

PURIFICATION OF LITHIUM-ION BATTERY BLACK MASS THROUGH TAILORED ALKALINE CORROSION

KAE FINK, PAUL GASPER, MAX SCHULZE, RYAN BROW, JOSHUA MAJOR, ANDREW COLCLASURE, MATTHEW KEYSER

National Renewable Energy Laboratory

<u>K. Fink</u> et al., "Optimized purification methods for metallic contaminant removal from directly recycled Li-ion battery cathodes" (under review)

242nd ECS Meeting Atlanta, GA October 13, 2022 NREL/PR-5700-84258

Direct Recycling of Li-Ion Batteries

VEHICLE TECHNOLOGIES OFFICE

Energy Efficiency &

Renewable Energy

U.S. DEPARTMENT OF

ENERGY

ADVANCED

BATTERY RECYCLING

NATIONAL RENEWABLE ENERGY LABORATORY

Black Mass Purification: Process Overview

lecell

Energy Efficiency & Renewable Energy

U.S. DEPARTMENT OF

Goal: Identify and optimize BM purification process to enable complete and rapid dissolution of solid contaminants (Al⁰, Cu⁰) without adversely impacting structure or electrochemical performance of NMC.

Approach: "Kinetically & thermodynamically assisted" alkaline aqueous corrosion

Overview of Project Workflow

U.S. DEPARTMENT OF Renewable Energy VEHICLE TECHNOLOGIES OFFICE

ReCell

BATTERY RECYCLING

ADVANCED

Energy Efficiency &

Task #1: Optimized Ionization of Al₀, Cu₀

ADVANCED BATTERY DECYCLING

NERGY Energy Efficiency & Renewable Energy VEHICLE TECHNOLOGIES OFFICE

Al⁰ & Cu⁰ Corrosion: Theoretical Foundations

 A_{0}

U.S. DEPARTMENT OF ENERGY Energy Efficiency & Renewable Energy VEHICLE TECHNOLOGIES OFFICE

-Rapid, strongly pH-dependent reaction under ambient oxidative conditions

Cu⁰ Corrosion:

- -Kinetically slow and thermodynamically unfavorable
- -Low solubility of Cu²⁺ species and formation of passivating surface films
- -Chloride reportedly enhances corrosion in alkaline media through pitting and surface film disruption

Arjmand and Adriaens, Materials 2012, 5, 2439-2464

Transforming ENERGY

AI⁰ Corrosion: Bench-Scale Optimization

ENERGY DVANCED VEHICLE TECHNOLOGIES OFFICE BATTEDV DECVCI INC

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Cu⁰ Corrosion: Bench-Scale Optimization

All samples shown were prepared at pH 13 (*measured at RT*)

U.S. DEPARTMENT OF

DVANCED

BATTEDV DECVCI INC

ENERGY

Energy Efficiency &

Renewable Energy

VEHICLE TECHNOLOGIES OFFICE

Task #2: Impacts of Treatment on NMC

Iterative Process Optimization

ADVANCED BATTERY RECYCLING CHICLE TECH

VEHICLE TECHNOLOGIES OFFICE

U.S. DEPARTMENT OF

Evidence of cation mixing and bulk structural rearrangement with Na⁺ salts prompted shift to K⁺ salts.

Task #3: Treatment Efficacy on Simulated BM

Recel

BATTERY RECYCLING

Energy Efficiency & Renewable Energy

VEHICLE TECHNOLOGIES OFFICE

U.S. DEPARTMENT OF

Pre-Treatment Baselining: Al⁰-Contaminated NMC

VEHICLE TECHNOLOGIES OFFICE

*Specific capacity normalized with respect to mass of NMC (contaminant mass excluded)

- Al⁰ contamination may function as a conductive dopant (reduces initial charge resistance), particularly at higher impurity concentrations,¹ but negatively impacts overall cell capacity (higher overpotential)
- Interestingly, the worst impact on performance is seen between 0.1% 1% Al⁰...i.e., the practically relevant contamination level for shredded black mass

¹Fink, K. et al., Influence of Metallic Contaminants on the Electrochemical and Thermal Behavior of Li-Ion Electrodes (*submitted*)

NATIONAL RENEWABLE ENERGY LABORATORY

Pre-Treatment Baselining: Cu⁰-Contaminated NMC

BATTERY RECYCLING

VEHICLE TECHNOLOGIES OFFICE

*Specific capacity normalized with respect to mass of NMC (contaminant mass excluded)

- Practically relevant level of Cu⁰ concentration in black mass (~1%) is detrimental to performance (consistent with previous findings)¹
- Apparent increase in capacity for some 0.1% Cu⁰ replicates attributed to irregular and continued reactivity

¹Fink, K. et al., Influence of Metallic Contaminants on the Electrochemical and Thermal Behavior of Li-Ion Electrodes (*submitted*)

NATIONAL RENEWABLE ENERGY LABORATORY

Treatment of Al⁰ and Cu⁰-Contaminated NMC

VEHICLE TECHNOLOGIES OFFICE

Energy Efficiency &

Renewable Energy

U.S. DEPARTMENT OF

ADVANCED

BATTEDV DECVCI INC

ENERGY

Task #2: Impacts of Treatment on NMC (Again)

VEHICLE TECHNOLOGIES OFFICE

Full-Cell Performance: C/10 Cycling & Impedance

U.S. DEPARTMENT OF ENERGY Energy Efficiency & Renewable Energy VEHICLE TECHNOLOGIES OFFICE

Full-Cell Differential Capacity Analysis

ENERGY BATTERY RECYCLING

ADVANCED

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

VEHICLE TECHNOLOGIES OFFICE

- Reaction in "non-NMC" electrochemical window: intercalation of K⁺/Cl⁻ into graphite; LiOH oxidation

25

-400

3.5 Voltage (V)

Ongoing Effort: Post-Treatment Solvent Choice

 Combining (electro)chemical analysis and chemical rationale, we attribute the reduced capacity observed in full cells primarily to the use of DI water as a post-treatment rinse solvent:

-Surface-structural rearrangement

-Ineffective removal of solubilized contaminants (AI) and treatment solvents (K)

• Evaluation of alternative post-treatment solvents is underway, with promising initial results for practical BM

U.S. DEPARTMENT OF

Energy Efficiency &

Renewable Energy

VEHICLE TECHNOLOGIES OFFICE

Recell

BATTERY RECYCLING

Energy Efficiency & Renewable Energy

VEHICLE TECHNOLOGIES OFFICE

U.S. DEPARTMENT OF

Ongoing: Purification of (Practical) BM

ReCell

ADVANCED BATTERY RECYCLING

Energy Efficiency & Renewable Energy

VEHICLE TECHNOLOGIES OFFICE

U.S. DEPARTMENT OF

ENERGY

- Visible contaminant chunks
- Separator pieces present

- DTPA* • 60 °C
- 2.5 hr stirring
- Sonication

*2x molar conc. of "worst-case" total est. contaminants (Cu + Mg + Fe) from fines (as determined via ICP)

- Visible improvements to BM purity: -Dissolution of Al current collector -Major size reduction in Cu chunks
- However, some contamination still present (Cu particles; separator) and residual treatment species

VEHICLE TECHNOLOGIES OFFICE

Energy Efficiency &

U.S. DEPARTMENT OF

Summary of Completed Work:

- ✓ Complete ionization of practically relevant concentrations of Al⁰, Cu⁰ achieved under idealized conditions using low-cost, relatively mild processes
 - Sonication (Al⁰, Cu⁰) and use of a strong chelating agent accelerate corrosion kinetics & reaction extent
- ✓ Cl⁻ salts found to *inhibit*, rather than enhance, Cu⁰ corrosion at mildly elevated temperatures
- ✓ Salts with larger cationic radius (i.e., K⁺) reduce Li substitution and improve performance of treated material
- ✓ Optimized purification process has successfully been demonstrated for NMC spiked with 1% Al⁰ and 1% Cu⁰, with bulk structure and half-cell capacity of treated material matching pristine material
- Variability and reduced capacity in full-cells is attributed to surface changes (structure, chemistry) induced by posttreatment conditions (DI water washing) rather than the treatment process itself
 - Residual products are electrochemically consumed upon repeated cycling, restoring pristine behavior
- ✓ Demonstration of first application to industrial practical mass; optimization continues!

Ongoing Efforts:

- □ Optimized post-treatment conditions for applications to industrial BM (shredded end-of-life batteries)
- □ Scale up for demonstration at ReCell direct recycling pilot plant (current max: 15 g)
- □ Development of tailored sorbents for selective recovery of AI and Cu from solution

Thank you for your attention! Further questions: Kae.Fink@nrel.gov

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

VEHICLE TECHNOLOGIES OFFICE

www.recellcenter.org

NREL/PR-5700-84258

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. This research was supported by the U.S. Department of Energy's Vehicle Technologies Office under the **ReCell Center**, directed by Samuel Gillard and managed by Jeffrey Spangenberger and Bryant Polzin. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

Morphological Impacts of Treatment on NMC

- Pristine -

KOH Treatment

Energy Efficiency & Renewable Energy VEHICLE TECHNOLOGIES OFFICE

Transforming ENERGY

6 00

x6.00k

5.00µm

Structural Impacts of Treatment on NMC

U.S. DEPARTMENT OF Energy Efficiency & Renewable Energy

VEHICLE TECHNOLOGIES OFFICE

	КОН	Treatme	nt	Con	dition	% Co ₃ O ₄ ± SI	E a (Å)	c (Å)	l(003)/l(104)	"R-factor": <i>{I</i> (006)+ <i>I</i> (012)}/ <i>I</i> (101)
				Treated, N	o Extra Wash	6.1 ± 0.8	2.86	14.23	1.19	0.360
				Treated,	Extra Wash	6.3 ± 0.8	2.86	14.23	1.20	0.401
				1% Al Spik	ke, Untreated	4.6 ± 0.5	2.86	14.23	1.20	0.426
				Pri	istine	0.05 ± 0.01	2.86	14.23	1.05	0.379
Intensity (a.u		กรูเลยาะให้เรือเป็นไปประการปฏิบัติไปที่ได้จะ	departmen	t of energy	vehicle tech	Treated, No Ex Treated, No Ex Treated, Ex	Rie r para su	Rietveld refinement suggests no impact of treatment on cation mixing or lattice parameters (i.e., no evidence of bulk Li loss, even with supplemental DI H ₂ O rinse).		
Maringony Million an apartageness Nager al Million remains a general general		han a pla har an		var on hoppinger for the for	ngsigelegt have stretty to the set	1%	Al Spike	Son tran ter	ne evidence sformation; m electroch are under ir	of spinel phase impacts to long- emical stability ivestigation.
10	20	30	40	50	60	70	80			
			2	20 (°)						

NATIONAL RENEWABLE ENERGY LABORATORY

Structural Impacts of Treatment on NMC

U.S. DEPARTMENT OF Energy Efficiency & Renewable Energy

VEHICLE TECHNOLOGIES OFFICE

	KOH -	+ DTPA Tı	reatment	Condi	tion	% Co ₃ O ₄ ± SE	a (Å)	c (Å)	l(003)/l(104) 	"R-factor": <i>{I</i> (006)+ <i>I</i> (012)}/ <i>I</i> (101)
				Treated, No E	Extra Wash	6.5 ± 0.8	2.86	14.23	1.16	0.385
				Treated, Ex	tra Wash	7.1 ± 0.6	2.86	14.23	1.16	0.387
				1% Cu Spike	, Untreated	5.7 ± 0.5	2.86	14.23	1.20	0.378
				Pristi	ine	0.05 ± 0.01	2.86	14.23	1.05	0.379
Intensity (a.u		an fan an far fan fan skaar an de gere skaar an de g	Margaren and a	negalegaler ber legen freiher von der son andere son aller angelige der Angleit vor angegen der genaren gen begene openen Anne of aller freiher der angemeine freiher	with harwing and a second	Treated, No E Treated, E Treated, E Treated, E	xtra Wash xtra Wash Mana Mash xtra Wash xtra Wash	N p ev	o additional resence on lattice parar idence of bu by chela	impact of DTPA cation mixing or neters (i.e., no Ilk Li loss caused ting agent).
have and a second		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	lar			hermannen för som för s	Pristine			
10	20	30	40	50	60	70	80			
				20 (°)						

Electrochemical Impacts of Treatment on NMC

U.S. DEPARTMENT OF Energy Efficiency & ENERGY **Renewable Energy** VEHICLE TECHNOLOGIES OFFICE

• NMC treated with K⁺ salts shows improved performance over NMC treated with Na⁺ salts (reduced cationic substitution)

- Reduced capacity in full cells may be attributable to residual CI- salts on the surface of NMC (irregular SEI formation).
- Mitigation strategies for residual salts under investigation; simple DI H₂O wash may leach Li⁺

Electrochemical Impacts of Treatment on NMC

BATTERY RECYCLING

U.S. DEPARTMENT OF

ENERGY

Electrochemical Impacts of Treatment on NMC

Energy Efficiency & ENERGY ADVANCED BATTERY RECYCLING

U.S. DEPARTMENT OF

Renewable Energy VEHICLE TECHNOLOGIES OFFICE

NATIONAL RENEWABLE ENERGY LABORATORY

Transforming ENERGY

IMPEDANCE DATA (EIS); TREATED NMC-111 & NMC-532; POST-FORM.

Half Cells: NMC-111; K⁺ Salts

Full Cells: NMC-111; K⁺ Salts (n/p: ~1.15)

Post-Cycle 25

IMPEDANCE DATA (EIS); TREATED NMC-111 & NMC-532; POST-FORM.

Half Cells: NMC-111; K⁺ Salts

Half Cells: NMC-532; Na⁺ Salts

Full Cells: NMC-111; K⁺ Salts (n/p: ~1.15)

Full Cells: NMC-532; Na⁺ Salts (n/p: ~1.25)

Structural Impacts of Treatment on NMC

VEHICLE TECHNOLOGIES OFFICE

Energy Efficiency &

Renewable Energy

U.S. DEPARTMENT OF

ENERGY

ADVANCED

No significant bulk structural transformations (cation mixing, lattice expansion, phase change) observed for treated NMC.

Structural Impacts of Treatment on NMC, Cont'd

ENERGY ADVANCED BATTERY RECYCLING

U.S. DEPARTMENT OF

	NMC	Treatment Type	рН	Temperature	Agitation	Sonics?	Time (hr)	% Co ₃ O ₄ ± SE	а	С	<i>l(</i> 003 <i>)/l</i> (104)	"R-factor": {/(006)+/(012)}//(101)
	532	Pristine						1.0 ± 0.7	0.288	1.426	1.03	0.408
	532	NaOH	11	Ambient	Shaking	No	1	1.5 ± 0.9	0.289	1.425	1.06	0.458
	532	NaOH/NaCl	11	Ambient	Shaking	No	1	1.1 ± 0.5	0.288	1.426	1.12	0.443
5	111	Pristine						0.05 ± 0.01	0.286	1.423	1.05	0.379
•	111	КОН	13	Ambient	Shaking	No	1	0.04 ± 0.01	0.286	1.423	1.08	0.376
	111	KOH/KCI	13	Ambient	Shaking	No	1	0.05 ± 0.01	0.286	1.422	1.09	0.333
•	111	КОН	13	60 °C	Overhead Stir	Yes	2	0.07± 0.01	0.286	1.422	1.18	0.505

*Reduced intensity of red sample due to smaller divergence slit (low sample volume); repeat analysis planned