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Controllable Grid Interface (CGI) Control Diagram
• Power-hardware-in-the-loop (PHIL) 

interface is now very well characterized
• Tools for stability analysis developed

ZG(s) – impedance of simulated grid
ZL(s) – impedance of load / DUT
ZP(s) – impedance of PHIL system from DUT 
perspective

G(s) – voltage path ~ delay e-sTd

Hs(s) – sensor transfer function – closed    
loop hall effect current sensor

HF(s) – current filter

PHIL Interface
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Acronyms:
DUT – Device Under Test
RTDS – Real-Time Digital Simulator
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G(s) – Voltage Path Transfer Function
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CGI#1 approximate transfer function:

𝐺𝐺 𝑠𝑠 = 𝑒𝑒−𝑠𝑠𝑇𝑇𝑑𝑑 1−𝑒𝑒−𝑠𝑠𝑇𝑇𝑠𝑠

𝑠𝑠𝑇𝑇𝑠𝑠

1
𝑠𝑠
𝜔𝜔𝑐𝑐
+1

Transport delay
Td = 220 µs

Sampling
TS = 250 µs

Low-pass
Fc = 1 kHz

CGI#2 – we expect significant improvement 
in all aspects.
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H(s) – Current Path
Option 1 (past)
• Decoupled pos/neg sequence measurements
• Independent delay compensation of pos/neg 

sequence
• 2nd-order filter
• Prone to instabilities due to transformer 

saturation.

Option 2 (recent)
• 1st- or 2nd-order filter
• Delay compensation of positive 

sequence only
• Much higher bandwidth with proper 

stability design.

Fc = 20 Hz
Fc = 10 Hz
Fc = 5 Hz

Fc = 400 Hz
Fc = 200 Hz
Fc = 50 Hz
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PHIL/Virtual Impedance – R-R Divider

Using moderate filter H(s) with Fc = 350 Hz
R2 > R1: SCR = 2 – stable
R2 = R1: SCR = 1 – stable
R2 < R1: SCR = 0.5 – unstable
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Oscillation at 370 Hz

Acronyms:
SCR – short circuit ratio
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PHIL Accuracy – Example Fc = 350 Hz/1st-Order

ZG(s)

Z
L (s)~
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Real DUTSimulation

Zphil(s) ZL(s)ZG(s)

At 60 Hz – perfect matching of magnitude 
and phase
• Delay compensated
• Steady state: PQG = PQL
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PHIL Accuracy – Example Fc = 350 Hz/1st-Order
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BW10deg = 86.1 – 34.4 = 51.7 Hz
• Very high accuracy in this area 
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PHIL Accuracy – Example Fc = 350 Hz/1st-Order

ZG(s)

Z
L (s)~
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Real DUTSimulation
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BW45deg = 176.6 – (–60.5) = 237.1 Hz
• Impedance characteristics preserved
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PHIL Accuracy – Example Fc = 350 Hz/1st-Order
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Outside BW45deg – filter out try to stay stable
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PHIL Bandwidth 
Definition

• BW10deg and BW45deg do 
not take magnitude error 
into consideration

• Relative impedance error:

E𝑟𝑟𝑟𝑟𝑍𝑍 𝑠𝑠 =
𝑍𝑍𝑝𝑝ℎ𝑖𝑖𝑖𝑖 𝑠𝑠 − 𝑍𝑍𝐺𝐺(𝑠𝑠) 2

𝑍𝑍𝐺𝐺 𝑠𝑠 2

𝐵𝐵𝑊𝑊5% = 65.9 Hz ≈ 𝐵𝐵𝑊𝑊10deg
𝐵𝐵𝑊𝑊50% = 223.2 Hz ≈ 𝐵𝐵𝑊𝑊45deg
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Signal Dynamics

60 to 59 Hz frequency step
e.g.:
• Fault Ride-Through
• Load-gen balancing
• Inertia studies

100 ms voltage ramps (6 cycle)
e.g.:
• V-Q droops slow support by 

Inverter Based Generation
• Soft black start

0 ms - V step
e.g.:
• Fault near DUT terminals
• Breaker opening/closing
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10 ms voltage ramps (sub-cycle)
e.g.:
• Generators exciter control 

interactions
• Faster voltage control
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PHIL/Virtual Impedance – R-R Divider
SCR = 1, Fc = 300 Hz

RG = 174 Ω
RL = 174 Ω

𝐵𝐵𝑊𝑊5% = 59.8 Hz ≈ 𝐵𝐵𝑊𝑊10deg
𝐵𝐵𝑊𝑊50% = 211 Hz ≈ 𝐵𝐵𝑊𝑊45deg

Time constant:

𝜏𝜏~
1

π𝐵𝐵𝑊𝑊50%
= 1.5 ms
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What Is Wrong With Bandwidth Definition?
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SCR = 1 𝐵𝐵𝑊𝑊50% = 211 Hz
SCR = 0.5 𝐵𝐵𝑊𝑊50% = 123 Hz
SCR = 0.2  𝐵𝐵𝑊𝑊50% = 37 Hz

𝐵𝐵𝑊𝑊50% does not give very good picture 
of what transient disturbance will look 
like.

Below – various bandwidth – same 
transient response.

Filter tuned to achieve same phase 
margin.
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Mitigation of Transient Spikes

• Ramp rate limitation on 
perturbation signal

• Move H(s) filter onto 
voltage path
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Maui – SAPPHIRE – PHIL

Dynamics of Maui model: 
• Above 100 Hz – dominated by input 

transformer
• Inertia, frequency, and voltage droops 

information is carried in narrow bandwidth of 
~20 Hz

• PHIL high frequency stability can be designed 
just by knowing input transformer impedance, 
and it is fixed for all cases.

Simulation bandwidth BW50% = 137 Hz 
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Oscillation at 22 Hz

Fosc = 15/(5.787–
5.052) = 20.4 Hz

By comparing ZG(s) and ZL(s):
At nominal scaling of 30 MW, the plant is stable. 
Oscillation mode at 22.2 Hz is expected with no 
PHIL with 3 dB of damping.

In PHIL we measured 20.4 Hz damped oscillation.

Also, the prediction is that if plant was scaled to 
50 MVA, the system will become unstable.

Ideal Nyquist plot – no 
impact of PHIL interface 
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Oscillation at 135 Hz

Oscillation mode 1: Aggressive voltage droop
• Inverter based resource operates with aggressive 

voltage droop – no issue on strong grid
• Ideal stability analysis shows that system will be 

stable when scaled to 20 MW
• Ideal stability analysis shows that system will be 

unstable when scaled to 25 MW, and oscillation 
frequency can be determined from eigenvalue 
analysis at 135.7 Hz (60 + 75.7).

• When running PHIL and scaling it up from 20 MW to 
25 MW, the system went unstable. Fast Fourier 
Transformation analysis of data show 116 Hz
instability.

Ideal Nyquist plot – no 
impact of PHIL interface 
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Instability at 660 Hz
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• Example of PHIL induced instability at high frequency.

• Filter was designed to be stable using inverter impedance 
scans – while modulating.

• As soon as inverter stopped modulating its impedance 
changed to LCL (Inductive-Capacitive-Inductive) filter only, 
and this was not stable, resulting in 660 Hz oscillation.

• Lesson learned  – PHIL stability has to be designed for all 
possible cases, particularly when inverter is not modulating.
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Conclusions

• Many PHIL cases are viable, even with considerable delay if properly 
managed.

• Good understanding of dynamics of PHIL interface is a key to unlocking 
higher-bandwidth PHIL simulations.

• Bandwidth quantification is proposed using BW5% and BW50% measures.
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