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Lignin, an abundant aromatic heteropolymer in secondary
plant cell walls, is the single largest source of renewable aro-
matics in the biosphere. Leveraging this resource for renewable
bioproducts through targeted microbial action depends on
lignin fragment uptake by microbial hosts and subsequent
enzymatic action to obtain the desired product. Recent
computational work has emphasized that bacterial inner
membranes are permeable to many aromatic compounds ex-
pected from lignin depolymerization processes. In this study,
we expand on these findings through simulations for 42 lignin-
related compounds across a gram-negative bacterial outer
membrane model. Unbiased simulation trajectories indicate
that spontaneous crossing for the full outer membrane is
relatively rare at molecular simulation timescales, primarily
due to preferential membrane partitioning and slow diffusion
within the lipopolysaccharide layer within the outer mem-
brane. Membrane partitioning and permeability coefficients
were determined through replica exchange umbrella sampling
simulations to overcome sampling limitations. We find that the
glycosylated lipopolysaccharides found in the outer membrane
increase the permeation barrier to many lignin-related com-
pounds, particularly the most hydrophobic compounds. How-
ever, the effect is relatively modest; at industrially relevant
concentrations, uncharged lignin-related compounds will
readily diffuse across the outer membrane without the need for
specific porins. Together, our results provide insight into the
permeability of the bacterial outer membrane for assessing
lignin fragment uptake and the future production of renewable
bioproducts.

Lignin, an aromatic heteropolymer found in terrestrial plant
cell walls, is the largest single source of aromatics in the
biosphere (1). The substituted aromatics represent a high en-
ergy investment during biosynthesis, with substantial oppor-
tunities for valorization (2). Utilizing these abundant lignin
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resources industrially to supplant fossil-derived products
would be significant for sustainable economic development
through a circular bioeconomy. In nature, fungal and bacterial
enzymes breakdown the lignin polymer into smaller fragments
(3, 4).

Once fragmented, biological conversion for lignin and lignin
related compounds (LRCs) through funneling into targeted
end products has substantial promise to valorize lignin and
other waste aromatics (5–9). Aromatic-catabolic bacteria, such
as the soil bacterium Pseudomonas putida, have substantial
metabolic flexibility to utilize an array of LRC molecules in
their environment as their initial feedstock toward building
designer products (7, 10–12). This flexibility could be
enhanced further by integrating fungal pathways for lignin
catabolism into microbial systems (13).

One underexplored aspect to support this work is how LRCs
permeate into bacterial cells. P. putida and other gram-
negative bacteria have two membranes, an inner membrane
(IM) composed of phospholipids and an outer membrane
(OM) that features a lipopolysaccharide (LPS) membrane
leaflet (14). For these bacteria to catabolize LRCs, the com-
pounds must traverse both of these membranes, either
passively or via transport protein, and also diffuse through the
peptidoglycan cell wall.

Past computational work has demonstrated that uncharged
LRCs passively permeate through a bacterial IM at rates
commensurate with cellular metabolism (15). Additionally,
vesicles that bud from the OM have been observed to catalyze
lignin catabolism, suggesting that LRCs permeate the OM
through an unresolved mechanism (16). The OM LPS glyco-
sylations within the outer leaflet form a hydrophilic region that
could act as a permeation barrier to largely hydrophobic LRCs.
If the permeation barrier is significant, transport proteins
would be required to facilitate LRC flux across the OM.
Alternatively, LRCs may passively permeate across the OM,
just as was predicted for the IM (15) and recently validated
experimentally for plant-like membranes (17).

Through molecular simulation tools, we test the passive
permeation hypothesis across the OM by quantifying the
permeability for the OM of P. putida. Molecular dynamics
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Lignin permeation through bacterial outer membranes
(MD) is a useful tool for studying small molecule interactions
with lipid bilayers (18) and comes with well-developed theory
for determining permeability in silico (19). While software for
building LPS models has only recently become available (20),
molecular simulation has quickly proven to be an effective tool
for studying LPS-bearing membranes, providing a detailed
view into the molecular interactions within LPS and its envi-
ronment (21, 22).

Through equilibrium and nonequilibrium MD simula-
tions for selected LRC compounds (Fig. 1), we determine
that the OM can be a bigger barrier to permeation than the
IM, particularly for the most lipophilic LRCs tested. How-
ever, the barrier is not sufficiently large to require protein-
specific transport processes. The OM slows permeation by a
few orders of magnitude compared to IM permeation, with
the resulting permeability coefficients remaining high
enough to support robust flux across the OM. The LPS
region of the OM was found to hinder permeation the most,
as the slow LPS dynamics reduce diffusion in that region
significantly. Taken together, the results suggest that spe-
cific transport proteins are not required for most LRCs to
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Figure 1. Lignin-related compounds used in this study. The aromatic mo
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permeate the OM within a biorefinery context, as potential
passive fluxes in these scenarios exceed cellular LRC cata-
bolic capacity.
Results

Equilibrium analysis

The unbiased equilibrium trajectories can provide insight
into the typical behavior for small molecules near our OM
model that is simultaneously glycosylated and lipidated. While
individual small molecules can have radically different traces
based on the stochastic processes underlying membrane
insertion and translocation (Figs. S1–S41), across all 42 com-
pounds under study, we observe only a single instance where a
small molecule passively permeates across the OM model
generated here within our 400 ns simulation duration. For the
syringol system, a single syringol molecule (purple line, Fig. 2)
is observed to enter into the glycosylated region marking the
OM boundary. Approximately 150 ns into the simulation, this
single syringol molecule enters more deeply into the glycosy-
lated region, eventually reaching the lipid core. The syringol
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Figure 2. Traces for the 10 syringol molecules placed into a membrane
context. Each uniquely colored traces mark the pathway for a single
syringol molecule, drawn to correct for trajectories that cross the periodic
boundary. To assist the reader in tracking the motion across the different
compartments, the hydrophobic lipid core region of the membrane has a
gray background, while the glycosylated region of the membrane has a
yellow background color. Regions of aqueous solution have no background
coloration. The purple trace is observed to permeate from the top of the
glycolipid leaflet and cross the hydrophobic membrane thickness, briefly
even entering solution on the far side.

Figure 3. Position-dependent water diffusion coefficients both parallel
to (Waterk) and perpendicular to (Water⊥) the membrane normal axis.
For context, the black curves indicating the diffusion coefficient are overlaid
on a molecular graphics representation for the glycosylated membrane
following the color scheme from Figure 10.

Table 1
Lateral diffusion coefficients for LPS and phospholipid leaflets in our
OM model

Leaflet Dlateral

LPS 5.6 ± 0.3 × 10−10 cm2s−1

Phospholipid 4.9 ± 0.2 10−8cm2s−1

Lignin permeation through bacterial outer membranes
molecule remains in the outer leaflet for approximately 50 ns
prior to a rapid exchange to the inner leaflet, where it remains
for approximately 100 ns before briefly entering into solution
and completing a full membrane transit event (Supplementary
Animation 1).

The rarity for full transits in our dataset supports the hy-
pothesis that OMs pose a larger barrier to permeation than
IMs for some compounds. In prior IM studies, phenol,
guaiacol, and syringol readily translocated between leaflets in
500 ns equilibrium simulations (15), with multiple trans-
location events observed. Leaflet exchanges are also observed
in the current membrane models, with the same three mole-
cules readily crossing from the inner, unglycosylated leaflet
into the opposing leaflet and back again (Figs. 2, S1, and S2).
The missing component required for permeation are crossing
events across the glycosylated region within the LPS-filled
outer leaflet. While our dataset only contains a single perme-
ation event, its existence within 100 microseconds of aggre-
gated equilibrium sampling across all compounds suggests
that the permeation rate across the OM may be fast on a
biological timescale.

Mechanistically, slow permeation across the LPS leaflet may
be related to the slow diffusion processes observed in that
leaflet during the equilibrium trajectories. Animation S1
already hints that the dynamics within LPS leaflet are slower
than in the phospholipid leaflet. Water diffusion parallel and
perpendicular to the membrane normal axis is slower within
the LPS leaflet than within the phospholipid leaflet (Fig. 3).
Slower water diffusion within the LPS leaflet is not limited to
the LPS glycosylations but also extends to membrane depths
where LPS acyl tails predominate. Mechanistically, the dense
glycosylations may order and trap water or potentially other
similar small molecules. In a different measure of lipid
dynamics, the LPS leaflet in our OM model diffuses nearly 100
times more slowly than the phospholipid leaflet (Table 1), in
line with prior computational estimates for the independent
OM leaflets (23–25). The slow lateral lipid diffusion generally
is caused by the increased mass for LPS molecules and the
abundant polar interactions within the LPS glycosylations. The
slow diffusion processes caused by abundant interactions up
and down the LPS chain slow all dynamics in the LPS leaflet,
retarding membrane crossing.

Notably, the slow dynamics in the LPS leaflet does not imply
that the LPS leaflet is more ordered. Comparing between LPS
and phospholipid tails within our model membrane indicates
that the LPS acyl tails have a lower average order parameter at
the equivalent carbon positions than their phospholipid
counterparts (Fig. 4), indicating greater conformational vari-
ability in the LPS acyl tail than in the phospholipid tails. While
prior LPS simulations did not explicitly compare acyl tail
ordering with phospholipid acyl tails (26, 27), the magnitude
and trends for -SCD are consistent with prior results both for
LPS (26, 27) and phospholipids (28). As we are averaging over
multiple different acyl chains with a mixed lipid composition,
the order parameter reduction near common unsaturation
sites is less evident in Figure 4 than is typical from homoge-
neous lipid compositions that study each acyl tail
independently.
Predicting permeation coefficients

While equilibrium trajectory analysis serves to provide
mechanistic insight into LRC translocation through bacterial
J. Biol. Chem. (2022) 298(12) 102627 3



Figure 4. Mean acyl tail order parameter (-SCD) computed for all acyl
tails in the LPS (red) and phospholipid (black) leaflet. − SCD ¼ − <
3cos2ðθCHÞ−1>=2 where θCH is the angle between a C-H bond vector from
the trajectory and the membrane-normal axis (60). As the number of
samples behind each datapoint is so high across all 16.8μs of equilibrium
simulation, the SEM for each acyl tail order parameter does not rise outside
the drawn point. LPS, lipopolysaccharide.

Figure 5. Free energy (top) and diffusivity (bottom) profiles for selected
G-type lignin monomers included in our test set (Fig. 1). Each compound
has two lines associated with the compound, a solid line reflecting the
instantaneous best estimate for the quantity of interest and a dashed line
indicating the spline fit used to numerically integrate Equation 3 to tabulate
permeability coefficients in Table S1. For context, the plots are underlaid
with a molecular representation for the glycosylated membrane, following
the color scheme from Figure 10. Free energy and diffusivity profiles for
other LRCs are provided in Figs. S42–S51.

Lignin permeation through bacterial outer membranes
OMs, the equilibrium trajectories alone are insufficient to
compute accurate free energy profiles or kinetics for OM
crossing. Without an applied biasing potential, the LRCs
extensively and unproductively sample the reaction coordinate
near membrane lipid tails where their interactions are most
favorable. Through biased simulation, we are able to sample
evenly across the bilayer translocation reaction coordinate,
collecting statistics on rarely visited transition regions critical
to determining the kinetics for OM permeation events.

In the inhomogeneous solubility diffusion model (Equa-
tion 3) (29, 30), the permeability coefficient depends only on
the free energy and diffusivity profiles across a region of in-
terest. The two essential profiles for selected G-type lignin
monomers from our larger LRC set are provided in Figure 5
and indicate substantial changes in permeability depending
on the LRC. The highest free energy barrier overall is observed
for vanillate near the membrane midplane, reflecting the en-
ergetic cost for dehydrating the vanillate anion. If the
carboxylate anion were to protonate, as in vanillic acid, the
energetic penalty for crossing the membrane is substantially
reduced. For many of the other LRCs tested, the largest barrier
to permeation was observed at the interface between the lipid
and polysaccharide portions for the LPS leaflet. At this inter-
face, typical free energies for uncharged species were between
2-6 kcal mol−1 relative to solution (Figs. 5 and S42–S51),
representing a significant but not insurmountable barrier to
permeation.

The free energy for uncharged LRCs was typically negative
within the membrane core relative to solution, suggesting
favorable partitioning for these small molecules into the
membrane and rapid, low-barrier exchanges between leaflets.
The free energy profiles also suggest that the preferred inser-
tion depth for an LRC was leaflet dependent, with the LPS
leaflet demonstrating a preferred insertion depth nearer to the
membrane midplane than the phospholipid leaflet. The shorter
acyl tail lengths and lower lipid ordering for LPS membrane
4 J. Biol. Chem. (2022) 298(12) 102627
components means that carbonyl-adjacent regions for the
membrane are closer to the midplane for an LPS-containing
leaflet than for our phospholipid model. Likewise, other
equivalent condition regions within the membrane core exist
and are shifted with respect to the membrane midplane.
Another common feature for the LRC free energy profiles are
barriers near the transition between the LPS and phospholipid
leaflets. We ascribe the offset between the membrane center
and the free energy maxima to the dynamical differences be-
tween the LPS and phospholipid leaflets, as the membrane
center was defined based on the center of mass for the acyl tail
termini.

The diffusion coefficient profiles are similarly asymmetric in
a leaflet-dependent manner. The diffusivity along the mem-
brane normal within the phospholipid leaflet compares
favorably with prior measures for diffusion coefficients along
membrane transfer axes (15). For phospholipid membranes,
the aqueous diffusion coefficients for LRCs are near 80Å2/ns,
exhibiting a minima near the membrane/water interface before
increasing LRC diffusion near the membrane center. The
diffusive behavior within phospholipid leaflets, including
diffusion minima near interfaces, have been noted previously
for gas diffusion within membranes (31, 32), although
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alternative analysis methods yield alternative diffusivity pro-
files (30, 33). Qualitatively, the trends are similar for the LPS
leaflet. In the LPS leaflet, the diffusion coefficient is high in
aqueous solution and somewhat lower at the membrane cen-
ter. The slowest diffusion occurs near the membrane-
glycosylation interface as the LRCs transition between lipo-
philic and hydrophobic regions. The diffusion at the
membrane-glycosylation interface is approximately half the
rate as what was observed in the membrane-water interface for
the phospholipid leaflet (Fig. 5). The diffusive reduction in LPS
is comparable in magnitude to the water diffusion parallel to
the membrane normal axis presented in Figure 3.

With the free energy and diffusivity profiles in hand, we are
able to compute partitioning and permeability coefficients for
the diverse LRCs in our simulation set (Tables 2 and S1) based
on Equations 3 and 4. The partition coefficients are nearly
uniformly positive, indicating that the LRCs partition into the
membrane, with only a few charged molecules preferring so-
lution (Table S1). The permeability coefficients vary by up to
13 orders of magnitude, with charged compounds such as
vanillate demonstrating the slowest permeation. For un-
charged species, particularly for common compounds
enumerated in Table 2, permeability was often limited by
permeation through the glycosylation attached to the LPS
leaflet (Pmg), consistent with the identified regions of high free
energy and low diffusion (Fig. 5).

Discussion

Based exclusively on the results presented, the initial hy-
pothesis that the LPS layer in a P. putida OM reduces LRC
permeability appears plausible. Spontaneous permeation is
rare within our simulation set (Fig. 2), and the glycosylations
frequently present the largest barrier to permeation (Fig. 5 and
Table 2). To demonstrate what practical impact the OM might
have on LRC uptake on P. putida, we take the opportunity
here to place the OM permeation coefficients into their bio-
logical context.

Double membrane permeability and LRC chemistry

Our model for LRC uptake in P. putida is quite simple,
consisting of a LRC source external to the cell derived from
Table 2
Partition (P) and Permeability (Pm) coefficients for G-type LRCs
shown in Figure 5 in the OM mimic

Compound
name logP logPm(cms−1)

logPmu

(cms−1)
logPmc

(cms−1)
logPmg

(cms−1)

Guaiacol 4.0 -0.8 -1.9 -0.3 -4.8
Vanillyl alcohol 1.0 -0.4 0.8 -0.9 -1.3
Vanillin 2.5 -1.6 -0.5 -1.4 -4.1
Coniferyl alcohol 1.9 -1.0 -0.0 -0.4 -2.9
Vanillate 1.3 -10.7 -0.9 -12.0 1.0

The permeability coefficient of crossing the entire membrane, going from aqueous
solution to aqueous solution, is decomposed into a crossing permeability (Pmc) and
extraction permeabilities into solution through the glycosylated (Pmg) and
unglycosylated (Pmu) sides. The decomposition is done by adjusting the integrated
bounds in Equation 3 to integrate between free energy minima found near the lipid-
water and lipid-glycosylation interfaces. This is described by Equation 5 in the methods.
The same information for all tested compounds is available in Table S1. Typical
uncertainties for the tabulated quantities are 0.2 log units.
biomass breakdown, an LRC sink representing internal meta-
bolism, and the P. putida OM and IM (Fig. 6). The modeled
passive transport system reaches a steady state where the
molecular flux into the cell matches consumption by cellular
metabolism. At steady state, Jo→m = Jm→i = Jo→i, where the
effective permeability coefficient for the total process (Pmt)
can be calculated from the permeability across the OM (Pmo)
and IM (Pmi).

Pmt ¼ PmoPmi

PmoþPmi
(1)

Based on the structure of Equation 1, Pmt is approximately
half the permeation coefficient for either membrane when Pmo

and Pmi are similar in magnitude. Otherwise, Pmt will be
limited by the smaller of Pmo and Pmi.

Thus, when looking at the larger passive transport process,
the results from Tables 2 and S1 need to be compared with
prior results for the IM (15). From Figure 7, we observe vari-
ation in relative permeation coefficients dependent on LRC
chemistries. LRCs with additional oxygenation sites, such as
cinnamic acids, are limited by the IM permeability rather than
the OM permeability, which can be up to 1000 times larger.
More lipophilic LRCs may have IM permeability coefficients
100 times larger than the OM permeability coefficient. These
lipophilic LRCs include phenols found in aqueous waste
streams from catalytic fast pyrolysis (34). Other compounds
have computed permeability coefficients that are comparable
in magnitude. Thus, even though the largest barrier to crossing
the OM is typically within the LPS glycosylation region, the
overall impact on passive permeation coefficient across both
bilayers is relatively low. The permeation barrier provided by
the LPS glycosylation may reduce Pmt by 3 orders of magni-
tude. By comparison, changing LRC chemistry to include a
negative charge reduces Pmt by approximately 10 orders of
J. Biol. Chem. (2022) 298(12) 102627 5



Figure 7. Outer-versus inner-membrane permeability for compounds
within our test set (Fig. 1) where IM permeability had been previously
calculated (15). To guide the eye, we have added a dashed line to indicate
where OM Pm = IM Pm. Below this line, Pmo < Pmi, indicating that the OM
is rate limiting. The converse is true above the line. IM, inner membrane;
OM, outer membrane.

Lignin permeation through bacterial outer membranes
magnitude, a far more significant change with more far-
reaching biological consequences.

By regrouping the information from Figure 7 by the LRC
type from Figure 1, we can evaluate how hydroxylation and
methoxylation for LRC compounds change permeability
(Fig. 8). From Figure 8, we find that methoxylated S- and G-
type LRCs have distributions shifted to the left in Figure 8
compared with H- and C-type LRCs that are only hydroxyl-
ated. The shifted distribution indicates that the methoxy-
substituted LRCs are less permeable across the OM than their
hydroxylated counterparts. Hydroxyl groups can act as
hydrogen bonding donors and acceptors, unlike methoxy
groups, which can only act as hydrogen bonding acceptors.
Figure 8. Replotting the data in Figure 7 by the type of lignin monomer
as a cumulative distribution function, determining whether the small
molecules are more likely to permeate through the OM or the IM. IM,
inner membrane; OM, outer membrane; LRC, lignin related compound; LPS,
lipopolysaccharide.
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Within the LPS region, we find that hydroxyl groups form
significantly more hydrogen bonds per functional group (Fig.
S52). The favorable interactions with the LPS region lower
the permeation barrier for hydroxylated LRCs. Thus, one
could hypothesize that hydroxylated LRCs may be catabolized
more quickly by P. putida.
Practical flux calculations

With a permeability coefficient in hand for the combined
OM and IM system based on Equation 1, we can calculate
potential fluxes based on the permeability coefficient, the area
for the permeating surface A, and the concentration gradient
across the dividing surface.

Jo→i¼ PmtAð½LRC�o−½LRC�i
�

(2)

The key surface area and concentration gradient parame-
ters within Equation 2 can be estimated from experimental
sources. High mM titers for phenolic LRCs have been
observed in prior microbial engineering efforts to produce
phenols (35, 36) and would represent an upper bound for the
concentration difference within Equation 2 P. putida could
tolerate. The membrane surface area for P. putida can be
estimated from micrographs showing a rod-like shape with
long axis of approximately 1 μm and a 0.4 μm diameter (16),
yielding 1.25 μm2. Assuming a 1 mM concentration differ-
ence, the net inward flux for phenol predicted by Equation 2
is 25 fmol/s (1.5 × 1010 molecules/s), limited by Pmo=2 cm/s.
While the OM limits flux and reduces permeation 10-fold
compared with prior IM simulations (15), the potential
permeation rate remains very high in this example.

Many LRCs tested will exhibit similar behavior, as their
permeabilities are broadly similar to that of phenol. Among
the uncharged LRCs, sinapyl alcohol has the smallest
permeability coefficient, with Pm= 10−2.9 cm/s, around 1600
times less permeable than the phenol example above,
yielding permeation rates on the order of 107 molecules/s.
With this high potential flux, the actual flux is likely
controlled by the steady state rate of LRC synthesis or
catabolism. Enzymes involved in aromatic demethylation
turn over few times a second (37, 38), and lignin acetylation
enzymes turn over in tens of seconds (39). Slow lignin
metabolism implies that passive flux across the OM is not
rate limiting, even in the absence of specific transport pro-
teins. Instead, the concentration gradient implied by Equa-
tion 2 for uncharged LRCs would shrink such that the flux
matches metabolic processes.

For charged LRCs, permeability is substantially slower. If
we replace phenol from our example above with p-hydroxy-
benzoate, the permeation rate would slow to a few molecules
per hour. For such a small flux, ingress and egress control by
transport proteins is highly likely, tempered by the possi-
bility that many permeation events for carboxylates may
occur when the carboxylate protonates to form the neutral
acid. The acids demonstrate permeability coefficients that
are significantly faster and thus may represent the major
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species that passively permeates, particularly in acidic
conditions.
Figure 9. Free energy and diffusivity profile comparison for guaiacol.
Two profiles are shown here, one where the membrane lacked an O-antigen
and the profiles were computed via REUS calculations (black line, used
throughout the text) and another profile set computed with a membrane
containing an O-antigen, where the profile was computed via ABF (red line).
Dashed lines represent the spline fits used to integrate Equation 3. ABF,
adaptive biasing force; REUS, replica exchange umbrella sampling.
Model limitations

While the main message that OM permeability is actually
quite fast for LRCs is clear, there are potential areas of concern
for our models. The first is how well the inhomogeneous
solubility diffusion model and the underlying simulation
methods and force fields recapitulate reality. Indeed, system-
atic surveys suggest that molecular simulation can over-
estimate permeability by an order of magnitude (30). In our
view, a modest systematic bias towards accelerated perme-
ability is acceptable, as the potential passive fluxes are suffi-
ciently large that overestimating these by a factor of 10 does
not materially change whether permeation or metabolism
limits the steady state flux through the system.

However, a larger area of uncertainty arises from our choice
for a relatively thin LPS layer. Removing the O-antigen entirely
was necessary from a computational perspective to keep the
simulation sizes tractable for a large set of LRCs. Conse-
quently, we may overestimate permeability through the LPS
layer, as additional glycosylation may offer greater resistance to
permeation. If we make the assumption that the free energy
and diffusivity across the additional O-antigen thickness can
be taken from point where the free energy reaches a maximum
within the LPS (Equation 6), we find that the O-antigen
thickness required to reduce permeability tenfold is between
2.8 and 14.2 nm for uncharged LRCs. Since additional thick-
ness would only linearly add resistance to permeation (29, 30),
it is likely infeasible for realistic O-antigen lengths to reduce
OM permeability by more than 10 to 100 times unless we
underestimate the free energy barrier in our current model
construction.

To test this hypothesis, we directly compare free energy and
diffusivity profiles determined through adaptive biasing force
(ABF) calculations for guaiacol in a membrane where the
O-antigen is present to the original replica exchange umbrella
sampling (REUS) simulations that lacked the O-antigen
(Fig. 9). Overall, the free energy profile has a similar structure,
with minima near the acyl tail carbonyls and a maxima where
the LPS leaflet transitions from a lipophilic to a hydrophilic
environment. Crucially, the barrier within the free energy
profile has a similar maximum and returns to zero in the
glycosylation region both with and without O-antigen present.
Prior studies that calculate free energy barriers across LPS
membranes arrive at similar small molecule free energy pro-
files (40), suggesting that indeed the interface between the
hydrophobic and hydrophilic regions within LPS are the pri-
mary barrier to permeation for nonpolar compounds. The
extended sampling within the ABF calculation appears to have
broadly improved the symmetry for the profile within the
membrane.

The diffusivity profiles are substantially different between
the two methodologies, which have been noted previously
when comparing REUS and ABF results (30). We also note
that our ABF sampling strategy created discontinuities within
the diffusivity profile for the O-antigen membrane, which we
attempt to correct via a spline fit (Fig. 9). In truth, the diffu-
sivity matters very little in the overall permeability picture.
Remembering that the computed guaiacol permeability coef-
ficient is 10−0.76 cm/s when the O-antigen is absent (rounds
to −0.8 in Table 2), we integrate Equation 3 to estimate
permeability when the O-antigen is present. The equivalent
coefficients computed from the ABF results are either
10−0.81 cm/s (using REUS diffusivity and ABF free energy) or
10−0.40 cm/s (using ABF for both diffusivity and free energy).
Based on this limited evidence, adding or removing the
O-antigen on LPS does not materially change the permeability
for the OM as a whole for LRCs.

While the permeability through the OM and IM for un-
charged LRCs is significant, the inherent assumption behind
Equation 2 is that the peptidoglycan layer sandwiched between
the OM and IM contributes little resistance to LRC perme-
ability. While the peptidoglycan layer in P. putida is in an
aqueous phase, interactions between the dense peptidoglycan
mesh (41) and the LRCs may impede permeation. Strong
glycan–lignin interactions have been observed in prior simu-
lations (42, 43). However, the space between the OM and IM is
restricted, and further study is required to determine how
peptidoglycan and lignin interact.
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Conclusion

Within a biorefinery context, where substrate concentra-
tions are at the limit of what the organism can tolerate and
metabolize, passive permeation for most LRCs through the
OM will likely not be rate-limiting to bioconversion.
Permeability coefficients for the OM are broadly similar to
the IM counterparts, with the OM rate limiting for the most
lipophilic LRCs while the IM is rate limiting for hydrophilic
LRCs. The differences between the OM and the IM were
largely attributable to the LPS leaflet found on the OM.
Diffusion with the LPS layer is substantially slower than
elsewhere in the OM, as interactions with LRCs and solution
are made and broken with the LPS glycosylations. Charged
substrates, however, permeate exceptionally slowly through
the OM, limited by the unfavorable energetics for desolvating
an ion as it passes through lipophilic membrane regions.
Thus, we expect transport proteins to be intimately involved
in carboxylate uptake by P. putida, while other LRCs
permeate freely through a passive mechanism, depending on
metabolic processes to generate the concentration gradient
needed to drive flux across the OM.

From a process design perspective, the ability for many
LRCs to permeate passively eliminates some constraints on
metabolic engineering approaches in other systems. For
instance, sucrose synthesized photosynthetically depends on
the overexpression of a sucrose–proton symporter for export
at high titers (44), as sucrose cannot passively permeate bac-
terial membranes at an appreciable rate. While the final
product from metabolically funneling LRCs may similarly
require a specific transport protein for harvesting product, the
inputs for bioconversion can be sourced without substantial
engineering effort invested in importing the diverse chemis-
tries represented by the range of LRCs tested. Thus, bacteria
with flexible metabolisms that can process a wide range of
LRCs and waste aromatics from other sources represent
excellent candidates for future metabolic funneling without
engineering specific transport proteins.
Experimental procedures

The general procedure for computing OM permeability
closely follows prior permeation studies in the group for small
molecules across biological membranes (15, 45, 46). First, we
carry out equilibrium MD simulations for a set of 42 LRCs
(Fig. 1) in the context of a model bacterial OM from P. putida
(Fig. 10), checking for spontaneous permeation as was
observed for other small molecules through biological mem-
branes (45–47). The equilibrium MD complements REUS
simulations that allow for permeability to be calculated
through the inhomogeneous solubility-diffusion model (29, 30,
45, 48, 49), even if no spontaneous permeation events are
observed and the timescale for permeation is unknown. The
inputs and selected outputs are available on Zenodo.

The chosen LRCs for this study (Fig. 1) were drawn from a
subset of the LRCs where permeation across a model P. putida
IM was calculated (15), as the larger simulation systems
required to capture a glycosylated OM made repeating the
8 J. Biol. Chem. (2022) 298(12) 102627
same suite of compounds cost prohibitive. The 42 selected
LRCs in Figure 1 reflect the diverse chemistries seen in lignin
but are tailored to focus on monomeric products that could
result from native lignin polymer deconstruction (50, 51).
Other simple aromatics tested reflect species that might be
encountered by a bacterial host in a mixed waste stream (5, 52,
53).

Membrane construction

The OM of P. putida is composed of diverse LPSs). Lip-
idomics and glycomics have not elucidated the distribution of
potential LPS species in enough detail for molecular modeling.
Thus, our OM model uses 30 diverse LPS molecules modeled
on what is found in Pseudomonas aeruginosa and makes
specific structural choices to support our research objectives.
The 30 LPS molecules for the OM were constructed through
CHARMM-GUI (20, 27, 54, 55), six for each of the five
available lipid A structures, using core 1B to represent the
glycosylation pattern. Unlike other recent studies for the OM
in P. aeruginosa (22), no O-antigen glycosylations were added
to the LPS molecules. From a computational perspective, a
minimal O-antigen would add at least another 4 nm of
membrane thickness (22) for LRCs to traverse, and it is not
immediately clear what the correct O-antigen length would be
for P. putida. We estimate that additional glycosylation from a
standard O-antigen would further increase the system size by
around 40%. The increased system size decreases performance
for individual simulations, as well as increasing the number of
umbrellas that would be needed to span the bilayer when
computing permeability. Thus, we estimate that adding in the
O-antigen would effectively double the total computational
cost for determining permeability. We approximate the impact
for the O-antigen by assuming that the highest barrier we
compute across the glycans is maintained for additional
O-antigen thickness.

The inner leaflet was also generated using CHARMM-
GUI (27, 54, 55). The composition for the inner leaflet
matches the composition for IM models for P. putida used
previously (15), with an approximate 2:1 PE:PG headgroup
ratio to match P. putida lipidomics studies (56). The final
number of lipids in the inner leaflet (75) was chosen to
match the membrane surface area for the LPS outer leaflet.
The membrane is solvated and ionized within CHARMM-
GUI, with 114 Ca2+, 114 K+, and 22 Cl– ions. Calcium
ions are chosen for ionization here based on the structural
evidence for their importance to maintain OM stability (57,
58). When the membrane geometry is complemented with
small molecules, each molecular system is approximately
55,000 atoms in size, with equilibrated dimensions of
approximately 75 × 75 × 90 Å.

Equilibrium simulation

To evaluate spontaneous permeability for each LRC
considered (Fig. 1), 10 LRC molecules were added to the
previously generated membrane (Fig. 10) to create indepen-
dent simulation systems for each LRC. All 42 systems were

http://Zenodo


Figure 10. Membrane construction snapshot. The heavy atoms for the
lipid headgroups and acyl tails are shown as spheres, utilizing gray carbons
to contrast with the yellow carbons featured in the glycosylations attached
to the outer leaflet, represented with sticks. Other atoms have a consistent
color scheme, with blue representing nitrogen, red representing oxygen,
and brown representing phosphorus. Hydrogen and solvating water mole-
cules, while present during simulation, are omitted for visual clarity.
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simulated for 400 ns using NAMD 2.13 (59). The systems were
simulated using the CHARMM36 force field, including terms
for lipids (60), carbohydrates (61–63), and lignin (64). The
CHARMM36 General force field (65) was used for small
organic molecules not covered by the lignin forcefield (Other
Aromatics category in Fig. 1). Aqueous solution was repre-
sented with the TIP3 water model (66) and ion parameters
from Beglov and Roux (67).

Other simulation parameters shared with the subsequent
REUS calculations include a 12 Å nonbonded cutoff with
switching applied past 10 Å and long-range electrostatics
treatment using the particle mesh Ewald method (68, 69) with
1.2 Å grid spacing. Semi-isotropic pressure coupling was
maintained via the Langevin piston method (70, 71) to a
pressure of 1 atm, with periodic cell dimensions along the
membrane normal axis decoupled from growth along the
membrane parallel axes. A Langevin thermostat (72) using
γ=1 ps−1 maintained the system temperature at 310K. Each
simulation timestep was 2 fs, enabled by using the SETTLE
algorithm (73) to fix bond lengths to hydrogen.
Replica exchange umbrella sampling

To obtain a free energy profile and local diffusivity for our
selected LRCs along the reaction coordinate representing
passive membrane transit across the OM, we carried out a set
of REUS (74) (also called Hamiltonian replica exchange (75),
window exchange umbrella sampling (76), or bias exchange
umbrella sampling (77)) simulations. Similar to conventional
umbrella sampling, REUS samples high energy regions of the
reaction coordinate range by applying a harmonic bias (um-
brella) to the system, forcing uniform sampling across a re-
action coordinate (78), rather than just the low energy regions
of the free energy surface as would occur without an applied
bias. Given known biases, unbiased free energy surfaces can be
estimated from these biased simulations using well-established
techniques (79, 80).

For our system, the chosen reaction coordinate reflects
permeation for the center of mass for a single LRC molecule
across the membrane, going from -35Å on the inner leaflet
side to 65Å on the outer leaflet side. As each umbrella restricts
the sampling to a small fraction of the total reaction coordi-
nate, a series of 180 independent umbrellas with 4 kcalmol−1

force constants were used to cover the entire reaction coor-
dinate, yielding a 0.55 Å umbrella spacing. This spacing and
force constant are consistent with what has worked previously
to evaluate permeation in other systems (15, 30).

The primary advantage of REUS relative to conventional
umbrella sampling is ensuring contiguous sampling, as the
individual umbrella biases are exchanged periodically accord-
ing to a Metropolis criterion (75, 74, 81), accelerating sampling
along the chosen reaction coordinate. Adjacent windows were
attempted to be exchanged with alternating neighbors every
1 ps, consistent with advice to exchange often during replica
exchange simulations (82). To set up a diverse pool of starting
configurations for each replica, initial configurations for single
LRC molecules in an OM system are drawn at random from
the computed equilibrium trajectories. For computing per-
meabilities, REUS achieves the same level of accuracy as
conventional umbrella sampling with shorter simulation times
(30), and based on past experience (15), each window was
sampled for 40 ns.
ABF calculation

To assess the impact for the O-antigen on LRC permeation,
we determined the local free energy and diffusivity profiles using
ABF (83, 84) simulations. The membrane setup matches the
membrane composition described previously but adds O-anti-
gen consistent with the P. aeruginosa default composition from
the CHARMM-GUI membrane builder (55). This adds 15
rhamnosemonomers to themembrane, increasing the height for
the membrane considerably (Fig. 11). Once solvated and ionized
as noted above, the initial system is 60 × 60 × 150 Å.

To sample the membrane normal dimension efficiently, the
full membrane normal span was split into 15 independently
sampled reaction coordinates. Each collective variable defining
the space was 13 Å wide with 2 Å overlap between adjacent
collective variables, spanning from -40 Å below the membrane
midplane to 127 Å above the membrane midplane. A single
guaiacol molecule sampled each bounded reaction coordinate,
such that 15 guaiacol molecules in total were present within
the membrane-water system. To further increase sampling,
eight ABF simulations were performed simultaneously and
shared biasing information through the multiple walker
framework every 5000 steps (85) within NAMD 2.14 (59).
Thus, the eight individual 378 ns simulations performed
represent over 45μs of sampling for the membrane normal
reaction coordinate, substantially longer than the 7.2μs needed
for a converged PMF with REUS.
J. Biol. Chem. (2022) 298(12) 102627 9



Figure 11. Initial snapshot for the membrane system with the O-anti-
gen added. The representations used are analogous to Figure 10, with the
15 additional rhamnose monomers on each LPS head shown with green
carbons, while the glycosylated core retains the yellow carbons from
Figure 10. LPS, lipopolysaccharide.
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Analysis

The analysis procedures largely follow our prior work on
permeability across biological membranes (15, 45, 46). Python
scripts combining VMD (86), numpy (87, 88), and scipy
quantified simulation trajectory observables. Molecular visu-
alizations were rendered using VMD (86) with its built-in
GPU-accelerated OptiX raytracer (89), and dataplots were
made with matplotlib (90). From the equilibrium trajectories,
we track the location of individual LRC molecules to identify
complete crossing events, as well as membrane-depth
dependent estimates for solvent diffusion. Diffusion for wa-
ter and lipids within the equilibrium trajectories are deter-
mined via the Einstein relation (91) in either two dimensions
for lateral diffusion or in one dimension for diffusion along
the membrane normal axis. We do so by tracking displace-
ments at 20 ps intervals and binning the resulting displace-
ments based on position to estimate position-dependent
water diffusion from equilibrium simulation. The carbon-
deuterium order parameter measuring structure for the acyl
tails (-SCD) through NMR is approximated by the carbon-
hydrogen order parameter used in parameterizing the lipid
force field (60). The REUS calculations are the basis for
calculating the permeability and partitioning coefficients,
10 J. Biol. Chem. (2022) 298(12) 102627
based on free energy and diffusivity profiles derived from the
REUS trajectories.

The free energies G and diffusivities D along a reaction
coordinate ξ bounded by upper and lower boundaries ξu and ξl
are converted into permeability coefficients (Pm) through the
inhomogeneous solubility-diffusion model (29, 30) originally
postulated by Diamond and Katz (92).

Pm¼
2
4Zξu

ξl

expðΔGðξÞβÞ
DðξÞ dξ

3
5
−1

(3)

We further break down the permeability coefficient into
three subcomponents representing a compound crossing the
hydrophobic region (Pmc), exiting the membrane across the
glycosylations (Pmg), and exiting the membrane across the
unglycosylated side (Pmu) by splitting the integration range
within Equation 3 into three parts. The integration boundaries
splitting the integral to create the three subcomponents were
determined by the free energy minima in the range (-22,-5) for
the unglycosylated side boundary and the range (5, 22) on the
glycosylated side boundary. The partition coefficient depends
solely on the free energy difference between aqueous solution
and the membrane.

log P¼Gaq−Gmembrane

RT ln 10
¼ ΔGpartition

RT ln 10
(4)

In this form, we use the simple approximation that Gmem-

brane is the lower free energy minimum at the integration
boundaries determined for permeability. The free energy
reference state while integrating Equation 3 to obtain the
subcomponents is chosen to be the minimum free energy. As a
result, the permeability coefficient for traversing the entire
membrane depends on the partition coefficient computed
from Equation 4 to reset the free energy reference to capture
the real kinetics for moving from solution to solution. In
mathematical terms, this works out to be:

log½Pm� ¼ log Pþlog

��
Pm−1

u þPm−1
c þPm−1

g

�−1
�

(5)

To estimate the O-antigen thickness needed to decrease
permeability by tenfold, we first find the position ξmax where
the free energy is maximized within the LPS layer. At this
position, the integrand for Equation 3 (expðΔGðξmaxÞβÞ

DðξmaxÞ ) is maxi-
mized, which represents the incremental resistance to
permeation (29, 30) as the membrane thickens due to longer/
larger O-antigen bands. We solve for the thickness L needed to
increase the resistivity R = Pm−1 ten-fold, which would reduce
the permeability by an order of magnitude.

10R¼ expðΔGðξmaxÞβÞ
DðξmaxÞ

L (6)

The free energy profile from the REUS trajectories were
calculated from a modified version of BayesWHAM (80),
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which uses Gibbs sampling of the known Dirichlet prior (93)
to rapidly assess uncertainty. We use the free energy in solu-
tion as our zero point and force the equivalence for the free
energy at the edges of our reaction coordinate by treating the
reaction coordinate as periodic. The periodicity assumption
has the largest impact on the calculated profiles for charged
LRCs, namely the benzoates and cinnamates, as dehydrating
ionic species during permeation can yield large sampling er-
rors that are remedied in part by symmetrization (94, 95).
Diffusivity profiles for Equation 3 were computed directly from
the variance and autocorrelation time of the biased motion
along the reaction coordinate (96), which is less sensitive to the
harmonic restraint force than alternative calculation ap-
proaches (97) and is not influenced by concerns surrounding
momentum removal (98). To compute auto-correlation times
needed for the diffusivity calculation, we fit the autocorrelation
function to an exponentially decaying function within the 1 ps
intervals between exchanges. This has been previously iden-
tified to be a suitable method for estimating small molecule
diffusivity from REUS simulations (45). The free energy profile
from the ABF simulation was stitched together from the 15
independent reaction coordinates in numpy (87, 88). Diffu-
sivity estimates directly from the ABF simulation were
computed using DiffusionFusion, a C implementation for
calculating position-dependent diffusivity from ABF calcula-
tions (99).

Data availability

The reduced directory structure that includes analysis
scripts, inputs, and selected raw outputs used for this publi-
cation is available from http://doi.org/10.5281/zenodo.57
94252.

The complete directory structure is available upon request.

Supporting information—The Supporting Information contains a
pdf file with Table S1 reporting the partitioning and permeability
coefficients for all 42 compounds. Figures S1–S41 supplement
Figure 2. Figures S42–S51 report the free energy and diffusivity
profiles for all 42 compounds, analogous to Figure 5. The free en-
ergy and diffusivity profiles are also tabulated numerically as an
excel spreadsheet. Animation S1 shows the permeation of a single
syringol molecule across the membrane in unbiased simulation,
complementing Figure 2.
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