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Executive Summary 
In this study, we investigate the parametric sensitivity of near-surface variables, such as sensible 
heat flux, latent heat flux, ground heat flux, hub-height wind speed and land surface temperature, 
to the parameters used in the rapid update cycle (RUC) land surface model (LSM) during a 
winter and summer periods. The model simulations are compared with observations collected 
from the second Wind Forecast Improvement Project (WFIP2) field campaign. The results 
suggest that parameters related to snow/ice and thermal processes can have significant impact on 
the simulated near-surface variables. Out of the 11 examined parameters, only 6 have 
considerable influences on the model behaviors and can explain about 60%–80% of the 
estimated total variance of the simulated variables. In addition, the magnitude of the parametric 
sensitivity varies with season. For instance, parameters associated with snow/ice processes are 
dominant during the wintertime, whereas those associated with thermal processes are more 
important during the summertime. Furthermore, the impact of the identified parameters on the 
simulated variables is highly related to the topography. There is a high degree of sensitivity to 
the parameter values over the slope region. This points out the importance of collecting field 
observations over steep areas to better quantify the appropriate values of key parameters. 
Overall, our findings provide a better understanding of the RUC LSM behavior associated with 
parameter uncertainties and can be used to improve the forecasting skill of land surface processes 
via calibration of the most uncertain model parameters. 



vi 

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

Table of Contents 
Acknowledgments ..................................................................................................................................... iii 
List of Acronyms ........................................................................................................................................ iv 
Executive Summary .................................................................................................................................... v 
List of Figures ............................................................................................................................................ vi 
List of Tables ............................................................................................................................................. vii 
1 Introduction ........................................................................................................................................... 1 
2 Data and Methodology ......................................................................................................................... 3 

2.1 Simulation Design and Experiment Setup ..................................................................................... 3 
2.2 Parameters From the RUC LSM ................................................................................................... 4 
2.3 Sensitivity Analysis Framework ................................................................................................... 5 
2.4 WFIP2 Observations ..................................................................................................................... 5 

3 Results ................................................................................................................................................... 7 
3.1 Validating Simulated Near-Surface Variables With the Observations ......................................... 7 
3.2 Sensitivity of the Near-Surface Variables to the Parameters From the RUC LSM .................... 11 
3.3 Dependence on Land-Use Type and Soil Texture ....................................................................... 15 
3.4 Quantify the Sensitivity of the Key Parameters on the Simulated Near-Surface Variables ........ 19 

4 Uncertainty .......................................................................................................................................... 24 
5 Conclusions ........................................................................................................................................ 28 
References ................................................................................................................................................. 29 
 

List of Figures 
Figure 1. Spatial pattern of topographical maps (m) for the (a) outer domain, (b) inner domain, (c) 

dominant land-use type and (d) soil category for the inner domain. The black dot in (a) 
indicates the geographical location of the PS01 and PS03. ............................................................ 3 

Figure 2. Time series of the observed (blue) and simulated (gray) (a) SH flux, (b) LH flux, (c) GH 
flux, (d) WS100, (e) T2, and (f) LST during the summertime period from 23 to 29 July 2016. The 
gray shaded area indicates the ensemble range. ............................................................................. 7 

Figure 3. Same as Figure 2 but for wintertime period from 6 to 12 March 2017................................... 8 
Figure 4. Spatial pattern of the intermember standard deviation for the simulated (a) SH, (b) LH, (c) 

GH, (d) WS100, (e) T2, and (f) LST for the summertime period (11−31 July 2016) ........................ 9 
Figure 5. Same as Figure 4 but for the wintertime period (12 February to 13 March 2017) ................ 9 
Figure 6. Spatial distributions of relative contributions (%) of each examined parameter (Table 1) 

to the total variances of the simulated WS100 during (a) summertime and (b) wintertime........ 12 
Figure 7. Same as Figure 6 but for simulated SH flux ........................................................................... 12 
Figure 8. Same as Figure 6 but for simulated LH flux ........................................................................... 13 
Figure 9. Same as Figure 6 but for simulated GH flux .......................................................................... 13 
Figure 10. Same as Figure 6 but for simulated LST .............................................................................. 14 
Figure 11. Same as Figure 6 but for simulated T2 ................................................................................. 14 
Figure 12. The relative contribution of the six key parameters (Melt1, Melt2, KWT KZERO, 

KQWRTZ, and LB) to the variance of (a, b) WS100, (c, d) SH, and (e, f) LST with respect to the 
four dominant land-use types (evergreen forest, open shrubland, grassland, and cropland) for 
both the summer (left) and winter (right) periods ........................................................................... 16 

Figure 13. Same as Figure 12 but with respect to the four dominant soil textures (sandy loam, silt 
loam, loam, and clay loam) ................................................................................................................ 17 

Figure 14. The relative contribution of the six key parameters (Melt1, Melt2, KWT, KZERO, 
KQWRTZ, and LB) to the variance of (a, b) LH, (c, d) GH, and (e, f) T2 with respect to the four 
dominant land-use types (evergreen forest, open shrubland, grassland, and cropland) for both 
(left) summertime and (right) wintertime ......................................................................................... 18 

Figure 15. Same as Figure 14 but with respect to the four dominant soil categories (sandy loam, 
silt loam, loam, and clay loam) .......................................................................................................... 19 

Figure 16. Spatial distribution of the responses of wind speed (m.s-1) for the six most significant 



vii 

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

parameters for both the (a) summer and (b) winter periods .......................................................... 20 
Figure 17. Same as Figure 16 but for the responses of SH flux (W.m-2) ............................................. 21 
Figure 18. Same as Figure 16 but for the responses of LH flux (W.m-2) .............................................. 21 
Figure 19. Same as Figure 16 but for the responses of GH flux (W.m-2) ............................................. 22 
Figure 20. Same as Figure 16 but for the responses of LST (℃) ......................................................... 22 
Figure 21. Same as Figure 16 but for the responses of T2 (℃) ............................................................ 23 
Figure 22. Spatial distributions of relative contributions (%) of each examined parameter to the 

total variances of the simulated LST during the wintertime from (a) EXP1 and (b) EXP2 .......... 25 
Figure 23. Same as Figure 22 but for the responses of LST (℃) ......................................................... 25 
Figure 24. The relative contribution of the six key parameters (Melt1, Melt2, KWT, KZERO, 

KQWRTZ, and LB) to the variance of LST with respect to the four dominant land-use types 
(evergreen forest, open shrubland, grassland, and cropland) for both the summer (left) and 
winter periods from (a,b) EXP1 and (c, d) EXP2 .............................................................................. 26 

Figure 25. Spatial distribution of the responses of LST (℃) for the six most significant parameters 
for the summer period from (a) EXP1 and (b) EXP2 ....................................................................... 26 

Figure 26. Same as Figure 25 but for the winter period ........................................................................ 27 
 

List of Tables 
Table 1. Investigated Parameters in the RUC LSM .................................................................................. 5 
Table 2. Fraction of Variance of the Simulated Near-Surface Variables Explained by the GLM for 

Summertime (11−31 July 2016) ........................................................................................................ 10 
Table 3. Fraction of Variance of the Simulated Near-Surface Variables Explained by the GLM for 

Wintertime  (21 February to 13 March 2017) .................................................................................... 10 
 
 



1 

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

1 Introduction 
Near-surface states, such as temperature, wind speed and energy fluxes, strongly influence the 
strength of land-atmosphere coupling as they regulate the exchanges of energy, moisture and 
momentum between the land surface and the overlaying atmosphere. In addition, they act as the 
lower boundary forcing in the state-of-art Weather Research and Forecasting (WRF) model 
which ultimately affects thermally and mechanically-driven vertical mixing in the atmospheric 
boundary layer (Santanello et al. 2018; Findell et al. 2015; Wang et al. 2020). Therefore, it is 
critical to accurately represent these quantities in the numerical weather prediction.  

In the WRF model, the surface energy budget and other near-surface variables are predicted by 
the land surface model (LSM) based on fundamental physical processes, which are often 
parameterized with fine-tuned empirical parameters as these processes cannot be explicitly 
resolved (Mahrt and Pan 1984; Chen et al. 1996; Niu et al. 2011). Even though the values of 
those parameters are calibrated with observations, there are still large uncertainties as the 
observational samples used for calibration are often limited in number and mostly idealized. 
Thus, understanding the uncertainties associated with the parameters in the LSM would be 
critical to improve land surface predictions which in turn would lead to better numerical 
forecasting.  

One method in this context is sensitivity analysis, which explores the high-dimensional 
parameter space of a complex model and evaluates the model responses to the input parameters. 
The biggest advantage of the sensitivity analysis is that it offers an effective way to quantify 
parameters sensitivities to understand whichever parameter is the most important to the model 
outcome. As a result, numerous studies have applied such technique to investigate the parameter 
sensitivity from various schemes in the WRF model (Hou et al. 2012; Yang et al. 2017, 2019; 
Berg et al. 2021; Liu et al. 2022; Guo et al. 2014; Zhao et al. 2013; Rosero et al. 2010). Over the 
years, LSM has grown in complexity from a simple thermal model to encompass a broad range 
of interrelated disciplines including hydrology, ecology, biology, urbanization, and so on 
(Bastidas et al. 2006; Fisher al et. 2020). It is, therefore, important to conduct the sensitivity 
analysis to assess the effect of input parameters from LSM on the model outcome. 

In this study, we apply the sensitivity analysis framework to examine parameter sensitivity in the 
rapid update cycle (RUC) LSM. The goal is to identify the most influential parameters on 
simulated surface properties. The RUC LSM is widely known as the land surface component in 
the National Oceanic and Atmospheric Administration (NOAA) operational rapid refresh short-
range weather prediction model over the North America domain and in the High-Resolution 
Rapid Refresh (HRRR) model over the continental United States. Therefore, understanding the 
parameter uncertainty in the RUC LSM would provide critical guidance for model calibration 
and validation for the next generation of LSM development.   

This report is organized as follows: Section 2 describes the WRF configuration, experiment 
design, targeted parameters, observations used for model validation and the sensitivity analysis 
framework. Section 3 presents the result discussion including (i) model performance evaluation 
with the observations; (ii) key LSM parameters that are identified from the sensitivity analysis; 
(iii) dependence of parametric sensitivity on other factors, such as land-use type and soil 
category and (iv) the impact of the key LSM parameters on the simulated near-surface variables. 
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Section 4 discusses the uncertainty associated with the method and the analysis, followed by a 
summary of the main findings in Section 5. 
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2 Data and Methodology 
2.1 Simulation Design and Experiment Setup 
The simulation design is similar to that employed in Xia et al. (2021; 2022), and the following 
text is derived from there with minor modifications. The WRF version 4.1.2 (Skamarock and 
Klemp 2008; Powers et al. 2017) is used to conduct model simulations in this study. The 
boundary and initial conditions are obtained from the HRRR datasets from the Google Cloud 
archive (https://console.cloud.google.com/marketplace/product/noaa-public/hrrr?project=python-
232920&pli=1).  

Two nested domains cover the entire northwestern United States with the inner domain centered 
on the field campaign region from WFIP2. The outer domain (Figure 1a) consists of 120 × 85 
grid points with the horizontal resolution of 9 km while the inner domain (Figure 1b) consists of 
145 × 115 grid points with the horizontal resolution of 3 km. There are 52 vertical levels 
employed with finer resolution at the lower levels and coarser resolution at the higher levels. The 
black dot at the inner domain indicates the location of the Physics Site 01 (PS01) and PS03 
where all the observations for this paper were collected. 
 

 
Figure 1. Spatial pattern of topographical maps (m) for the (a) outer domain, (b) inner domain, (c) 
dominant land-use type and (d) soil category for the inner domain. The black dot in (a) indicates 

the geographical location of the PS01 and PS03. 

https://console.cloud.google.com/marketplace/product/noaa-public/hrrr?project=python-232920&pli=1
https://console.cloud.google.com/marketplace/product/noaa-public/hrrr?project=python-232920&pli=1
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The physics options used in this study include rapid radiative transfer model for shortwave and 
longwave radiation (Iacono et al. 2008), Thompson aerosol-awareness microphysics scheme 
(Thompson et al. 2008; Thompson and Eidhammer 2014), Mellor–Yamada–Nakanishi–Niino 
(MYNN) level 2.5 planetary boundary layer (PBL) scheme and MYNN surface layer scheme 
(Mellor and Yamada 1982; Nakanishi and Niino 2009). Note that cumulus convection is treated 
explicitly for second domain while it is parameterized for the outermost domain using the Kain–
Fritsch scheme (Kain and Fritsch 1990, 1993; Kain 2004). The moderate resolution imaging 
spectroradiometer (MODIS) land-use and default soil datasets are used to set the initial land state 
and soil category.  

Following Yang et al. (2017), the experiment is run using a one-way nesting method where the 
model output from the outer domain is used as the initial and boundary conditions to drive the 
inner domain that is performed repeatedly with the perturbed parameter values (see Section 2.2). 
This strategy helps to isolate the impacts of parameter perturbations within the inner domain 
(i.e., local impacts) from the changes in boundary forcing. The 128 ensembles of perturbed 
parameters were generated using the quasi-Monte Carlo (QMC) sampling approach (Caflisch 
1998) for two simulation periods, one during the summertime (11−31 July 2016) and the other 
during the wintertime (21 February to 13 March 2017). Each period has a duration of 20 days to 
allow the examination of the parameter sensitivity of near-surface variables under two distinctive 
weather and land surface conditions. 

2.2 Parameters From the RUC LSM  
The details of the model description for the RUC LSM can be found in Smirnova et al. (1997, 
2000, and 2016). In this study, we focused on parameters that could have a significant impact on 
the soil thermal and hydrology processes. In total, 11 parameters were identified and listed in 
Table 1. The uncertainty ranges associated with these parameters were determined based on past 
literatures (Johansen 1975; Kenji 1967; Schaake et al. 1996; Koren et al. 1999) and discussions 
with the RUC LSM developers. Parameters, such as KZERO, KQWRTZ, KICE, and KWT, are 
related to soil thermal conductivity that largely influence the land surface temperature and 
surface heat flux whereas other parameters like C1SN, C2SN, melt factors, REFKDT, and AP0 
are associated with hydrological processes like snow/ice melting and soil moisture infiltration. 
Note that melt factor indicates the speed of snow melting. In general, the smaller the value is, the 
longer the snow stays on the land surface. The last examined parameter, LB, is used to compute 
the time varying roughness length, which would be important for wind speed calculation. Since 
thermal conductivity is often measured and is subjected to less uncertainty, the perturbed range 
for parameters associated with thermal conductivity are smaller (±10 %) compared to the other 
parameters (±50 %). The uncertainty associated with the parameter values is discussed in 
Section 4. 
  



5 

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

Table 1. Investigated Parameters in the RUC LSM 

Parameters Description Default Value Range 
KZERO Thermal conductivity for feldspar(W.m-1K-1) 2.0 1.9–2.1 

KQWRTZ Thermal conductivity for quartz (W.m-1K-1) 7.7 7.31–8.09 
KICE Thermal conductivity for ice (W.m-1K-1) 2.2 2.09–2.31 
KWT Thermal conductivity for water (W.m-1K-1) 0.57 0.54–0.60 
C1SN Constant for snow density calculations  0.026 0.013–0.039 
C2SN Constant for snow density calculations 21 10–31 

Melt factor 1 
(Melt1) Melt factor for other vegetation types  2 1.0–3.0 

Melt factor 2 
(Melt2) Melt factor for mixed and evergreen forests   0.85 0.4–1.3 

LB Blending height 5.0 2.5–7.5 
REFKDT Constant for calculation of max infiltration 3.0 1.5–4.5 

AP0 Constant for calculation of transpiration 
function 0.299 0.15–0.45 

2.3 Sensitivity Analysis Framework 
Following Yang et al. (2017), the sensitivity analysis framework applied in this study can be 
summarized in three steps. The first step is to identify the most relevant parameters from the 
RUC LSM. The second step is to sufficiently sample points using the QMC approach to perturb 
the identified parameters into 128 perturbed ensembles (Hou et al. 2012). Those perturbed 
parameters are then used to create the model ensemble needed for the third step. In the third step, 
the sensitivity analysis is applied to the model output using a variance-based approach. For that, 
the sensitivity of an input parameter is determined by its contribution to the total variance of the 
model output. The generalized linear model (GLM; McCullagh and Nelder 1989) is constructed 
for that purpose and is used to examine the parameter sensitivity as well as parameter impacts on 
the simulated near-surface variables from the model ensemble using Eq. 1: 
 

𝑉𝑉 = 𝛽𝛽0 + �𝛽𝛽𝑗𝑗 ∗ 𝑃𝑃𝑗𝑗

𝑛𝑛

𝑗𝑗=1

+ �𝛽𝛽𝑗𝑗 ∗ 𝑃𝑃𝑗𝑗2
𝑛𝑛

𝑗𝑗=1

+ ��𝛽𝛽𝑗𝑗,𝑘𝑘 ∗ 𝑃𝑃𝑗𝑗 ∗ 𝑃𝑃𝑘𝑘

𝑛𝑛

𝑘𝑘=1

𝑛𝑛

𝑗𝑗=1

+ 𝜀𝜀 

 
where Pj and Pk represent the value of the jth and kth parameter, respectively. βj and βj,k represent 
the coefficients of linear and quadratic (j = k) or two-way interaction (j ≠k) terms, respectively. 
β0 is the interception and δ denotes the residual. Therefore, the second, third, fourth and fifth 
term on the right-hand side of the equation represents the contribution from the parameter terms, 
quadratic terms, interactive term and residual term, respectively, to the total estimated variance.  

2.4 WFIP2 Observations 
To validate the model simulation with the observations, the surface temperature measurement 
and flux measurement from the PS03 and PS01 are used (Shaw et al. 2019; Wilczak et al. 2019). 
The energy balance bowen ratio (EBBR) system from PS03 is used to collect surface 
measurements such as sensible heat flux (SH), latent heat flux (LH), ground heat flux (GH), and 
surface temperature (LST). The hub-height wind speed (WS100) and air temperature at 2 m (T2) 
are collected from the Vaisala Triton SoDAR wind profiler (Vaisala 2015), respectively, at PS01. 

(1) 
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All the raw data are quality-controlled and compiled into hourly averages. Details about 
instrumentation, data quality and data uncertainty can be found in Cook and Sullivan (2018) and 
Xia et al. (2021). 
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3 Results 
3.1 Validating Simulated Near-Surface Variables With the 

Observations 
The overall performance of the parametric perturbation experiments can be evaluated by 
comparing simulated near-surface variables with the observations collected from the WFIP2 field 
campaign. During the summertime (Figure 2), there is general good agreement between the model 
and observations for WS100, SH flux and T2 in terms of both magnitude and timing. However, 
the simulations fail to predict the maximum value of the observed SH flux (~500 W.m-2) during 
daytime. Note that the observed LH flux is more variable compared with the simulated SH flux. 
That is due to the measurement uncertainty from the ERRR when there is limited soil moisture in 
the ground (Cook and Sullivan 2018; Xia et al. 2022). Similar to Xia et al. (2021), the modeled 
GH flux show the largest discrepancy as compared with the observations which is associated with 
the cold bias in the simulated LST. Interestingly, the simulated T2 agrees very well with the 
observations, suggesting that the error in simulating LST could be a dominant factor in calculating 
the near-surface thermal gradient and thus could have a potential impact on the mixing 
mechanisms in the PBL scheme. During the wintertime (Figure 3), almost all the near-surface 
variables show a lesser agreement and larger variability compared with the observations. That is 
most likely due to the difficulty in accurately capturing the winter disturbances such as the frontal 
passage and cold cool over this region during this period (McCaffrey et al. 2019; Bianco et al. 
2019; Pichugina et al. 2020). However, the simulated LH flux does correspond better than the 
observed measurement and the cold bias in the simulated LST is significantly smaller as compared 
to that from the summertime. 

 

Figure 2. Time series of the observed (blue) and simulated (gray) (a) SH flux, (b) LH flux, (c) GH 
flux, (d) WS100, (e) T2, and (f) LST during the summertime period from 23 to 29 July 2016. The 

gray shaded area indicates the ensemble range.  
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Figure 3. Same as Figure 2 but for wintertime period from 6 to 12 March 2017. 

The simulated ranges for all the near-surface variables from the perturbation experiments are 
generally small during the summertime compared to the wintertime. However, that is just for one 
location where the topography is relatively flat without much geological heterogeneity (Figure 
1b). Therefore, we calculate the standard deviation at each point for the entire domain 2 to 
illustrate the spatial variability of the ensemble spread. During the summertime (Figure 4), the 
standard deviation for each simulated variable is rather weak and uniform across the entire 
region, except for certain high-terrain areas. For instance, Mount Rainier, the high volcanic peak 
located at the northwestern side of the map, shows the highest parametric sensitivity for all the 
variables. During the wintertime (Figure 5), the spatial characteristic of standard deviation of 
each simulated variable is more variable and exhibits a stronger magnitude than in the 
summertime. Interestingly, the ensemble spread for WS100 is rather small regardless of the 
geography and season. This suggests that the impact of LSM parameters on the simulated hub-
height wind speed is limited as compared to the that from the PBL and surface layer scheme 
(Yang et al. 2017, Berg et al. 2019; 2021). As for the other variables (SH, LH, GH, T2, and 
LST), the ensemble spread is greater over the wintertime than over the summertime, particularly, 
over regions with high elevation and steep slope. This indicates that parametric sensitivity for the 
near-surface variables is strongly associated with seasonality and geological heterogeneity.  
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Figure 4. Spatial pattern of the intermember standard deviation for the simulated (a) SH, (b) LH, (c) 

GH, (d) WS100, (e) T2, and (f) LST for the summertime period (11−31 July 2016) 

 
Figure 5. Same as Figure 4 but for the wintertime period (12 February to 13 March 2017)  

To further understand the variance induced by the parameter perturbation, Tables 2 and 3 show 
the fraction of variance explained by the four representative terms from the GLM analysis (Eq.1) 
during midday (10 a.m. to 2 p.m.) and midnight (10 p.m. to 2 a.m.) for both summer and winter 
periods, respectively. During the summertime, the parametric term on a domain average 
contributes about 30% of the total variance for all the variables. This suggests that the parametric 
sensitivity for the near-surface variable is relatively weak over the summertime. Interestingly, its 
contribution drastically increases to about 65% during the winter period. The drastic contrast 
between summer and winter indicates that the parametric sensitivity for RUC LSM varies with 
season. In addition, the parameter contribution to the total variance is generally smaller during 
midday than midnight, possibly due to the strong land-atmosphere coupling in the daytime.  
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The relative contribution of each examined parameter (Table1) to the total variances is explored in more detail in the following 
section.  

Table 2. Fraction of Variance of the Simulated Near-Surface Variables Explained by the GLM for Summertime (11−31 July 2016) 

Daytime  Nighttime 
 Parameters Quadratic Interactive Residual  Parameters Quadratic Interactive Residual 

SH 18% 7% 38% 35%  32% 6% 21% 20% 

LH 14% 8% 40% 37%  17% 8% 39% 36% 

GH 53% 4% 22% 20%  45% 5% 26% 23% 

WS100 37% 7% 28% 26%  29% 7% 33% 31% 

T2 35% 6% 30% 28%  58% 4% 19% 18% 

LST 26% 7% 34% 32%  53% 4% 21% 20% 

Table 3. Fraction of Variance of the Simulated Near-Surface Variables Explained by the GLM for Wintertime  
(21 February to 13 March 2017) 

Daytime  Nighttime 
 Parameters Quadratic Interactive Residual  Parameters Quadratic Interactive Residual 

SH 54% 8% 20% 17%  58% 10% 18% 15% 

LH 58% 9% 18% 16%  57% 9% 18% 15% 

GH 48% 11% 24% 17%  42% 9% 18% 15% 

WS100 75% 8% 9% 8%  72% 9% 10% 8% 

T2 72% 7% 11% 10%  66% 8% 14% 11% 

LST 63% 7% 16% 14%  59% 9% 17% 14% 
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3.2 Sensitivity of the Near-Surface Variables to the Parameters From 
the RUC LSM 

As discussed in Section 2.3, the generalized linear model is applied to decompose the total 
variances into portions contributed by individual parameter, higher order, and interaction terms. 
To understand the spatial feature of the parametric sensitivity, we apply the GLM analysis at 
each model grid of the inner domain. Figure 6 shows the spatial pattern of the relative 
contribution of the 11 parameters to the variance of the simulated WS100 for both summer and 
winter periods. To avoid figure redundancy, the result is the average over both daytime and 
nighttime. Even though the day-night contrast of the parametric sensitivity is not explicitly 
discussed in this paper, it will be briefly mentioned in the uncertainty section (Section 4). As 
shown in Figure 6 the blending height (LB) is the most consistent contributing factor to the total 
variance of WS100 for both the summer and winter periods whereas the sensitivity to the melting 
factors (Melt1 and Melt2) increases drastically during the winter period.  

In addition, there is some dependence on the terrain height where the parametric sensitivity is 
generally high over the mountain region and small over the Columbia Basin. Similar studies 
(Yang et al. 2017; Berg et al. 2019 and 2021) have been done using parameters from the PBL 
scheme. Comparing their results with this study, the analysis suggests that the impact of LSM 
parameters on the variability of hub-height wind speed is generally weaker than that from the 
PBL parameters.  

The results for the surface energy fluxes are shown in Figure 7 (SH), Figure 8 (LH) and Figure 9 
(GH). Notably, the sensitivity of LB has dropped significantly for all the surface fluxes for both 
simulation periods. During the summertime, the parametric sensitivity to the surface energy 
fluxes is generally small, suggesting that the processes contributing to the total variance are 
largely nonlinear. Even so, parameters associated with the thermal conductivity, such as KWT, 
KZERO and KQWRTA, can contribute up to ~30 % of the total variance despite their relatively 
small perturbation range (±5% of the default value). During the wintertime, Melt1 and Melt2 are 
still the most dominating contributors. In addition, the strength of sensitivity shows a strong 
dependency on the geographical location. This indicates that the parametric sensitivity from the 
LSM is related to the land-use type and soil category which will be further discussed in the next 
section. The results for LST (Figure 10) and T2 (Figure 11) illustrate the similar characteristic of 
the relative contribution. In general, parameters associated with snow and ice processes are 
dominant over the wintertime whereas parameters associated with thermal conductivity are more 
influential during the summertime. Based on the discussion above, six key RUC LSM 
parameters (Melt1, Melt2, KWT, KZERO, KQWRTZ, and LB) are identified and later analysis 
will only focus on these six key parameters, unless otherwise mentioned.  
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Figure 6. Spatial distributions of relative contributions (%) of each examined parameter (Table 1) 
to the total variances of the simulated WS100 during (a) summertime and (b) wintertime 

 
Figure 7. Same as Figure 6 but for simulated SH flux 
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Figure 8. Same as Figure 6 but for simulated LH flux 

 
Figure 9. Same as Figure 6 but for simulated GH flux 
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Figure 10. Same as Figure 6 but for simulated LST 

 
Figure 11. Same as Figure 6 but for simulated T2 
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3.3 Dependence on Land-Use Type and Soil Texture 
The land surfaces states, such as soil texture and land-use type, play a major role in determining 
the surface roughness length and flux (e.g., energy, momentum, and moisture) transfer. 
Therefore, it is important to understand the dependence of land-use and soil category on the 
parametric sensitivity of the near-surface variables over the simulation domain. In our 
simulation, there are 20 land-use types and 16 soil textures. Within the inner domain, four 
different land-use types (evergreen forest, open shrubland, grassland, and crop land) and soil 
textures (sandy loam, silt loam, loam, and clay clam) represent the surface condition for over 
90% of the total pixels (Figures 1c and 1d). Thus, we categorize the parametric sensitivity of the 
six key parameters over these four dominant land-use and soil categories for both simulation 
periods. 

For all the simulated variables (Figures 12, 13, 14, and 15), the relative contribution to the total 
variances is much higher over the wintertime than summertime regardless of the land-use and 
soil categories. In addition, the variation in the relative contribution over each land-use type and 
soil texture is negligible during the summertime. However, the relative contribution for most 
variables (e.g., SH, LH, LST, and T2) is generally higher over the evergreen forest region than 
the other land-use types during the wintertime due to the significant contribution from Metl2 
(Figure 12 and Figure 14). No significant variation is apparent over the different soil textures 
(Figure 13 and Figure 15). As for individual parameters, similar to what we have discussed in the 
previous section, the parameter associated with surface roughness (LB) is the most consistent 
contributing factor to the simulated hub-height wind speed. Parameters associated with melting 
processes are highly sensitive during the wintertime whereas the parameters associated with 
thermal processes contributes more to the variability during the summertime. This is true 
regardless of whichever land-use and soil categories, which suggests that there is little 
dependence on the land-use type and soil textures to the parametric sensitivity from the RUC 
LSM. 
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Figure 12. The relative contribution of the six key parameters (Melt1, Melt2, KWT KZERO, 

KQWRTZ, and LB) to the variance of (a, b) WS100, (c, d) SH, and (e, f) LST with respect to the four 
dominant land-use types (evergreen forest, open shrubland, grassland, and cropland) for both the 

summer (left) and winter (right) periods 
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Figure 13. Same as Figure 12 but with respect to the four dominant soil textures (sandy loam, silt 

loam, loam, and clay loam) 
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Figure 14. The relative contribution of the six key parameters (Melt1, Melt2, KWT, KZERO, 

KQWRTZ, and LB) to the variance of (a, b) LH, (c, d) GH, and (e, f) T2 with respect to the four 
dominant land-use types (evergreen forest, open shrubland, grassland, and cropland) for both 

(left) summertime and (right) wintertime 
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Figure 15. Same as Figure 14 but with respect to the four dominant soil categories (sandy loam, 

silt loam, loam, and clay loam) 

3.4 Quantify the Sensitivity of the Key Parameters on the Simulated 
Near-Surface Variables  

Previous discussion has identified the six key parameters from the RUC LSM that are 
responsible for the variability of the simulated near-surface variables from the parameter 
perturbation experiments. However, the responses (e.g., positive or negative) of the simulated 
near-surface variables to each parameter is still unknown. To quantify the response, two groups 
of simulations are subcategorized from the original 128 ensemble for each parameter. One group 
consists of model simulations with high values of the parameter (> 75th percentile) while the 
other group has the simulations with low values (< 25th percentile). As a result, each group 
consists of 32 model ensemble members. Therefore, the response of simulated variables to each 
parameter is examined by calculating the difference between the two ensembles with the 
assumption that the impact from the other parameters will be largely canceled out due to the 
nature of random sampling.  

Figure 16 shows the response of simulated WS100 to the six key parameters for both the summer 
and winter periods. Evidently, the LB parameter has a consistent positive impact on WS100 for 
both simulation periods. This indicates that an increase in LB would increase the simulated hub-
height wind speed. The other parameters seem to have a negligible impact during the summer. 
However, the impact from Melt1 and Melt2 dominate during the wintertime when there is a 
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domain-wide change in hub-height wind speed. However, unlike LB, the impacts from Melt1 
and Melt2 are unclear, as the change in WS100 is positive over certain areas but becomes 
negative elsewhere. In addition, the impact is not restricted to regions with snow and ice cover. 
This suggests that the physical processes influencing the simulated WS100 are nonlinear and the 
associated impact is nonlocal. As for SH (Figure 17), LH (Figure 18), and GH (Figure 19) fluxes, 
only Melt1 and Melt2 produce significant changes during the winter. In general, increasing 
Melt1 leads to decreases in surface energy fluxes over snow cover regions over evergreen forest 
whereas responses from increasing Melt2 is a bit ambiguous. Unlike WS100, simulated 
responses from Melt1 and Melt2 are restricted to the snow-cover extent.  Note that there seems 
to be a sharp gradient over the steep slope where the response of the variable completely 
switches sign. This indicates that there is a lot of uncertainty for simulating near-surface 
variables over areas of terrain slope. Thus, more observations are needed for model validation 
and parameter calibration over such regions. Similar responses are also true for LST (Figure 20) 
and T2 (Figure 21). One additional note is that there seems to be a relatively weak domain-wide 
increase in LST associated with parameters of thermal conductivity during the summer. 
However, such impact is not apparent for T2. 

 

Figure 16. Spatial distribution of the responses of wind speed (m.s-1) for the six most significant 
parameters for both the (a) summer and (b) winter periods  
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Figure 17. Same as Figure 16 but for the responses of SH flux (W.m-2) 

 
Figure 18. Same as Figure 16 but for the responses of LH flux (W.m-2) 
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Figure 19. Same as Figure 16 but for the responses of GH flux (W.m-2) 

 
Figure 20. Same as Figure 16 but for the responses of LST (℃) 
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Figure 21. Same as Figure 16 but for the responses of T2 (℃) 
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4 Uncertainty 
The preceding evaluation has identified the six most influential parameters from the RUC LSM, 
examined their relative dependence on land-use type and soil texture, and quantified the 
associated impact on the near-surface variables. However, there are still some areas that need to 
be discussed such as: (i) how sensitive are the results to the parameter perturbation value; (ii) is 
there any significant day/night contrast in terms of the relative contribution from each parameter 
and (iii) are there any other notable parameters that we should be aware of? 

To evaluate the uncertainty of the parametric sensitivity to the perturbation value, a similar 
analysis is conducted using ensemble simulation from two new experiments. In the first 
experiment (EXP1), the perturbation range for all the examined parameters is increased to ± 50 
% of the original values whereas it is reduced to ± 5% in EXP2. Because of the similarity in the 
figures, only results from LST are presented.  Figure 22 and Figure 23 show the spatial 
distribution of relative contribution (%) of each parameter from both experiments during the 
wintertime and summertime respectively. The key contributing parameters are the same from 
both experiments. Note that the relative contribution of parameters associated with thermal 
conductivity (KWT, KZERO, and KQWRTZ) increases significantly in EXP1, especially during 
the summertime. This is more prominent in Figure 24, which shows the relative contribution (%) 
with respect to the dominant land-use types. The contribution from KWT, KZERO, and 
KQWRTZ add up to about 80% of the total variance in EXP1 where it is reduced to about 30% 
in EXP2 due to the small perturbation range (Figure is not shown for the dominant soil textures 
but the result is similar). As a result, the response of LST from EXP1indicates a substantial 
increase in surface temperature from all the thermal-related parameters (Figure 25a and Figure 
26a), whereas response of surface energy fluxes is negative (figure not shown). Therefore, even 
though there is less uncertainty associated with the values of thermal conductivity, any potential 
misrepresentation can have substantial impact on the simulated surface variables. 

Characterizing the day/night contrast of the parametric sensitivity for the simulated near-surface 
variables is not the focus of this study. However, the general conclusion can be summarized. 
Overall, the parametric sensitivity shows no significant day/night contrast during the wintertime 
period. However, during the summertime, parametric sensitivity for SH flux, T2 and LST, shows 
a greater day/night difference for certain parameters (e.g., KWT) in terms of spatial pattern but 
not magnitude. However, considering the insignificance of the relative contribution (Figures 7 
and 8), the associated impact should be negligible. Other than the six identified key parameters, 
the only other parameter that contributes relatively more than the rest is C2SN. This parameter 
can be particularly sensitive to GH flux over snow cover and high-elevation regions during the 
wintertime.  
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Figure 22. Spatial distributions of relative contributions (%) of each examined parameter to the 

total variances of the simulated LST during the wintertime from (a) EXP1 and (b) EXP2 

 
Figure 23. Same as Figure 22 but for the responses of LST (℃) 
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Figure 24. The relative contribution of the six key parameters (Melt1, Melt2, KWT, KZERO, 
KQWRTZ, and LB) to the variance of LST with respect to the four dominant land-use types 

(evergreen forest, open shrubland, grassland, and cropland) for both the summer (left) and winter 
periods from (a,b) EXP1 and (c, d) EXP2 

 
Figure 25. Spatial distribution of the responses of LST (℃) for the six most significant parameters 

for the summer period from (a) EXP1 and (b) EXP2 
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Figure 26. Same as Figure 25 but for the winter period 
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5 Conclusions 
In this study, we investigated the parametric sensitivity of near-surface variables (e.g., SH, LH, 
GH, WS100, LST, and T2) to the parameters used in the RUC LSM during a wintertime and 
summertime periods. The RUC LSM is currently the operational land surface component used in 
the NOAA short-range weather prediction model over the North America domain. Therefore, 
understanding the parametric sensitivity in the RUC LSM would provide critical guidance for 
further model calibration and validation in the next generation of LSM development.   

The results suggest that parameters related to snow/ice and thermal processes can have 
significant impact on the simulated near-surface variables. Out of the 11 examined parameters, 
only 6 of them (KWT, KZERO, KQWRTZ, Melt1, Melt2, and LB) have considerable influences 
on the model behaviors and can explain up to 60%−80% of the estimated total variance of the 
simulated variables. In addition, the magnitude of the parametric sensitivity varies strongly with 
season. For instance, parameters associated with snow/ice processes (Melt1 and Melt2) are 
dominant during the wintertime whereas those associated with thermal processes (KWT, 
KZERO, KQWRTZ) are more important during the summertime. Furthermore, the impact of the 
identified parameters on the simulated variables is highly related to the topography. There is a 
high degree of sensitivity to the parameter values over the slope region. This points out the 
importance of collecting field observations over steep terrain to better quantity the appropriate 
values of these key parameters. Interestingly, parametric sensitivity shows little dependency on 
the land-use type and soil category. The uncertainty analysis indicates that even though the 
uncertainty associated with parameters from thermal conductivity is generally small, any 
potential misrepresentation can have substantial impact on the simulated surface variables. 

The relative importance of parameter sensitivity of RUC LSM to wind energy was also 
investigated by examining the impact on hub-height wind speed. Only one parameter, LB, has 
suggested moderate impact on the simulated hub-height wind speed. However, the associated 
impact on the simulated wind speed is relatively small compared to that from the PBL scheme, 
indicating that the impact from land surface processes on hub-height level wind is secondary as 
compared with the turbulent mixing from the PBL. Overall, our findings provide a better 
understanding of the RUC LSM behavior associated with parameter uncertainties and can be 
used to improve the forecasting skill of land surface processes via calibration of the most 
uncertain model parameters. 
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