturbances. A similar strategy for EV charging control of an
ntire province was shown in [47] and is an inspiration for this EVDAP.

This EVDAP 𝑃 𝐸𝑉 ,𝐷𝐴 is the “optimal ” charging plan for a given day
omputed offline before the real-time simulation and is represented by
he Forecast Component on the bottom left of Fig. 1 . It should be noted
hat perfect knowledge of the charging events for a succeeding day is as-
umed, providing an upper bound to the optimality of the EVDAP. This
rovides a metric to compare the stochastic and uncertain nature of EV
harging event forecasting, which will be investigated in future work.
owever, the impact of imperfect forecasts is investigated in Section 5.2 .
 note on terminology: we refer to the EVDAP as a plan and not a fore-

ast because the EVDAP is not a forecast itself. However, the specific
harging events, neighboring building load, and RE generation are in-
eed forecasts and are used to shape the EVDAP. 

There is a two-step process to compute the EVDAP profile 𝑃 𝐸𝑉 ,𝐷𝐴 .
n the first step, an initial EVDAP is computed using a building load
orecast 𝑃 𝐵,𝐷𝐴 , a RE generation forecast 𝑃 𝑅𝐸,𝐷𝐴 , and a forecasted list of
harging events. These perfectly known charging events include arrival
𝑜𝐶 and time ( 𝑆𝑜𝐶 𝑎 and 𝑇 𝑎 ) as well as departure 𝑆𝑜𝐶 and time ( 𝑆𝑜𝐶 𝑑 

nd 𝑇 𝑑 ) for all EVs 𝑗 ∈  . This initial EVDAP is computed by solving 

min 
 𝐸𝑉 ,𝐷𝐴 , 𝐿 max 

𝑡 ∈ 
{ 𝐿 

𝑡 } + 

1 
𝑇 

𝑇 ∑
𝑡 =1 

(
𝐿 

𝑡 − 𝐿 

𝑡 −1 )2 (7a) 

.𝑡 

𝐿 

𝑡 = 𝑃 𝑡 
𝐸𝑉 ,𝐷𝐴 

+ 𝑃 𝑡 
𝐵,𝐷𝐴 

− 𝑃 𝑡 
𝑅𝐸,𝐷𝐴 

, ∀𝑡 ∈  (7b) 

 

𝑡 
𝐸𝑉 ,𝐷𝐴 

= (1∕Δ𝑇 )( 𝐸 

𝑡 
𝐸𝑉 ,𝑈 

− 𝐸 

𝑡 −1 
𝐸𝑉 ,𝑈 

) , ∀𝑡 ∈  (7c) 

 

𝑡 
𝐸𝑉 ,𝑈 

= 

𝑡 ∑
𝑗=1 

 𝑡 ∑
𝑖 =1 

Δ𝑇 𝑝 
𝑗 
𝑖 
, ∀𝑡 ∈  (7d) 

 

𝑡,𝑑 
𝑖 ∑
𝑖 =1 

( 𝑆 𝑜𝐶 𝑑 𝑖 − 𝑆 𝑜𝐶 𝑎 𝑖 ) ≤ 𝐸 

𝑡 
𝐸𝑉 ,𝑈 

≤ 

 
𝑡,𝑎 
𝑖 ∑
𝑖 =1 

( 𝑆 𝑜𝐶 𝑑 𝑖 − 𝑆 𝑜𝐶 𝑎 𝑖 ) , ∀𝑡 ∈  (7e) 
7 
 . 0 ≤ 𝑃 𝑡 
𝐸𝑉 ,𝐷𝐴 

≤ 

 𝑡 ∑
𝑖 =1 

≤ �̄� 𝑖 , ∀𝑡 ∈  (7f) 

here 𝐿 

𝑡 is the net load at time 𝑡 , 𝑃 𝑡 
𝐸𝑉 ,𝐷𝐴 

is the aggregate EV load at

ime 𝑡 , 𝐸 

𝑡 
𝐸𝑉 ,𝑈 

is the total energy consumed by the EVCS by time 𝑡 ,  𝑡,𝑎 

s the set of EVs that arrived at or before time 𝑡 ,  𝑡,𝑑 is the set of all EVs
hat have arrived and then departed by time 𝑡 , and  𝑡 is the set of all
Vs that can be charged at time 𝑡 . To clarify, constraint (7e) constrains
he total energy consumed by the EV’s currently plugged in from time
 to 𝑡 . The bounds of this constraint represent the energy usage by all
Vs that have completed their charging cycle by time 𝑡 and the energy
sage by all EVs that the EVCS has seen by time 𝑡 . Last, 𝑇 is the total
imulation length (1440 minutes), and  = {1 , 2 , … , 𝑇 } . 

For the second step of the process, the reader is referred to
lgorithm 2 in the Appendix, but a brief explanation is provided here.
sing the same forecasted charging events as in the first step, another
lan 𝑃 𝑟𝑡 is computed using (4) and (5) where 𝜔 1 = 𝜔 5 = 0 and 𝑃 𝐸𝑉 ,𝐷𝐴 
omputed in (7) is used in Component 3 of (4) . This step ensures in-
ividual charging event constraints are satisfied, resulting in a feasible
VDAP. 𝑃 𝑟𝑡 and 𝑃 𝐸𝑉 ,𝐷𝐴 are then compared where any mismatch be-
ween them at a time 𝑡 is reflected in the variable 𝑃 𝑡 

𝑑𝑖𝑓𝑓 
. A series of

terative steps are then taken to find the vector 𝛿 that most effectively
hifts the load forward in time until the EVDAP is both feasible and ad-
quately smooth. This vector 𝛿 is then added to the initial EVDAP, or
 𝐸𝑉 ,𝐷𝐴 = 𝑃 𝐸𝑉 ,𝐷𝐴 + 𝛿, to obtain an optimal and feasible EVDAP. 

From constraint (7b) , it can be seen that the net load 𝐿 is composed
f a neighboring building load forecast 𝑃 𝐵,𝐷𝐴 as well as a RE generation
ignal forecast 𝑃 𝑅𝐸,𝐷𝐴 . To compute an accurate EVDAP, these profiles
ust be estimated. The following sections highlight the strategies used

o do so. 

.3.1. Building load forecast 

It is possible to obtain a building load forecast using a greedy build-
ng controller subject to forecasted disturbances. These forecasted dis-
urbances (outdoor air temperature, solar irradiation, and building oc-
upancy) are assumed to be perfectly known in the generation of this
orecast and, like the EVDAP, provide an upper bound on the building
orecast confidence. Investigating the stochastic nature of these distur-
ances is a topic of future work. This greedy controller tracks only the
eference temperature (i.e., the error vector is 𝑒 = 

[
𝑇 𝑟𝑒𝑓 − 𝑇 𝑏 

]
). As com-

ared to (1) , the sensitivity component and horizon length are removed
rom the problem. A resulting simple, real-time optimization problem
ubject to the building dynamics 𝑓 𝑏 ( ⋅) and control input constraints re-
ains. This problem is equivalent to removing the control model, the
UH model, the MPC controller section, and the building power feed-
ack loop in Fig. 3 . Running this simplified optimization problem across
n entire day using forecasted external disturbances (weather data),
 forecasted building load can be obtained. This greedy controller is
hown in (8) : 

in 𝑢 𝑡 1 ,𝑢 𝑡 2 {( 𝑇 𝑟𝑒𝑓 − 𝑇 𝑡 
𝑏 
) 2 + ( 𝑈 

𝑡 − 𝑈 

𝑡 −1 ) 𝑇 Λ( 𝑈 

𝑡 − 𝑈 

𝑡 −1 )} 
s.t. 𝑇 𝑡 

𝑏 
= 𝑓 𝑏 ( 𝑢 𝑡 1 , 𝑢 

𝑡 
2 , 𝑑 

𝑡 , 𝑇 𝑡 −1 
𝑏 

) 
𝑢 1 ≤ 𝑢 𝑡 1 ≤ �̄� 1 
𝑢 2 ≤ 𝑢 𝑡 2 ≤ �̄� 2 
𝑄 

𝐻𝑉 𝐴𝐶 
≤ 𝑢 𝑡 1 ( 𝑢 

𝑡 
2 − 𝑇 𝑡 −1 

𝑏 
) ≤ �̄� 𝐻𝑉 𝐴𝐶 

(8) 

here 𝑈 = 

[
𝑢 1 𝑢 2 

]𝑇 
is the control input vector, Λ = 𝑑𝑖𝑎𝑔( 𝜆) holds the

enalties on changing control actions, and 𝑑 is the disturbance vector. 𝑢 1 
nd 𝑢 2 are the inputs to the model and correspond to the mass flow rate
̇  𝑠 and supply air temperature 𝑇 𝑠𝑎 , respectively. A 

̄( ⋅) or ( ⋅) represents
n upper or lower bound on a variable, respectively. The values used
or the constraint parameters and weights are shown in Table 4 in the
ppendix. An example of a building load forecast as a result of running

8) for a day is displayed in Fig. 5 . 
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Fig. 5. Building load forecast output from 

(8) based on forecasted building occupancy 

profile and forecasted disturbances. 

Fig. 6. Block diagram of the simple storage controller used to compute the amount of storage power dispatched to the system at each time step. 
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.3.2. RE generation forecast 

Assuming a weather forecast is available, the solar and wind genera-
ion profiles for the succeeding day can be estimated. Like in the build-
ng forecast, the weather data to generate the RE generation forecast
s assumed perfectly known to provide an upper bound on the forecast
onfidence. Including uncertainties associated with weather forecasts
ill be less confident, can be compared to the perfect forecast, and are
 topic of future work. With a forecast of the global horizontal irradi-
nce (GHI) profile �̇� 𝐺𝐻𝐼 at a certain location and date, a solar power
eneration profile can be estimated using the simple equation 

 𝑠𝑜𝑙𝑎𝑟 = �̇� 𝐺𝐻𝐼 ∗ 𝐴 ∗ 𝜂 (9)

here 𝐴 is the area that the solar panels occupy and 𝜂 is the efficiency of
he solar panels (see Table 4 in the Appendix). Note that it is assumed
hat the solar panels are pointed directly into the sun throughout the
ay. 

Additionally, with a forecast of the wind speed profile at the same lo-
ation and date, the NREL wind farm simulation tool FLOw Redirection
nd Induction in Steady state (FLORIS) [50] can be used to estimate the
ind power generation. Note that FLORIS can simulate a single turbine
r an entire wind farm and also easily models the turbine’s cut-in wind
peed, rated wind speed, and cut-out wind speed. Because the system in
his work is small, only one turbine is considered. Because of this, the use
f an entire wind farm analysis tool may be more than what is needed,
ut future work for larger systems will take advantage of FLORIS’ mul-
iturbine simulation capabilities. Like the solar generation, we assume
he turbine is pointed directly into the wind for all time. 

.4. Storage component 

Figure 6 shows the simple storage component, seen as the green
lock in Fig. 1 . The storage component is not integrated into the FAPC
lgorithm (i.e., it is not a subsystem in the FAPC algorithm). The pur-
ose of the storage component is to estimate the size of the BESS needed
o deploy in order to perfectly track the RE generation signal. 
8 
Figure 6 shows the simulation model of the BESS used to calculate
he battery charge and discharge rates at each time 𝑡 . First, the differ-
nce between the total demand and RE generation is computed and used
s the input to the battery plant. This value represents the amount of
harging or discharging requested from the BESS at time 𝑡 . This charge
r discharge rate is then saturated depending on the physical limits of
he BESS (i.e., the maximum charge or discharge rate and current 𝑆𝑜𝐶).
epending on the initial battery 𝑆𝑜𝐶 as well as the amount of charging
r discharging applied at time 𝑡 , the 𝑆𝑜𝐶 of the battery is then updated
t each time step in the “Utility Scale Battery ” plant box. The output
f the battery system is the charge or discharge rate and represents the
mount of power dispatched by the battery to the system at time 𝑡 . 

. Simulation environment 

Because each subsystem in FAPC is affected by external disturbance
ata and causal events, it is important to ensure all factors are correlated
o draw legitimate conclusions from results. In this simulation, there
re two major sources of raw data: 1) weather data (wind speed, solar
rradiation, and outdoor air temperature), and 2) building occupancy
ata (see the blue blocks in Fig. 7 ). These data are either used directly
n different models or used to generate other data that are ultimately
sed for different parts of FAPC. Fig. 7 displays how the raw data are
tilized in different components of FAPC. In the next sections, different
spects of the correlated simulation environment are described. 

.1. Building occupancy and charging events 

In this work, it is assumed that the EVCS is connected to a commer-
ial building where the EV owners are the occupants in the building. As
entioned in Section 3 , raw data consist of building occupancy profiles

or a given day. Fig. 8 shows the building occupancy count at each hour
s the black line in the top subplot. While the specific arrival and depar-
ure of each occupant is unknown, these data provide a rough estimate
f the EV charging events. 
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Fig. 7. Data correlation schematic. 

Fig. 8. Top : Building occupancy profile from 

building occupancy data (black) and building 

occupancy from selected EV charging (red). 

Bottom : Baseline control EV load profile based 

on selected EV charging event data. (For inter- 

pretation of the references to colour in this fig- 

ure legend, the reader is referred to the web 

version of this article.) 
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Assuming each occupant is driving an EV to work, EV events are ran-
omly chosen (from a large pool of precomputed charging events) such
hat they align with the building occupancy schedule. This large pool of
recomputed events are generated by the EVIpro simulation platform
48] . Fig. 8 shows the occupancy profile as defined by the charging
vents by assuming the building occupancy increases by 1 unit at an
rrival time and decreases by 1 unit at a departure time. 

Last, the chosen set of charging events is used to obtain a baseline
ontrol load profile. This represents the aggregate EV charging load pro-
le when each EV applies its maximum charging rate �̄� upon arriving at
he EVCS. This profile is shown in the bottom of Fig. 8 . 

.2. Disturbances and generation 

As discussed in Section 2.3 , RE generation signal is made up of both
olar and wind generation. Using the National Solar Radiation Database
NSRDB) [49] , solar irradiation and wind data is extracted near where
he building is located (near Denver, Colorado). Solar and wind gener-
tion profiles are then computed using (9) and the FLORIS tool [50] ,
espectively. Note that the aggregate RE generation profile is scaled to
atch the size of the system. 
9 
Fig. 9 shows the solar irradiance, solar generation, wind speed, and
ind generation profiles for the same date and time. Note that �̇� 𝐺𝐻𝐼 is
lso used as a disturbance in the building simulation and control models.

.3. Simulation setup 

Before running different cases and analyzing results, the specific sce-
ario considered for the results is introduced. Using the dates of July 8,
1, and 28, 2019, from 3:50 to 23:50, the simulation environment de-
cribed in Sections 3.1 and 3.2 is set up. By using this time frame, we
nclude all charging events and times when occupants are in the build-
ng. With the specified date and time determined, load forecasts 𝑃 𝐵,𝐷𝐴 
nd 𝑃 𝐸𝑉 ,𝐷𝐴 are computed, and the RE generation signal 𝑃 𝑅𝐸,𝐷𝐴 is scaled
o an appropriate size for the specific scenario. To do so, the total fore-
asted energy demanded from the building ( 𝐸 𝐵,𝐷𝐴 ) and EVCS ( 𝐸 𝐸𝑉 ,𝐷𝐴 )
s well as the total forecasted energy generated from the solar and wind
 𝐸 𝑅𝐸,𝐷𝐴 ) are computed by taking the integral of their corresponding
oad forecasts 𝑃 𝐵,𝐷𝐴 , 𝑃 𝐸𝑉 ,𝐷𝐴 , and 𝑃 𝑅𝐸,𝐷𝐴 . A scaling factor 𝛼 to appro-
riately size 𝑃 𝑅𝐸,𝐷𝐴 , or 𝑃 𝑅𝐸,𝐷𝐴 ← 𝛼 ∗ 𝑃 𝑅𝐸,𝐷𝐴 , is then computed using 

= ( 𝐸 𝐵,𝐷𝐴 + 𝐸 𝐸𝑉 ,𝐷𝐴 )∕ 𝐸 𝑅𝐸,𝐷𝐴 (10)
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Fig. 9. Top Left : Solar irradiance profile on July 

11, 2019, from the NSRDB [49] . Top Right : Solar 

power generation profile corresponding to the irra- 

diance profile and Eq. (9) . Bottom Left : Wind speed 

data on July 11, 2019, from the NSRDB [49] . Bot- 

tom Right : Wind power data corresponding to the 

wind speed data on the right. The profile is gener- 

ated using FLORIS. 

Table 1 

Summary of the five different control scenarios analyzed in the control sce- 

nario comparison. 

Control 

Scenario 

Baseline 

Building 

Control 

Baseline 

EVCS 

Control 

Optimal 

Building 

Control 

Optimal 

EVCS 

Control 

Coordination 

1 X X - - - 

2 X - - X - 

3 - X X - - 

4 - - X X - 

5 - - X X X 
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. Control scenario comparison 

In this section, the tracking performance of the FAPC algorithm is
nalyzed. To do so, we apply FAPC to the simulation environment de-
cribed in Section 3 for July 11, 2019. Then, five separate control scenar-
os, organized in Table 1 , are analyzed: 1) baseline control, 2) optimal
V charging control only, 3) optimal building control only, 4) optimal
V charging control and building control with no coordination, and 5)
ully coordinated and optimal EV charging and building control (FAPC).
ote that in the four uncoordinated scenarios, the sensitivity value is not
assed between subsystems. The performance of the FAPC algorithm is
hen quantified by analyzing the size of the utility-scale BESS necessary
or perfect tracking. 

In Scenario 1, both the building and the EVCS are using their corre-
ponding baseline controller. For the building subsystem, the baseline
ontroller is described in Section 2.3.1 , resulting in a profile similar to
hat is shown in Fig. 5 . For the EVCS subsystem, the baseline controller

harges each EV at its maximum charging rate as soon as they arrive at
he EVCS, similar to the profile shown in the bottom plot in Fig. 8 . 

The top plot in Fig. 10 shows results from Scenario 1. As expected,
ince there is no optimal control in place for either subsystem, the total
emand does not track the RE generation signal. Largely influenced by
he EV charging load, there are large errors in the tracking near 9:00,
2:00, and 16:00. Because of this, a BESS with a large power and energy
apacity is needed to perfectly track the RE generation signal. The in-
tantaneous BESS power at each time step is depicted by the green line
n the top plot of Fig. 10 . 

In both Scenarios 2 and 3, the tracking is indeed improved over Sce-
ario 1. However, the improvement is much more obvious in Scenario
. This is expected since the EVs occupy a larger percentage of the total
emand and the EVs have much more flexibility than the buildings (i.e.,
he building must satisfy strict physical constraints such as temperature
omfort bounds). Additionally, because we consider a commercial build-
ng, we assume that the EVs are plugged in all day, further increasing
heir flexibility. 
10 
In Scenario 4, both building and EVCS subsystems are controlled us-
ng FAPC with no coordination, i.e., the sensitivity component is not
ncluded in either of the subsystems’ local objective functions. Visually,
n Figs. 2–4 , the sensitivity value from a neighboring subsystem is not
ntering the controller block. The second to bottom plot in Fig. 10 shows
hat the tracking performance is much improved over Scenarios 1 and
. However, it is comparable to Scenario 2 (optimal EV charging control
nly). This improvement in performance is expected as both subsystems
re optimally controlling their demand based on the available genera-
ion. However, each subsystem is only optimizing locally, and does not
ake into account the preference or need of the other subsystem (coor-
ination). While this lack of coordination may not appear to be a large
ssue in this specific scenario, it may have more of an impact when the
umber of subsystems increase. 

Last, in Scenario 5, both the building and EVCS subsystems are
ontrolled through FAPC with full coordination (sensitivity signals are
resent in each of Figs. 2–4 ). Albeit somewhat noisy, Scenario 5 clearly
utperforms Scenarios 1 - 4 (in terms of tracking). This results in a much
maller required BESS power and energy capacity in the system, consid-
rably reducing the amount of charging and discharging as depicted by
he green line. 

Next, we show the improvement in performance from Scenario 1 -
 by estimating the required amount of BESS to allow perfect tracking.
ere, it is assumed that the maximum charge or discharge rate is equal

o the power capacity, and thus, charge or discharge saturation. The
ower capacity is simply the largest tracking error between the demand
nd generation in each scenario shown in Fig. 10 . The top plot in Fig. 11
hows the power capacity for each scenario in Table 1 . The bottom plot
isplays the total energy charged and discharged by the BESS during the
imulation. 

From the top plot in Fig. 11 , it can be seen that, apart from Sce-
ario 2, power capacity (kW) decreases from Scenario 1 to Scenario 5.
pecifically, there is a reduction in BESS power capacity of 47.3% from
cenario 1 to 5. While Scenario 2 requires less power capacity than in
cenarios 3 and 4, the BESS power capacity is still reduced from Sce-
ario 2 to 5. A similar result is shown in the reduction of charging and
ischarging occurring throughout the simulation, which is reduced by
1.0% and 82.7% from Scenario 1 to 5, respectively. This information
lotted in the bottom plot of Fig. 11 . 

To further investigate the implications of this result, the required
ESS size is estimated. Typically, a BESS is sized by both its power ca-
acity (kW) and energy capacity (kWh). To size the utility-scale BESS
n this work, we simply multiply the previously found power capaci-
ies by time, or the storage duration. To find the optimal storage dura-
ion, we incrementally scale the storage duration until perfect tracking
s achieved. Note that a battery is a causal system and thus the initial
𝑜𝐶 will drastically change the required battery size. In this work we
ssume an initial 𝑆𝑜𝐶 of 0.5, resulting in a BESS size reduction of 79.9%
rom Scenario 1 to 5. 
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Fig. 10. The tracking performance of the FAPC 

algorithm discussed in this report in each sce- 

nario described in Table 1 . For each scenario, 

the RE generation signal is the black dashed 

line, the total demand signal is the blue line, 

and the amount of battery power required to 

match the load and generation is the green line. 

(For interpretation of the references to colour 

in this figure legend, the reader is referred to 

the web version of this article.) 
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Table 2 

Three test days considered in the robustness analysis. Test Day 1 uses the 

same results from Scenarios 1 and 5 in Fig. 10 . 

Day Weekend/Weekday Weather Type Connection to Fig. 10 

1 Weekday Sunny Control Scenario 1 and 5 

2 Weekday Intermittent Clouds None 

3 Weekend Sunny None 

 

t  

i  

f  
Last, the authors note that in Scenarios 2, 4, and 5 of Fig. 10 , the
ESS is predominantly sized by a spike near 16:40. Such a short dura-
ion spike could be mitigated using a potentially less expensive storage
evice such as a flywheel, even further reducing the required BESS size.
he inclusion of other types of storage is a topic of future research. 

. Robustness analysis 

The results in Section 4 show a substantial reduction in power capac-
ty, charging and discharging energy, and BESS size required to enable
erfect tracking of the RE generation. Note that this was done for a sin-
le day with a smooth, reliable solar generation signal. In this section,
he robustness of the FAPC algorithm in different scenarios is examined.
hree test days are considered, as outlined in Table 2 . 
11 
The tracking performance of the FAPC (Scenario 5) with respect to
he baseline control scenario (Scenario 1) in each of the three test days
s shown in Fig. 12 . The top plot of Fig. 12 displays the tracking per-
ormance of the FAPC algorithm for a completely sunny weekday (Day
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Fig. 11. Analysis of storage usage in each case. 

Top : Minimum BESS power capacity needed 

for perfect tracking in the system for each 

case. Bottom : Charging (blue) and discharg- 

ing (red) energy throughout the simulation for 

each case. (For interpretation of the references 

to colour in this figure legend, the reader is re- 

ferred to the web version of this article.) 

Fig. 12. FAPC controller performance compar- 

ing the total baseline controlled demand (red) 

and the total controlled demand (blue) to the 

RE generation signal (black dashed) for Top: a 

perfect solar day (Day 1), Middle: a bad solar 

day (Day 2), and Bottom: a weekend (Day 3). 

(For interpretation of the references to colour 

in this figure legend, the reader is referred to 

the web version of this article.) 
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). The red line is the total baseline controlled demand while the blue
ine is the total demand that has been shifted by FAPC. Note that this is
he same result shown in the top and bottom subplots of Fig. 10 , with
he red curve representing Scenario 1, the blue curve corresponding to
cenario 5, and the BESS power signal omitted. 

The middle plot of Fig. 12 displays results for Day 2. Here, the so-
ar generation is much more intermittent (i.e., there are clouds passing
ver during the day). This intermittency is reflected in the large fluc-
uations in the RE generation signal. While the RE generation signal
12 
uctuates much more than in Day 1, the FAPC-controlled demand con-
inues to track the RE generation signal very well in comparison to the
aseline-controlled demand. The only demand/generation mismatch ap-
ears near time 16:40, where a large drop in the demand occurs. This
ismatch is most likely due to either multiple EVs reaching their depar-

ure times or reaching their desired states of charge. Note that since the
ccupancy profiles are the same as in Day 1 (both weekdays), the build-
ng’s internal load is identical. Any difference in total demand comes
hrough the difference in outdoor disturbances. 
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Fig. 13. Top Left: BESS power capacity (kW). Top Right: BESS size (kWh). Bottom Left: Discharging energy (kWh). Bottom Right: Charging energy (kWh) for the 

baseline-controlled and controlled cases in each of the three days. 
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The bottom plot of Fig. 12 displays Day 3, of which the RE gener-
tion signal is relatively smooth, but the simulation day is a weekend.
ence, the occupancy schedule for the building is different, resulting in
 reduced demand by both the building and EVs. Although the FAPC
lgorithm does shift demand, the tracking is much worse than in other
cenarios since there is not enough load to match the generation. Note
hat in the previous two cases, the EV demand occupies roughly 70%
f the total demand, allowing the EV controller to shift demand more
asily. However, because the EV demand is much lower on the week-
nd, its flexibility is decreased, and the total demand cannot be shifted
s effectively compared to Day 1 and Day 2. 

Finally, Fig. 13 displays the BESS power capacity, size, discharging
nergy, and charging energy between the baseline control and FAPC
ases for Day 1, Day 2, and Day 3. Note that the BESS system is sized us-
ng the same method described in Section 4 . In the first two test days (red
nd blue bars in Fig. 13 ), power capacity and discharging energy needs
re very similar. The power capacities are both near 200 kW and discharg-

ng energies are near 400 kWh in the baseline control case. The third day
s much lower however, near 100 kW and 80 kWh, respectively. On
he other hand, the BESS charging energy and BESS sizes are very simi-
ar across all days in the baseline control scenario (near 500 kWh and
00 kWh, respectively). When analyzing Days 1 and 2 (red and blue
ars), it can be seen that each category (power capacity, size, discharg-
ng energy, and charging energy) is reduced when using FAPC compared
o the baseline case. Specifically, the BESS sizes are reduced by 80% and
9% in Days 1 and 2, respectively. 

The orange bars in Fig. 13 show the BESS power capacity, size, dis-
harging energy, and charging energy for Day 3 (weekend). While the
ifference in baseline control and FAPC profiles shown in Fig. 12 indi-
ate that the load was indeed shifted, the total storage needs are similar
or both the baseline and FAPC cases. This similarity can be seen by the
maller reduction in BESS size of 19.4%. As previously mentioned, this
maller improvement is most likely due to the reduction in the more
exible EV demand. Note that the size of the BESS is mostly determined
y the amount of charging energy in Day 3. This means that the total
emand is less than the RE generation; thus, an alternative to increas-
ng the BESS size is to instead curtail the RE generation. This alternative
ould prove most significant in Day 3 but would apply to all scenarios.
 e  

13 
Based solely on these results, the BESS should be sized by the Day 3
ase, as it requires the largest BESS in terms of energy capacity. Admit-
edly, this 3-day sample size is not sufficient to accurately size the BESS
or all possible cases. Future work involves examining more scenarios
hile scaling this system to include multiple buildings and charging

tations each with different sizes and dynamics. With a larger, more re-
listic system, FAPC could be applied to more weather scenarios to get
 better understanding for its robustness. A detailed and impactful cost
avings analysis could then be conducted, eventually leading to real-
orld deployment of FAPC. 

.1. Individual subsystem performance 

In this section, the individual subsystem performances using FAPC
Scenario 5) for each of the three test days in Table 2 are analyzed.
ere, the objective is to show that even while the total demand is shifted
onsiderably to track the RE generation signal, the performance of each
ndividual subsystem is not sacrificed. 

First, the performance of the building subsystem is analyzed. Fig. 14
hows that the internal temperature profile of the building remains
ithin comfort bounds, but tends to fluctuate considerably throughout

ach simulation. In some instances, the temperature is in contact with
 comfort bound, which is deemed unsatisfactory. Day 1 performs the
est, where the temperature is in contact with 𝑇 

𝑏 
for only a short time

ear 16:40. This also occurs at a similar time in Day 2, but is in contact
lightly longer. However, the performance of Day 3 is much worse. The
emperature is in contact with 𝑇 

𝑏 
from nearly 11:00 to 17:00. Recall

hat in Day 3 (weekend), the EV demand is much lower. Therefore, the
uilding consumes more energy in an attempt to track the RE genera-
ion. More power consumption in the building corresponds to a higher
ooling load from the HVAC system, explaining why the temperature is
ear 𝑇 

𝑏 
in the afternoon. 

Next, the performance of the EVCS subsystem is analyzed. The key
bjective for this subsystem is to ensure each EV is fully charged upon
ts departure time. Fig. 15 displays the 𝑆𝑜𝐶 of each EV throughout each
imulation day. Note that at the beginning of the simulation each line
tarts at a different number between 0 and 1 (i.e., each EV has a differ-
nt initial 𝑆𝑜𝐶). It can be seen from Fig. 15 that, each line (EV 𝑆𝑜𝐶)
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Fig. 14. Performance of the building subsys- 

tem under full control and coordination sce- 

nario (Scenario 5) for each simulation day 

( Table 2 ). The internal temperature profile is 

plotted for a perfect solar day (red) and bad 

solar day (blue) and a weekend (orange) to 

analyze its trajectory between comfort bounds 

(black dashed). (For interpretation of the refer- 

ences to colour in this figure legend, the reader 

is referred to the web version of this article.) 

Fig. 15. Performance of the EVCS subsystem under full control and coordination scenario (Scenario 5 in Table 1 ) for each simulation day ( Table 2 ). Each line in 

each plot represents the 𝑆𝑜𝐶 of an EV in the EVCS. A value of 1 represents fully charged while 0 represents no charge. 

Table 3 

Types of forecasts used to analyze the forecast importance in FAPC. 

Forecast 

Scenario 

1 2 3 4 5 

Forecast 

Type 

Perfect 

Forecast 

Partial 

Forecast 

Zero 

Forecast 

Greedy 

Forecast 

Random 

Forecast 

r  

E  

e  

l  

i  

p  

i

5

 

t  

g  

f  

a  

f  

F
 

a  

l  

o  

e  

a
 

c  

i  

c  

H  

t  

f  

u  

f
 

n  

t  

i  

t  

t  

n  

t  

t  

2
 

D  

i  

a  

B
 

n  

E  

t  

E  

p
 

s  

f  

f  

r  

t  

t

eaches a value of 1 by the end of the simulation. This implies that each
V is fully charged upon its departure time and the EVCS objective is
ffectively met in each test day. Note that there are considerably less
ines in the weekend case and the slope of each line is fairly steep. This
mplies that that there are fewer EVs and their flexibility is quickly de-
leted, contributing to the lack in tracking performance in Day 3 as seen
n Fig. 12 . 

.2. Forecasting importance 

The results in Sections 4 and 5 show how FAPC drastically improves
racking of the RE generation, even during days with inconsistent RE
eneration. The use of forecasts in FAPC is thought to be a major reason
or this success. In this section, the importance of forecast accuracy is
nalyzed. Using Day 2 simulation data, FAPC is subjected to five dif-
erent forecasts, as summarized in Table 3 and tracking performance of
APC in each case is shown in Fig. 16 . 

The top plot in Fig. 16 shows the perfect forecast case. These results
re identical to what is shown in the middle plot of Fig. 12 . The orange
ine shows the EVDAP. The perfect forecast assumes perfect knowledge
f 1) the EV charging events, 2) the building load, and 3) the RE gen-
ration. As can be seen from the orange line, the EVDAP matches the
vailable power very well (offset due to building load). 

The second plot shows the partial forecast case. The partial fore-
ast is similar to the perfect forecast, only we assume that the build-
ng load and the RE generation signals are unknown. However, the EV
14 
harging events are still perfectly known and used to create the EVDAP.
ence, the flat-top forecast shown by the orange line. With this EVDAP,

he FAPC tracking shows a slightly lower demand than in the perfect
orecast case. To quantify this difference, it is found that the necessary
tility-scale BESS size is increased by 206% compared to the perfect
orecast. 

The middle plot shows the zero forecast case. As implied by the
ame, the EVDAP consists of all zeros (i.e., no load forecasted). Because
he EV charging controller tracks the forecast, as expected, the EV charg-
ng load is reduced for the first two-thirds of the simulation. This reduc-
ion limits the EV charging early on, causing a spike in charging near
he end of the day (near 16:40 and 20:00). This spike is a result of EVs
earing their departure times with insufficient states of charge. Hence,
he controller must apply a higher charge rate to ensure full charge by
heir departure time. The required utility-scale BESS size is increased by
40% compared to the perfect forecast case. 

The fourth plot shows the greedy forecast case. In this case, the EV-
AP is the baseline control load profile. It can be seen that the EV load is

ncreased early (near 08:00) and decreased later in the simulation in an
ttempt to track the EVDAP. Because of this, the necessary utility-scale
ESS size is increased by 219% compared to the perfect forecast case. 

The bottom plot shows the random forecast case. As implied by the
ame, this EVDAP is generated at random. While not too chaotic, this
VDAP obviously does not accurately forecast the available power to
he EVs. Therefore, when the EV charging controller tracks this random
VDAP, an increase of 125% in utility-scale BESS size compared to the
erfect forecast is observed. 

The results presented in this section confirm that FAPC is indeed
ensitive to the forecasts used to generate the EVDAP. Because perfect
orecasts are used in this work, a sort of upper bound to the FAPC per-
ormance is established. Future work aims to investigate applying more
ealistic forecasts to account for weather uncertainties as well as stochas-
ic building occupancy and EV events and will investigate how close to
his upper bound the performance can be expected to be. 
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Fig. 16. Tracking performance of the FAPC algo- 

rithm when subjected to five different forecasts 

summarized in Table 3 . 
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L  
. Conclusions 

In this work, the novel forecast-aided predictive control (FAPC) al-
orithm is introduced. While leveraging the framework developed in
orks [42] and [43] , FAPC introduces a new EV charging control algo-

ithm. This algorithm utilizes forecasts to improve its real-time tracking
bility. Instead of arbitrary reference signals, the performance of FAPC
s evaluated using a realistic, RE generation scenario. The performance
f FAPC is also evaluated across different weather and RE generation
onditions and forecast accuracy. The performance of FAPC quantified
y the size of the utility-level BESS required to enable perfect tracking in
he system. This more realistic scenario corresponds to fully correlated
isturbances, system loads, and system generation. 

The results show that under FAPC, the demand can be shifted con-
iderably to more closely track a RE generation signal. This significantly
educes the size of the required utility-scale BESS. A robustness analy-
is indicates that under days of more intermittent RE generation, FAPC
ontinues to perform adequately. However, the performance of FAPC is
ecreased in a weekend case where demand is less significant and less
15 
exible. It is noted that despite a large amount of shifted demand, each
ubsystem still achieves its local objectives. Additionally, it was found
hat the FAPC tracking performance is indeed sensitive to the accuracy
f the forecast. 
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ppendix 

lgorithm 1 Bisection algorithm. 

nsure: 𝑃 𝑡𝑜𝑙 = 0 . 001 
if 𝑃 𝑡,𝑘 < 𝑃 𝑙𝑏 + 𝑃 𝑡𝑜𝑙 then 

𝐟 𝑜𝑝𝑡 ← 𝐟 𝑙𝑏 
else if 𝑃 𝑡,𝑘 > 𝑃 𝑢𝑝 − 𝑃 𝑡𝑜𝑙 then 

𝐟 𝑜𝑝𝑡 ← 𝐟 𝑢𝑏 
else 

𝐟 𝑜𝑝𝑡 ← ( 𝐟 𝑙𝑏 + 𝐟 𝑢𝑏 )∕2 
while ( 𝑃 𝑢𝑏 − 𝑃 𝑙𝑏 ) > 𝑃 𝑡𝑜𝑙 do 

𝐟 𝑜𝑝𝑡 ← ( 𝐟 𝑙𝑏 + 𝐟 𝑢𝑏 )∕2 

𝑃 𝑐𝑢𝑟𝑟 ← 

∑ 

𝑗 

[
1 
Δ𝑇 

( 𝑆 𝑜𝐶 𝑑 
𝑗 
− 𝑆 𝑜𝐶 𝑎 

𝑗 
) − ( 𝑇 𝑑 

𝑗 
− 𝑡 )( ̄𝑝 𝑗 − 𝐟 ) 

]�̄� 𝑗 
0 

if 𝑃 𝑐𝑢𝑟𝑟 < 𝑃 
𝑡,𝑘 then 

𝐟 𝑙𝑏 ← 𝐟 𝑜𝑝𝑡 
𝐏 𝑙𝑏 ← 𝑃 𝑐𝑢𝑟𝑟 

else if 𝑃 𝑐𝑢𝑟𝑟 > 𝑃 
𝑡,𝑘 then 

𝐟 𝑢𝑏 ← 𝐟 𝑜𝑝𝑡 
𝐏 𝑢𝑏 ← 𝑃 𝑐𝑢𝑟𝑟 

end if 

end while 

end if 

lgorithm 2 EVCS DA plan update. 

𝑀 𝑎𝑥𝐼 𝑡𝑒𝑟 ← 10 
while 𝑖𝑡𝑒𝑟 < 𝑀 𝑎𝑥𝐼 𝑡𝑒𝑟 do 

𝑃 𝑟𝑡 ← 𝑓 ( 𝑃 𝐸𝑉 ,𝐷𝐴 ) with 𝜔 1 , 𝜔 5 = 0 
for 𝑡 ∈  do 

𝑃 𝑡 
𝑑𝑖𝑓𝑓 

← ( 𝑃 𝑡 
𝐸𝑉 ,𝐷𝐴 

+ 𝛿𝑡 ) − 𝑃 𝑡 𝑟𝑡 

𝛿1∶ 𝑡 ← 𝛿𝑡 ∶ 𝑡 + 

𝑃 𝑡 
𝑑𝑖𝑓𝑓 

𝑡 
𝟏 𝑇 

𝛿𝑡 +1∶ 𝑇 ← 𝛿𝑡 +1∶ 𝑇 − 

𝑃 𝑡 
𝑑𝑖𝑓𝑓 

𝑇− 𝑡 𝟏 
𝑇 

𝛿𝑡 ← (1 − 𝛼) 𝛿𝑡 + 𝛼𝛿𝑡 

end for 

𝑃 𝐸𝑉 ,𝐷𝐴 ← 𝑃 𝐸𝑉 ,𝐷𝐴 + 𝛿

end while 
Table 4 

Values of FAPC parameters used in producing results. 

Parameter Value 

𝜂 17.5% (0.17) 

𝑇 𝑟𝑒𝑓 23.0 

𝑇 
𝑏 
, �̄� 𝑏 20.5, 25.5 

𝑢 1 , ̄𝑢 1 0.0, 100.0 

𝑢 2 , ̄𝑢 2 10.0, 14.0 

𝑄 
𝐻𝑉 𝐴𝐶 

, �̄� 𝐻𝑉 𝐴𝐶 –600.0, 0.0 

Λ diag(0.001) 

𝑄 diag(5000,2,...,...) 

𝑆 0.0 

[ 𝜔 1 , 𝜔 2 , 𝜔 3 , 𝜔 4 , 𝜔 5 ] [1.0, 1.0, 1.0, 1.0, 0.9] 
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