

Impact of Variable Gas Mixtures on Bubble Size Distribution and Mass Transfer in Gas Fermentation Reactors

Hari Sitaraman, Malik Hassanaly, Milo Parra-Alvarez, Mohammad Rahimi and Jonathan Stickel Venue: AIChE Annual Meeting 2022, Phoenix, AZ, USA Date: 15th November 2022

Funding provided U.S Dept. of Energy, Bioenergy Technologies Office

Background

- Bioreactor: microbial action for conversion
 - Food/beverage/Pharmaceutical industry
 - Biofuels/molecules
 - Ethanol/Butane-diol/Methane
 - CO₂ capture and conversion
 - Syngas fermentation
 - Fermentation is a large cost contributor

Syngas fermentation** (Lanzatech)

Biomethanation reactor (NREL)

Project goals

- Enable scaled-up designs and optimization of CO₂/CO/H₂ fermenters
 - High fidelity computational models
 - Focus on bubble dynamics and mass transfer
 - Impact of gas mixtures
 - Coupling with microbial kinetics
- Supports Department of Energy goals on
 - reducing GHG emissions and sustainable aviation fuel production
 - Accelerate lab research to industrial scale

Outline

- Model equations
 - Multiphase-Euler model
 - Bubble size distribution modeling
 - Numerical methods
- Model validation
- Bubble column simulation results
 - Hydrodynamics
 - Mass transfer
 - Sensitivities
- Conclusions

Mathematical model and numerical methods

Multiphase Euler-Euler equations

- Gas and liquid as continuous interpenetrating phases
- Compressible low Mach RANS equations

$$\alpha_{\rm L} + \alpha_{\rm G} = 1$$
$$\frac{\partial}{\partial t} (\alpha_i \rho_i) + \vec{\nabla} \cdot (\alpha_i \rho_i \mathbf{V}_i) = 0$$

 $\frac{\partial}{\partial t} (\alpha_i \rho_i \mathbf{V}_i) + \vec{\nabla} \cdot (\alpha_i \rho_i \mathbf{V}_i \mathbf{V}_i)$ $= -\alpha_i \vec{\nabla} P + \alpha_i \rho_i \mathbf{g} + \vec{\nabla} \cdot (\alpha_i \mathbf{\bar{R}}_i) + \mathbf{F}_i$

Volume fraction constraint

Mass conservation

Momentum conservation

$$\frac{\partial}{\partial t} (\alpha_i \rho_i Y_{ij}) + \vec{\nabla} \cdot (\alpha_i \rho_i Y_{ij} \mathbf{V}_i) = \vec{\nabla} \cdot (\alpha_i \rho_i \bar{D}_{ij} \vec{\nabla} Y_{ij}) + \dot{R}_{ij}^{\mathrm{MT}}$$

Species transport within each phase

Bubble size distribution* modeling

number of bubbles per unit volume $N_i = f \, \delta v_i$ phase fraction of each group $f_i = \frac{N_i v_i}{\sum_j N_j v_j}$

PDF transport equation

Bubble dynamics source terms

Drag and mass transfer model

$$F_D = \frac{3}{4} (C_D/d) \alpha \rho_l U_r^2 * sign(U_r)$$

 $C_D = f(Re, Eo, \alpha_g)$

Ishii Zuber drag model

rate

Species mass transfer (Higbie et al. ¹)

$$MTR = k_{L}a(C_{j}^{*} - C_{j})$$

$$C_{j}^{*} = \frac{X_{j,G}P}{H_{i}}\frac{\rho_{L}}{M_{L}}$$

$$K_{L} = \sqrt{\frac{4D}{\pi}\frac{|\mathbf{u}_{slip}|}{d_{b}}} \quad a = \frac{6\alpha_{G}}{d_{b}}$$
Mass transfer coefficient

Numerical methods and solver

- Transport properties
 - Fermentation broth properties are similar to water
 - Multiphase k- ω SST turbulence model
 - Population balance over 1-5 mm bubbles with 10 classes
- *multiphaseEulerFoam* in OpenFOAM
 - In-house implementation of Higbie mass transfer model
- Simulations performed using
 - 128 Intel Skylake processors
 - 48 hours of run time to simulate 30 seconds for 0.5 million cells
- More details in Rahimi et al., Chem. Engg. Res. Design, 139, 2018

Model validation with small-scale bubble column

- Validation done for a small-scale bubble column (1 m height, 15 cm diameter)
- Average mass transfer coefficient matches Heijnen and Van't Riet (1984)¹
- Gas holdup matches experiments/simulations by Mcclure et al. (2013)²

¹ Heijnen, J. J., Van't Riet, K., Apr. 1984. Mass transfer, mixing and heat transfer phenomena in low viscosity bubble column reactors. Chem. Eng. J. 28 (2), B21–B42. ² McClure, D. D., Kavanagh, J. M., Fletcher, D. F., Barton, G. W., 2013. Development of a CFD model of bubble column bioreactors: Part one - a detailed experimental study. Chem. Eng. Technol. 36 (12), 2065–2070.

Results

Bubble column simulations

- Bottom inlet with a gas fraction that specifies sparger mass flow rate
- Lateral walls use no-slip condition for liquid and slip for gas
- Vary gas mixture mass fractions (H_2 :CO₂:CO) while keeping constant mass flow rate of 0.45 g/s.

Hydrodynamic parameter variations

- Higher H₂ fractions result in higher:
 - superficial velocities
 - Gas hold up
 - Mean diameters
 - Greater spread of bubbles at the inlet
- Same mass flow results in greater volume of H2

Bubble size distribution variations

• Higher H₂ fraction at the inlet results in faster bubble coalescence and higher average Sauter diameter

Mass transfer effects

- Higher H₂ results in greater mass transfer for all gases at constant mass flow rate
- Sobol indices understanding the effect of varying one quantity with respect to total variance, indicates CO/CO₂ have lower impact than H₂

Effect of bubble column height

0.3

0.2

0.1

0

0.1

- Higher hydrostatic pressure head enables greater mass transfer
- Superficial velocity of 5 cm/s is kept ۲ the same between cases
- Spatial inhomogenities in species ۲ concentration and gas fraction

Conclusions and future work

- Conclusions
 - Computational model
 - OpenFOAM based multiphase solver
 - Gas mixtures, bubble size distributions
 - Results
 - Validated small scale bubble column
 - Ensemble simulations with H₂/CO/CO₂ mixtures
 - At constant mass flow rate
 - Greater H₂ fractions increase
 - Superficial velocities, gas holdup and mass transfer
 - Faster coalescence effects
 - Large scale vs small scale bubble column
 - inhomogenous mass transfer/gas fractions at large scale

• Future work

- Microbial kinetics
- Include product specie, CH₄, which can affect
 - Bubble size distribution and mass transfer
 - Light gas (H₂) gets consumed to heavier gas (CH₄)

Acknowledgements

ENERGY Energy Efficiency & Renewable Energy

BIOENERGY TECHNOLOGIES OFFICE

- Funding from DOE, office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office
- A portion of this research was performed using computational resources sponsored by the Department of Energy's Office of Energy Efficiency and Renewable Energy and located at the National Renewable Energy Laboratory.

Thank You

Bubble size distribution variations

• Higher H₂ results in faster bubble coalescence and higher average Sauter diameter