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Abstract
This paper presents a Digital Twin for virtual sensing of wind turbine aerodynamic hub loads, as well as monitoring the
accumulated fatigue damage and remaining useful life in drivetrain bearings based on measurements of the Supervisory
Control and Data Acquisition (SCADA) and the drivetrain condition monitoring system (CMS). The aerodynamic load
estimation is realized with data-driven regression models, while the estimation of local bearing loads and damage is
conducted with physics-based, analytical models. Field measurements of the DOE 1.5 research turbine are used for model
training and validation. The results show low errors of 6.4% and 1.1% in the predicted damage at the main and the generator
side high-speed bearing respectively.

Virtuelle Sensoren für die Messung von Hauptwellenlasten und Ermüdungsschäden im Antriebstrang
vonWindenergieanlagen

Zusammenfassung
In diesem Aufsatz wird ein digitaler Zwilling für Windenergieanlagen vorgestellt, welcher die virtuelle Erfassung der
Hauptwellenlasten und die Zustandsüberwachung von Ermüdungschäden und der verbleibende Nutzungsdauer der An-
triebsstranglager ermöglicht. Der digital Zwilling nutzt Messdaten des Supervisory Control and Data Acquisition (SCADA)
Systems und des Zustandsüberwachungssystems des Antriebsstranges (CMS). Die Berechnung der Hauptwellenlasten ist
mit datenbasierten Regressionsmodellen umgesetzt, während die Berechnung der Lagerkräfte und der Ermüdungsschaden
mit physikbasierten Modelle durchgeführt wird. Für die Modellentwicklung und -validierung werden Feldmessdaten der
DOE 1.5MW Turbine eingesetzt. Die Abweichungen in den Ermüdungsschäden am Hauptwellenlager und am Generator-
wellenlager betragen lediglich 6,4% beziehungsweise 1,1%.

1 Introduction

Offshore wind turbine installations are projected to acceler-
ate rapidly in the near future driven by better wind resources
and higher social acceptance rates compared to onshore
sites [24]. However, a major economic limitation of off-
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shore wind turbines are high operational and maintenance
expenditures (OPEX), which amount to about 34 % of the
levelized cost of energy (LCOE) [19]. These are caused by
lower reliability due to harsher environmental conditions
and time-consuming replacement or repair due to difficul-
ties accessing the site and dependency on good weather
conditions. A major contributor to OPEX is the geared driv-
etrain with frequent failures and long downtimes and is thus
the subject of current research [23].

Digital Twin (DT) is an emerging technology with
prospects of decreasing operational and maintenance ex-
penditures and improving the market competitiveness of
offshore wind farms. The wind turbine drivetrain DT
proposed by the authors in [readacted] would enable moni-
toring of fatigue loads at otherwise inaccessible locations
such as bearings and gear contacts using ’virtual sensors’
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Fig. 1 Digital Twin framework for continuous remaining useful life estimation in wind turbine drivetrain components

and thus support Remaining Useful Life (RUL) assess-
ment based on the true load history. A framework with
the three components Data, Virtual model and Decision
support is envisioned for this objective (Fig. 1). Data is
collected continuously by sensors of the Supervisory Con-
trol and Data Acquisition system (SCADA), the condition
monitoring system (CMS), and from other sources such
as metocean forecasts and maintenance logs. The Virtual
model comprises of decoupled simulation models to rep-
resent the physics at different scales. Aerodynamics and
structural dynamics of tower and blades are captured with
the aeroelastic model. The resulting hub loads and nacelle
motions are imposed as boundary conditions on the drive-
train model, which produces local bearing and gear forces.
These are used as input for the fatigue damage model
consisting of stress cycle counting algorithms and S-N
curves. The virtual model and its physical counterpart are
synchronized with real-time field measurements using state
estimators such as the Kalman Filter. The synchronization,
also referred to as data fusion or Digital Twinning, is es-
sential as it facilitates measurements of virtual sensors in
the synchronized model. The virtual sensor measurements
are converted to value adding information for the turbine
operator in the component called Decision support. In this
study the focus is on RUL assessment of drivetrain com-
ponents, which is necessary to move from corrective to
predictive maintenance strategies.

Preliminary investigations on the feasibility of the pro-
posed DT have been conducted in a numerical case study in
[redacted]. In this study the proposed DT is further validated
with with field measurements of the DOE 1.5 MW turbine
instrumented by NREL [18]. Main bearing loads estimated
with the proposed virtual sensing method are compared to
field measurements obtained from shaft strain gauges under
different operational conditions.

Other studies are found in literature, which are concerned
with estimating main shaft loads with a virtual sensing ap-
proach. Several works pursue an inverse approach for real-

time estimation of the rotor torque based on SCADA mea-
surements. By simplifying the drivetrain dynamics to a two
degrees of freedom (DOF) torsional system, the SCADA
signals generator torque along with the LSS and HSS speeds
contain enough information to predict the unknown ro-
tor torque [3, 12, 15, 17]. The drivetrain model may be
constructed without knowledge of manufacturer’s specifi-
cations using data-driven system identification techniques
such as least-squares estimators [15]. Data fusion is re-
alized with state estimators, for example Kalman Filters
(KF) [15], or regularization methods [17].

Several works are concerned with virtual sensing of rotor
thrust, but with the objective of structural health monitoring
of the tower rather than drivetrain components. A common
approach involves constructing a dynamic, flexible tower
model and use state estimation methods based on tower top
acceleration and/or strain gauge measurements [20].

Notable publications that fit the proposed Digital Twin
framework (Fig. 1) are presented by Branlard et al. and
Azzam et al. [2, 4]. Branlard et al. present a holistic wind
turbine DT capable of estimating both thrust and torque
based on SCADA measurements and a linearized aeroelas-
tic model [4]. Validation of the DT is conducted with both
simulation and field measurements, however the scope is
limited to structural dynamics of the tower and blades. Az-
zam et al. present a DT that also considers drivetrain dy-
namics [2]. The DT is constructed by regression on aeroe-
lastic and drivetrain multi-body simulations and serves the
purpose of estimating all six main shaft load components
based on SCADA measurements. Unfortunately, their work
is purely numerical and not supported by experimental or
field measurements.

The novel contributions of this paper in comparison to
existing research are summarized as follows.

� Validating the concept of virtual sensing of drivetrain
loads with field measurements rather than numerical
simulations
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Fig. 2 Overall methodology
for virtual sensing of drivetrain
loads and remaining useful life
estimation

� Monitoring fatigue damage in drivetrain components
rather than the tower or blades

� Leveraging high-frequency CMS vibration measure-
ments as opposed to using only SCADA measurements

The remainder of this paper is organized as follows. Sect. 2
presents the proposed methodology for virtual sensing of
drivetrain loads and remaining useful life estimation. It fol-
lows a discussion of the errors between field measurements
and predictions using the virtual sensors in Sect. 3. Con-
cluding remarks are given in Sect. 4.

Table 1 Field measurements of the DOE 1.5 turbine [18] used in this study

Category Signal Sensor type Symbol

SCADA Active Power Voltage P

LSS speed Encoder !LSS

HSS speed Encoder !HSS

Nacelle wind speed MET tower u

Acceleration tower top east-west Accelerometer aNac,EW

Acceleration tower top north-south Accelerometer aNac,NS

CMS Acceleration generator back Accelerometer aGen,B

Acceleration generator front Accelerometer aGen,F

Acceleration HSS generator side Accelerometer aHSS,GS

Acceleration HSS rotor side Accelerometer aHSS,RS

Acceleration Planetary Accelerometer aPL

Acceleration Torque arm 1 frame Accelerometer aTA1;F

Acceleration Torque arm 1 horizontal Accelerometer aTA1;H

Acceleration Torque arm 1 vertical Accelerometer aTA1;V

Acceleration Torque arm 2 horizontal Accelerometer aTA2;H

Acceleration Torque arm 2 vertical Accelerometer aTA2;V

Hub loads Torque Main shaft strain gauges Ma,x

Pitch moment Main shaft strain gauges Ma,y

Yaw moment Main shaft strain gauges Ma,z

Thrust Tower base strain gauges Fa,x

2 Methodology

The overall methodology is illustrated in Fig. 2. Several
SCADA and CMS signals, described in Sect. 2.1, are
filtered and postprocessed to extract statistical features
(Sect. 2.2). Data-driven regression models are then trained
to map the SCADA and CMS features onto measured aero-
dynamic hub loads (torque, yaw moment, pitch moment,
thrust), as detailed in Sect. 2.3. Local forces at the main
bearing and the high-speed shaft generator side (HSS-GS)
bearing are then calculated with a low-fidelity, physics-
based drivetrain model, presented in Sect. 2.4. The remain-
ing useful life (RUL) is estimated based on the fatigue
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damage model of ISO 281 (Sect. 2.5). Lastly, the RUL is
scaled with a safety factor to account for uncertainties in
the load estimation (Sect. 2.6).

2.1 Description of dataset

The dataset was acquired as part of a field measurement
campaign with the U.S. Department of Energy 1.5 MW
(DOE 1.5) turbine at the National Renewable Energy Lab-
oratory (NREL) [18]. The DOE 1.5 turbine is based on
a commercial GE 1.5 SLE turbine with a custom configu-
ration. In addition to a standard SCADA system and driv-
etrain CMS the turbine is equipped with strain gauges at
the tower base, tower top, blade roots and the main shaft to
fully monitor multiaxial aerodynamic loads.

The sensor signals used in this study are listed in Table 1.
The following SCADA signals are considered in this study,
which are reportedly sensitive to the main shaft loading:
Active power, HSS and LSS speed, Nacelle wind speed,
as well as tower top acceleration. The CMS sensors are
installed in a typical configuration and positioned on the
housing of the generator (Gen), the high-speed gear stage
(HSS), planetary gear stage (PL) and each of the torque
arms (TA). The aerodynamic loads at the rotor hub includ-
ing the torque, pitch moment, yaw moment and thrust are

Table 2 Statistical features calculated for SCADA and CMS signals

Feature Symbol Formula

Mean � E Œx�

Standard deviation �

r
E

h�
x−�

�

�2i

Skewness skew E
h�

x−�

�

�3i
Kurtosis kurt E

h�
x−�

�

�4i

Root mean square RMS
q

1
N

PN
n=1x

2
n

Maximum max maxnx

Minimum min minnx

Peak amplitude peak maxnx − minnx

1P-amplitude A1P k Sxx.f1P / k
2P-amplitude A2P k Sxx.f2P / k
3P-amplitude A3P k Sxx.f3P / k

Table 3 Statistical regression models for predicting hub loads based on SCADA and CMS measurements

Regression model Hyperparameters Training function

Linear regression (LR) – Least squares

Support vector machine KernelFunction Linear/quadratic Least squares

(SVM) BoxConstraint Default

KernelScale Default

Epsilon Default

Tree ensemble MinLeafSize 8 Least-squares boosting/

(Boosted Trees/Bagged Trees) NumLearningCycles 30 Bootstrap aggregation

LearnRate 0.1

measured with strain gauges at the main shaft downwind of
the main bearing and at the tower base. The calibration of
the strain gauges is described in [18].

The dataset used in this study comprises of a total of
830 measurements of 10min length recorded from 31. Oct
2018 to 05. Dec 2018. The sampling frequency is 50Hz for
all signals.

2.2 Data postprocessing

The dataset is filtered for normal power production, which
is identified by three criteria

� Main shaft speed > 10.5rpm
� Blade 1 pitch angle < 50ı
� Active power > 0kW

In addition, a moving average filter with window size of 1s
is applied on the recorded strain gauge signals.

Best practice in drivetrain condition monitoring is the ex-
traction of statistical features, which are indicative of faults
or damage [16]. The recorded SCADA and CMS measure-
ments are partitioned into 10min segments and the features
listed in Table 2 are calculated for each segment. These in-
clude a wide range of the most commonly used features in
the time domain (x) and frequency domain (Sxx). The fea-
tures that are eventually utilized as input for the regression
models are determined by a sensitivity analysis in Sect. 3.2.

2.3 Data-driven regressionmodels

Regression models are used in this study to map the pre-
dictors, the SCADA and CMS statistical features, onto the
targets, the aerodynamic hub loads. Several linear and non-
linear regression models are investigated for this purpose
including Linear Regression (LR), Support Vector Machine
(SVM) and Tree ensembles, as described in Table 3. For
a detailed description of each regression model type it is
referred to [6]. Implementation and training is realized with
MATLAB’s Statistics and Machine Learning Toolbox [9].
The dataset is partitioned 80/20 into training data and test
data, and the models are regressed onto the training data
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Fig. 3 Definition of forces and
moments

using least squares regression and five-fold cross valida-
tion. Hyperparameters are not optimized and are set to the
default values provided by MATLAB.

2.4 Physics-based drivetrainmodel

The DOE 1.5 MW turbine is instrumented with strain
gauges at the blade roots, the main shaft and the tower top
and base to monitor the multiaxial loading of the turbine.
The aerodynamic loads at the rotor hub, as well as loads at
the main bearing and HSS-GS bearing are calculated from
strain gauge measurements using an analytical model, pre-
sented in [1, 5]. The analytical model assumes steady state
operation and neglects any torsional or bending dynamics
of the main shaft and the tower. With this assumption it is
possible to determine bearing loads by moment balances.

First, the aerodynamic moments including torque Ma,x,
pitch moment Ma,y and yaw moment Ma,z are determined
from the measured main shaft moments Mms by moment
balance around the main bearing (Fig. 3) and expressed in
the fixed coordinate frame at the hub. The thrust Fa,x is
calculated from the tower base moment Mtb,y by moment
balance around the tower base (Fig. 3)

Ma,x = Mms,x (1)

Ma,y = Mms,y − Mms;y0 (2)

Ma,z = Mms,z (3)

Fa,x = −
Ma,y + Mtb,y − Mtb;y0

h cos.˛/ − d1 sin.˛/
(4)

where Mms;y0 and Mtb;y0 are gravitational moments due
to the rotor overhang expressed at the main bearing and
tower base respectively, h denotes the tower height, d1 the

distance from the hub to the tower top and ˛ the main shaft
tilt angle (Table 4)

The installed main bearing is a SKF 240/600 BC spher-
ical roller bearing in a 3-point configuration and thus con-
sidered to only support radial and axial forces. The torque
arms are also considered to only experience radial and ax-
ial forces and the stiffness of the generator coupling is ne-
glected. In steady state operation the main bearing forces
Fmb are then calculated as follows (Eqs. 5–7). The axial
force is governed by thrust, while the radial force is gov-
erned by the yaw and pitch moments.

Fmb,x = Fmb;x0 + Fa,x (5)

Fmb,y = −Ma,z=dGB (6)

Fmb,z = Fmb;z0 − Ma,y=dGB (7)

where Fmb;x0 and Fmb;z0 is the rotor, shaft and gearbox
weight projected onto the x an z axis respectively and dGB

is the distance from the main bearing to the torque arms
(Table 4).

The HSS-GS bearing is a SKF NU232 cylindrical roller
bearing and thus only supports radial forces. The radial
force is governed by the transmitted gear force at the high-
speed gear stage, which is calculated from the rotor torque
by neglecting all torsional dynamics

FHSS,rad =
Ma,x

iGBrb

dRS

dGS
(8)

FHSS,x = 0 (9)

where iGB denotes the gearbox ratio, rb the base radius of
the pinion and dRS, dGS the distance from the generator-
and rotor side HSS bearings to the pinion center (Table 4).
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Table 4 Parameters of analytical model for bearing load calculation according to [1, 5]

Parameter Symbol Unit Value

Gravity force projected on x-axis Fmb;x0 kN 43.0

Gravity force projected on z-axis Fmb;z0 kN 618.0

Gravity moment at main bearing Mms;y0 kNm −198.0

Gravity moment at tower base Mtb;y0 kNm −943.83

Tower height h m 80

Distance hub – tower top d1 m 3.65

Distance main bearing – torque arms dGB m 2.09

Distance HSS-GS bearing – pinion dGS mm 327.5

Distance HSS-RS bearing – pinion dRS mm 225.5

HSS pinion base radius rb mm 87.4

Main shaft tilt angle ˛ deg 5

Gearbox ratio iGB – 78.292

Main bearing axial load factor Y1 – 2.3

Main bearing axial load factor Y2 – 3.4

Main bearing limiting value e – 0.3

Main bearing basic dynamic load rating C kN 8502

HSS-GS bearing basic dynamic load rating C kN 585

Nominal design life tnom year 20

2.5 Fatigue damage and remaining useful life

The bearing fatigue damage and remaining useful life is
based on ISO 281 [7], which defines the equivalent dynamic
load P for cylindrical roller bearings (CRB) and tapered
roller bearings (TRB) as

for CRB: P = Frad (10)

for TRB: P =

�
Frad + Y1Fax; if Fax=Frad � e

0.67Frad + Y2Fax; otherwise
(11)

where Y1, Y2, e are bearing specific parameters (Table 4).
The equivalent dynamic load is calculated with 10min aver-
age load estimates denoted as P i . For each 10min section
indexed by i the permissible stress cycles Ni are then cal-
culated with the bearing lifetime equation

Ni = 106
�

C

P i

�m

(12)

where C is the basic dynamic load rating and m equals
10/3 for roller bearings. The experienced stress cycles ni

are determined using the load duration distribution (LDD)
method, which counts one stress cycle per shaft revolu-
tion due to entering and exiting the bearing load zone [13].
Using 10min average shaft speeds !i the LDD method
simplifies to

ni = !i �t; (13)

where �t equals 10min. It follows the dimensionless short-
term fatigue damage DST

i , which is defined as the ratio of
experienced to permissible stress cycles

DST
i = ni=Ni (14)

The long-term damage DLT.t/ is obtained with the Palm-
gren-Miner linear damage hypothesis by summation of all
previous short-term damage and is updated in 10min inter-
vals for real-time damage monitoring

DLT.t/ =
t=�tX
i=0

DST
i (15)

By definition, the bearing has consumed its damage reserves
and reached its end of life at DLT = 1. With a nominal
life tnom of 20 years the remaining useful life RUL is then
calculated as follows

RUL.t/ = tnom
�
1 − DLT.t/

�
(16)

2.6 Damage uncertainty model

Using 10min average load estimates for the damage cal-
culation reduces computational costs and enables real-time
monitoring, however it introduces uncertainties by neglect-
ing high-frequency load fluctuations, which may originate
in the aerodynamics or internal drivetrain dynamics. The
damage is generally underestimated with averaged loads,
since load peaks are disproportionally more damaging than
load minima due to the exponentiation with m (Eq. 12). The
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uncertainty �avg is expressed as the ratio of the true short-
term damage DST

50Hz measured at 50Hz and the short term
damage based on 10min average load estimates DST

10min-avg.
The fluctuations of the equivalent dynamic load within
a 10min period are modelled with a statistical variable
X � N.�; �/, which is normally distributed with mean
value � and standard deviation � . It is further assumed that
variations of the shaft speed are negligible, such that Eq. 13
remains valid. It follows for the uncertainty �avg

�avg W= DST
50Hz

DST
10min-avg

=
E.Xm/

ŒE.X/�m
(17)

where the expected values E are given by the law of the
unconscious statistician (LOTUS) [8] using the standard
normal statistical variable Z = X−�

�

E.Xm/ =
1p
2�

Z 1

−1
.� + �z/mexp.−z2=2/dz (18)

E.X/m = �m (19)

It is evident that the uncertainty �avg is only a function of
the 10min mean and standard deviation, which are both
estimated with data-driven regression models (Sect. 2.3).

Fig. 4 10min mean and standard
deviation of measured aerody-
namic loads in fixed frame of the
rotor hub

3 Results and Discussion

3.1 Measured hub loads and fatigue damage

Shown in Fig. 4 are the distributions of the measured hub
loads for verification of the results. The mean torque fol-
lows the analytical thrust curve and levels out at rated
torque, while the highest torque variance is observed at
about 10m/s slightly below rated wind speed of 14m/s.
This behaviour is similarly reported in other works [13]
and is likely due to effects of the pitch controller, which fre-
quently activates and deactivates in this region causing high
torque amplitudes. The aerodynamic pitch moment is pre-
dominantly a result of thrust differences between the upper
and lower rotor disk due to the vertical wind profile. Posi-
tive trends of the mean and variance with reference to wind
speed is observed. The yaw moment is similarly a result of
aerodynamic imbalance, predominantly yaw misalignment.
Contrary to the pitch moment, the yaw moment is centered
around zero mean and is independent of wind speed. The
measured thrust agrees well with simulated thrust curves,
as demonstrated in [5]. The highest variance in thrust is
measured at around 8m/s, which is slightly lower than the
peak of torque variance.

The calculated bearing damage based on the measured
hub loads are presented in Fig. 5. It is emphasized here
that rotating machine elements such as bearings and gears
experience stress cycles even at stationary environmental
loads due to the shaft rotation. For this reason the LDD
method [13] is used in this study for stress cycle counting
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Fig. 5 10min fatigue damage at
the main bearing and HSS-GS
bearing based on measured hub
loads

as opposed to the rainflow counting method commonly used
for (non-rotating) structural elements. The fatigue damage
at the main bearing comprises of two components, an axial
component Dax = XFax=P � D due to thrust and a radial
component Drad = Y Frad=P � D due to gravity and pitch
moments. The maximum in fatigue damage is observed at
11m/s and coincides with the thrust peak. In this operational
region the axial forces dominate and amount to about 66%
of the equivalent dynamic load P . At wind speeds above
16m/s the contribution of radial forces due to pitch mo-
ments becomes dominant and below 8m/s with relatively
low aerodynamic loads the contribution of gravity forces
becomes dominant.

The HSS-GS bearing experiences only radial forces,
which are considered to be proportional to the rotor torque
(Eq. 8). Thus, the fatigue damage is governed by the mean
rotor torque and reaches its maximum above rated wind
speeds.

Fig. 6 SCADA (blue) and CMS signals (red) ranked according to their correlation with mean and standard deviation of hub loads

3.2 Sensitivity analysis

A sensitivity analysis is conducted with the objective of di-
mensionality reduction of the predictor variables. The sen-
sor signals (Table 1) and statistical features (Table 2) are
selected, which are the best predictors of hub loads ac-
cording to the metric of the Neyman-Pearson correlation
coefficient. Presented in Fig. 6 are the ten best performing
signals SCADA signals (in blue) and CMS signals (in red)
for each hub load component.

The generator torque is as expected an excellent predic-
tor of both the mean and the standard deviation of rotor
torque with R > 0.99. Prediction of the absolute values of
the bending moments on the other hand is challenging, as
neither of the SCADA or CMS signals show statistically
significant correlation (R < 0.5). However, the moment
standard deviations show high correlation (R = 0.88) with
respect to the wind speed, as well as other SCADA signals.
The torque correlates well with all SCADA signals, as well
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Fig. 7 Normalized RMSE be-
tween measured and predicted
hub loads with different re-
gression models and different
SCADA/CMS input

as the CMS vibrations at the HSS, the generator and the
nacelle frame.

3.3 Hub load estimation

Several regression models, as described in Table 4, are used
to map sensor measurements onto the aerodynamic hub
loads. Two different scenarios of sensor input are consid-
ered: (1) only SCADA signals, (2) combined SCADA and
CMS signals. This serves the purpose of assessing the added
value of CMS vibration data and validating the novel ap-
proach of virtual sensing based on vibration measurements.
The metric for model performance is the root mean square
error (RMSE) between measured and predicted loads us-
ing 5-fold cross validation. Shown in Fig. 7 is the RMSE
normalized to the maximum value of each hub load.

It is evident that the estimation of the mean and stan-
dard deviation of the rotor torque is accurate with mini-
mum RMSE of 0.24% and 0.46% respectively. The best
performance is observed is observed with a simple linear

Fig. 8 Normalized RMSE be-
tween measured and predicted
bearing damage with different
regression models and different
SCADA/CMS input

regression model, due to the high linear correlation of the
rotor torque with the measured generator torque.

Concerning the bending moments, it appears that esti-
mating the mean value is much more challenging than es-
timating the standard deviation. A possible reason is that
the mean bending moments unlike torque and thrust do not
show a clear trend with respect to wind speed (Fig. 4). The
inclusion of CMS vibration data slightly improves the pre-
diction accuracy of bending moments in most cases. Non-
linear regression models are preferable, since the relation-
ship of bending moments and dynamic drivetrain responses
appear to be non-linear.

The mean thrust as well as the standard deviation is
estimated with relatively low RMSE of 8.0% and 6.0%. It
is clear that non-linear regression models are necessary to
capture the non-linear behaviour such as the thrust-wind
speed curve (Fig. 4). In this case CMS vibration data do
not appear to increase performance.

K



216 Forsch Ingenieurwes (2023) 87:207–218

Fig. 9 Measured and predicted
bearing RUL with the best
performing regression model
(quadratic SVM/LR)

3.4 Fatigue damage and remaining useful life

The measured and estimated hub loads discussed in the pre-
vious section are converted into short-term (10min) fatigue
damage in the main bearing and the HSS-GS bearing using
Eqs. 5–16. The RMSE of the fatigue damage normalized to
its maximum value is presented in Fig. 8.

The damage in the main bearing is estimated with high
accuracy (RMSE = 6.4%) despite high uncertainty in esti-
mating the bending moments. These results suggest that the
damage in the main bearing is governed by thrust, which
can be estimated more accurately. The best performance is
achieved by the quadratic SVM, which is able to capture
the non-linear behaviour best. For monitoring the damage
in the HSS-GS bearing a linear regression model suffices,
which results in RMSE of 1.1%.

It appears that the inclusion of high-frequency CMS vi-
bration measurements does not provide much value for mo-
nitoring bearing fatigue damage and that the considered
10min average SCADA measurements are sufficient to es-
timate the damage within a 6.4% error margin.

Fig. 9 presents the measured and predicted RUL with the
best performing regression model. During the recorded time
frame of 138.3h the measured RUL of the main and HSS-
GS bearing is reduced only by 20.8h and 17.5h respec-
tively. The discrepancy can be attributed to conservative
design, for example in the selection of design load cases
(DLC), which are more severe than the actual experienced
environmental conditions. Furthermore, the sample size is
relatively small and the time frame of the recordings of 31.
Oct to 05. Dec is not representative for seasonality effects.

The RUL is overestimated significantly despite high ac-
curacy in the predicted 10min average loads. This is caused
by high-frequency load dynamics for example from turbu-
lence or internal drivetrain dynamics, which are not ac-
counted for with 10min average load estimates. The dis-
crepancy is partially compensated with the damage uncer-

tainty model (Sect. 2.6). A good agreement with the mea-
sured RUL is observed at the HSS-GS bearing, while at
the main bearing there remains a larger error possibly due
to higher uncertainties in predicting bending moments and
thrust.

3.5 Method limitations and further work

While the presented Digital Twin exhibits high accuracy
in predicting aerodynamic loads and bearing damage, it is
crucial to discuss the method assumptions and associated
uncertainties, which limit the applicability of this method.

Field measurements: The data used in this study
(Sect. 2.1) are representative for commercial SCADA and
CMS measurements with the exception of the wind speed.
The wind speed data were acquired with a MET mast about
150 m downwind of the turbine. Commercial wind turbine
SCADA systems, however, mostly rely on nacelle mounted
anemometers, which suffer from greater inaccuracies due
to wake effects. The additional measurement uncertainty
can be estimated with a coefficient of variation (COV) of
1 − 3% according to Toft et al. [21].

Aeroelastic model: The presented regression model
(Sect. 2.3) relies on a training data set of aerodynamic
loads, in this case obtained by strain gauge measurements,
which are not available in commercial wind turbines. Alter-
natively, it is possible to emulate field measurements with
measurements from high-fidelity simulation models, simi-
lar to the approach of Azzam et al. [2]. Naturally, this shifts
the challenge to the model construction and validation and
introduces additional uncertainties due to modelling errors.
Such uncertainties can be approximated with a COV of
5% according to Nejad et al. [13], however it is difficult
to make generalized statements. In further studies it is
planned to compare the data-driven regression models with
an aeroelastic model of the DOE 1.5 turbine, which has
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been developed and validated by other authors [5], in order
to quantify modelling uncertainties.

Drivetrain model: State-of-the-art drivetrain models are
highly complex multibody simulation (MBS) models [14,
22], and are not suitable as Digital Twin models, as dis-
cussed in [11]. First, the high number of degrees of free-
dom (DOF) make them numerically expensive and not ca-
pable of real-time simulation, which is necessary for on-
line monitoring purposes. Secondly, wind turbine operators
do not have the means of developing and validating com-
plex models, since the drivetrain specifications are largely
confidential to the OEMs. For this reason, a relatively sim-
ple drivetrain model is used in this article, which assumes
a quasi-static transmission of torque and neglects all in-
ternal dynamics including effects of component flexibility,
multi-body interaction and excitations from gear meshing
or roller bearings (Sect. 2.4). The effects of internal dynam-
ics on bearing fatigue damage are expected to be relatively
small, as suggested by the results of a previous numerical
case study [10], where RMSE of 5–15% in the bearing fa-
tigue damage were observed. However, the scope of the nu-
merical case study was limited to the high-speed gear stage
bearings, normal power production at rated wind speed and
one drivetrain configuration. Further numerical investiga-
tions are scheduled better quantify the modelling errors of
such reduced order drivetain models.

4 Conclusion

This paper presents a Digital Twin for virtual sensing of
wind turbine hub loads based on SCADA and CMS mea-
surements, as well as monitoring the accumulated fatigue
damage and remaining useful life in the main and HSS-GS
bearing. The Digital Twin is constructed for the DOE 1.5 re-
search turbine [18] and evaluated with field measurements.
Several data-driven regression models including linear re-
gression models, support vector machines and tree ensem-
bles are trained on field measurements for the aerodynamic
hub load estimation. For calculation of local bearing loads
a low-fidelity physics-based model is constructed with the
assumption of steady-state operation. The remaining useful
life is calculated based on the consumed fatigue damage
reserves according to ISO 281 [7].

While the estimation of rotor torque and thrust is accu-
rate with RMSE of 0.24% and 6.0%, it proves to be much
more challenging to estimate the yaw and pitch bending
moments. The measured bending moments appear to be
highly stochastic and do not show statistically significant
correlation (R < 0.5) with any of the considered SCADA
and CMS measurements.

Nonetheless, relatively low RMSE of 6.4% in the 10min
fatigue damage are observed at the main bearing despite

the high uncertainty in the bending moment estimates. It
appears that the damage in the main bearing is governed by
thrust, which is estimated much more accurately than the
bending moments. The damage at the HSS-GS bearings is
assumed to only depend on the drivetrain torque and can
thus be estimated with high accuracy (RMSE=1.1%).

The main contribution of this article is the knowledge
transfer of the virtual sensing concept from wind turbine
structural elements to drivetrain components, and valida-
tion of the concept with field measurements. With regards to
the quality and availability of physical sensor measurements
the proposed virtual sensors are feasible. SCADA and CMS
data contain sufficient information for accurate monitoring
of bearing fatigue damage. Challenges are identified in the
multi-body drivetrain dynamics, which are much more com-
plex than the dynamics of the tower and blades. However,
developing and validating models to capture complex driv-
etrain dynamics is difficult based on the information that
is available to wind turbine operators. Low fidelity, quasi-
static models, which largely neglect internal drivetrain dy-
namics, are shown to produce low errors of bearing fatigue
damage, and are thus proposed for virtual sensing purposes.
Further investigations are planned to quantify the uncertain-
ties introduced by quasi-static drivetrain models.
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