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Direct Recycling of Li-lon Batteries ReCell ENERGY wmiicc,
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. - . . Electrolyte Battery
» Burgeoning demand for Li-ion batteries induces supply Recovery Shredding
chain instability and raises concerns regarding
end-of-life disposal. Cathode,
Anode, and Metals

Separation

* DOE goal: “Reduce the cost of electric vehicle battery
packs to <$150/kWh with technologies that significantly

reduce or eliminate dependency on critical materials .,;,,ope 00
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Black Mass Purification: Process Overview ReCell ENERGY rciwcnsy
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" Shredded black mass contains trace Al & Cu from
current collectors that may inhibit cell performance
and impacts purity of recycled product.

{[BM
Purification’;

Physical
Filtration

“Contaminated”

Li(Ni;Mn,Co.,.,)O,
(NM%) . NMC + lonized _
NMC + Al°, Cu AR, Cu?* Pure Recovered Al°, Cu®

Goal: Identify and optimize BM purification process to enable complete and rapid dissolution of solid
contaminants (Al°, Cu®) without adversely impacting structure or electrochemical performance of NMC.

Approach: “Kinetically & thermodynamically assisted” alkaline aqueous corrosion
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|dealized: |dealized: . —
A0 > AI(OH), Cu® > HCuO, ; Cuo,> [~ Task #1: Optimized lonization of Al°, Cu®

| Test impact of treatment conditions on NMC I » Task #2: Impacts of Treatment on NMC

NMC spiked with NMC spiked with
AlO Cu®

NMC spiked with AIO,

—» Task #3: Treatment Efficacy on Simulated BM

Cu®
T o T :
( "Real-world” BM ) * — Task #4: Treatment Efficacy on Practical BM
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Task #1: Optimized lonization of Al,, Cu, ‘ v
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|dealized:
Cu, 2 HCuO, ; CuO,*

|dealized:
Al, = AI(OH),

}

Al° or Cu® (~1/3 of RT solubility)
DI Hzo\v l‘,/ "~ OH- (conc.; “carbonate-free”)

L

- Cl- (saturated; ~4.5 M)

= DTPA (2x molar equivalent)

“Bench-scale” testing:
* 40-45 mL solution
* 10 mg contaminant

Modular overhead sonic-stirrer '
Designed and built support: Joshua Major (NREL)

Temperature
Control Bath

Overhead
Stirrer

A hg
[
|

Sonic Bath
Fluid Circulation

l

Sample

Heat
Exchange
Coill
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Al° & Cu® Corrosion: Theoretical Foundations ReCell ENERGY rwtucrny

BATTERY RECYCLING

Cu® Corrosion:
-Kinetically slow and
thermodynamically unfavorable

Al° Corrosion:

-Rapid, strongly pH-dependent
reaction under ambient
oxidative conditions

-Low solubility of Cu?* species
and formation of passivating
surface films

Al = AR+ 3e ~ (anodic)
2H,0 + 2e ~>20H+ H,, (cathodic)

A|3+(aq) + 3OH_(aq) - Al(OH)3(S)
Al{OH)3) + OHT(5q) > Al(OH), (o)

A % 2 chelation -Chloride reportedly enhances

ey corrosion in alkaline media
Al + OH" + 3H,0 >AI(OH), () + 3/2 H, " DTPA through pitting and surface film
——— — disruption
VH2° ml 12r ‘\“‘*-\,_.‘\ ]
60 08 |- e ? .
Corrosion . ™

0.4 -
- - Passivation e
- = °r h-h.‘““--. orrosion |

0 %D E —04 i e ’ 1 %

o = - w
20 £ 2 L -
-16 | -
0 i |

L - ! ! Immunity
r, min 10 20 30 40 ) \ |
1 1 | 1 1 | |

Alexsandrov et al., Russian J. Gen.
Chem. 73, 5 (2003), 689-694. ' pH Arjmand and Adriaens, Materials 2012, 5, 2439-2464
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Al° Corrosion: Bench-Scale Optimization

Corrosion Time (min)

Corrosion Time (min)

Corrosion Time (min)

All samples were prepared at pH 13 at calibrated room temperature (~22 °C)

Mildly elevated temperature and sonication increase corrosion rate for Al°.
(40 °C with sonication; 10 mg AP at pH 13)

Full corrosion achieved in

Approach: pH monitoring (unbuffered system) _ Emamjomeh et al,
] esalination ,1-
Al, + OH + 3H,0 —AI(OH), ) * 3/2 H, log K; [AI(OH),] = 33.0 (25 °C) E‘; 5'\ (2011), 102-106.
. < o
Each extent of reaction consumes Al, | AB* preferentially and strongly binds OH- in $ fj‘f"\ N\a
and OH" on a 1:1 molar basis alkaline solution to form soluble Al(OH,)-. : 5 Jarom, ~ 2\ Solubility of AI(OH)," :
: L 5 - XN:~._ ~097¢g/lLatpH 13;25°C
Reaction kinetics and extent may be Thermodynamically favorable reaction; ) * \\ Sl
quantified by tracking solution pH room for kinetic tuning. ) SN
RT, no T control (20-22 °C) 40 °C, No Sonics

13.06 (100% ionization -352 12.48 — -338 12.44 -3396

S ’ TTex £ c

13.04 . - N -

13.02 353 § 1246 - -339 g 12.43 -340 9

| - -354 G 12.44 o o

5 13 e B 5 o - 340 @ T 1242 -340.4 2

12.98 B ' o 0

12.96 - -356 £ 12.4 - -341 g 12.41 -340.8 g

3 3 3

12.94 -357 12.38 -342 8 12.4 3412 8

0 20 40 10 20 30 0 5 10 15
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Cu? Corrosion: Bench-Scale Optimization

All samples shown were prepared at pH 13 (measured at RT)

Re (

ADVANCED
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Approach: 100
colorimetric | 5

= = o

caz  titration 2
(£ 1-2wt% Cu) | @ 60
Cu + DTPA (complexed) o 40

+ excess DTPA 8
+ colorimetric indicator e 20
0

“Base” solution w/
dissolved Cu
Blue color: Cu-DTPA

80
70
g’ 60
Solution + P-Rdye | = 50
£ 40
o
> 30
O
X 20
Solution titrated to 10

eq. pt. with 0
Ca(NO;),

|

KOH Only

2 hr stirrring

U

KOH + KCI

m No Sonics, 40 °C @ Sonics, 40 °C mNo Sonics, 60 °C @ Sonics, 60 °C

60 °C
e,
X
X
m KOH only, no sonics .
KOH only, sonics 2 = 0.996
X KOH +KClI, no sonics
% KOH +KClI, sonics Rl " Rz = 0.9982
0 0.5 1 2 2.5 3

Time (hr)

* CI- inhibits Cu® corrosion
at moderate temperatures.

» Sonication improves extent
of ionization for Cl--treated
samples, but does not
sufficiently compensate for
passivating effects.

Without Sonication:

* Linear (0t order) kinetics
until ~93% ionization

* Thermodynamic maximum
<100% ionization

With Sonication:

 Logarithmic (15t order)
kinetics (conc. dependence
on ionized product)

* ~100% corrosion achieved
after 2.5 hr (within error)

MATIONAL RENEWABLE EMERGY LABORATORY

Transforming ENERGY




Task #2: Impacts of Treatment on NMC
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Electrochemical Performance

ldealized: Idealized: Stru?)t(lI;rSIlMorphologlcal Changes
Al, = AI(OH), Cuy > HCuO, ; CuO,* SEM
Chemical Changes
-ICP (pending)
Test impact of treatment conditions on NMC 7
m cm
NMC spiked NMC spiked rxn efficiency
with Al° with Cu®
I.\\
NMC spiked with "~ Oplimized ™~ >
spiked wi
A, Gt \-_Process -~
, Y e
| e

(

“Real-world” BM)

Impacts of improved

() ©)
S~ parameters on Nmc_—~
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Iterative Process Optimization ReCell ENERGY  rereuavi trery
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~200 REEaseaaetesceaRse | E ~200
NMC-532; Na* salts 2 : NMC-532; K* salts 2 .
<€ _' i > E H 1 < o
pH 11 450 1§ . ¢ 108 2 pH 13 E150 k5
z T 2 2
] » 0.6 & = o L
S { w S 100 s
© 100 + L O = © 1 o)
— O ] : o l-Ian O 1 c
; . 1 1+ 04 € > . ] o
=) (@)] 8 3 = . [®)) g i =
o < - O+ ®© < 50 + . i S
S S 50 1 o i S« &) { —®—Pristine 1+ 02 O
= 2 ] —=—Pristine 102 8 12 g ] —-—KOH Only ! ©
= : ] ——NaOH Only - @ : 1 ——KOH + KCl i
C & ] ——NaOH +Nacl = 5 a 0 0
o 0 0 = @ 0 10 20
£ 0 10 20 = Cycle Number
l Cycle Number . ‘
10 20 30 40 >0 60 70 80 = 10 20 30 40 50 60 70 80
26 " 20
Condition % Co0,0,*SE  a 1(003)/1(104) ‘ Bl Condition % Co,0,+SE  a c  1(003)/1(104)
Pristine 1.0£0.7 0.288 1.426 1.03 90 ’ 134 Pristine 0.05+0.01 0.286 1.423 1.05
NaOH 1.5+£09 0.289 1.425 1.06 E KOH 0.04 £ 0.01 0.286 1.423 1.08
NaOH/NaCl 1.1+0.5 0.288 1.426 1.12 E KOH/KCI 0.05+0.01 0.286 1.422 1.09

Evidence of cation mixing and bulk structural rearrangement with Na* salts prompted shift to K* salts.
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Task #3: Treatment Efficacy on Simulated BM ‘ ReCell ENERGY rwtucrny

-

ldealized:
|y, 2 AI(OH), Cu,

Idealized:

- HCuO, ; CuO,*

&

NMC spiked NMC spiked
with AI0 with CuO

=3

NMC spiked with
Al,y, Cu,

A 4

“Real-world” BM)

T on "

'f.

3 0/8“
= R/

= =

Sonication;
L= T o) e

Prepare batches of NMC spiked with relevant
contaminant loadings (0.1 — 5 wt%)

Electrochemical & structural testing on spiked NMC
before and after BMP treatment
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Pre-Treatment Baselining: Al°-Contaminated NMC ‘
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0.1% Al
— 1% Al
4.29 — 5%l
—— Pristine
4.0
>
8138-‘\
©
=
o
>
3.6
3.4 4

0 25 50 75 100 125 150
Specific Charge Capacity (mAh/g)*

175

3.0 1

0.1% Al
— 1% Al
— 5%Al

— Pristine

0O 20 40 60 80 100 120 140 160
Specific Discharge Capacity (mAh/g)*

*Specific capacity normalized with respect to mass of NMC (contaminant mass excluded)

« Al° contamination may function as a conductive dopant (reduces initial charge resistance), particularly at
higher impurity concentrations,’ but negatively impacts overall cell capacity (higher overpotential)

* Interestingly, the worst impact on performance is seen between 0.1% - 1% Al°...i.e., the practically relevant
contamination level for shredded black mass

Fink, K. et al., Influence of Metallic Contaminants on the Electrochemical and Thermal Behavior of Li-lon Electrodes (submitted)
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Pre-Treatment Baselining: Cu®-Contaminated NMC‘ ReCell ENERGY miuicci,
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0.1% Cu
4.2 1% Cu
4.0 5% Cu
0.1% Cu —— Pristine
1% Cu 4.0
5% Cu
3.5~ —— Pristine
S < 3.8
o o
g 3.0 A rﬁc 3.6 T
(@) (@)
> >
A
2.5 1 3
3.2
2.0 A
3.0 ~
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350
Specific Charge Capacity (mAh/g) Specific Discharge Capacity (mAh/g)*

*Specific capacity normalized with respect to mass of NMC (contaminant mass excluded)

* Practically relevant level of Cu® concentration in black mass (~1%) is detrimental to performance (consistent
with previous findings)’
« Apparent increase in capacity for some 0.1% Cu®replicates attributed to irregular and continued reactivity

Fink, K. et al., Influence of Metallic Contaminants on the Electrochemical and Thermal Behavior of Li-lon Electrodes (submitted)
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Treatment of Al° and Cu%-Contaminated NMC
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Cycle Number Treated (AI), CyC|e 1 CVCIG 2
0 5 10 15 20 25 30
1 1 : | 1 L 425’
(a) t1
_E 095 _ 4.2 4.00
0o S
T 09 = | a0 3.74—
£ 0.85 Jsol
160 : : : ; : E 0.8 _ .V '
> 3-8 3.251
4 3]
155 T E 3.6 3.004 . ‘ .
1 E 0 50 100 150

145 —e— Pristine

Sp. Dischg. Capacity (mAh/g)
>
=

Treated (Cu), Cycle 1

—&— 1% Al Spike, Treated 3.2 Treated
140 ~4—1% Cu Spike, Treated — Untreated
5 10 15 20 25 30 e L
Cycle Number 0 25 50 75 100 125 150
Capacity (mAh/qg)
« Half-cell capacity is nearly identical to pristine material, suggesting a successful
purification process that does not adversely impact bulk NMC performance.

recovered on cycle 2 and beyond.

consumed upon initial charge.

* Irregular high resistance observed at beginning of first cycle; pristine behavior

* This suggests the presence of a reactive surface species that is electrochemically

MATIONAL RENEWABLE EMERGY LABORATORY

Voltage (V)

4.0

w
o

w
o
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2.04
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—— Untreated

—— Pristine

0 25 50 75 100 125 150 175
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Task #2: Impacts of Treatment on NMC (Again)
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Electrochemical Performance

ldealized: Idealized: Stru?)t(lI;rSIlMorphologlcal Changes
Al, = AI(OH), Cuy > HCuO, ; CuO,* SEM
Chemical Changes
-ICP (pending)
Test impact of treatment conditions on NMC 7
m cm
NMC spiked NMC spiked rxn efficiency
with Al° with Cu®
I.\\
NMC spiked with "~ Oplimized ™~ >
spiked wi
A, Gt \-_Process -~
, Y e
| e

(

“Real-world” BM)

Impacts of improved

() ©)
S~ parameters on Nmc_—~
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Full-Cell Performance: C/10 Cycling & Impedance | ReC
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Post-Formation 25 Cycles Post-Formation

100 rpristine -100 pristine
140 7 — KOH only — _KOH only

] NE -80 'KOH + KCl NE -80 KOH + KClI

- Q Q
= 130 1 S 60 S 60
= ' g g
R £ .40 £ .40
< 120 } 3 g
LE; i No 207 1 N -20¢f
= i
O 110 - 0 - : 0 = :
o i 0 50 10 150 0 50 100 150
3 - 2 2
_§ 100 1 Lo ool (2-cm”) Lo ol (€2-cm”)
Z }
o )
f*g 90 + Pristine . Cgpgmty redqctlon & mpec}ance growth observed in full cells (vs
g3 : KOH only pristine graphite) — but not in half cells

+ . . . .
80 1— , , | KOH} KC |« This suggests the presence of soluble reactive contaminant(s) in the
0 5 10 15 20 25 30 | treated cathode material, which cross over & act adversely at the anode
Cycle Number » Surface contaminants initially prevent effective utilization Li inventory,
but do not deplete significant Li through reaction (capacity recovery)
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Full-Cell Differential Capacity Analysis

ReCell
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Differential capacity (mAh-(g-V)™")

Differential capacity {mAh-(g-V}")

Differential capacity (mAh-{g-V}'I]
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Data analysis conducted by Paul Gasper (NREL
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5
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S
15
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recovery of
NMC
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0 5 l‘(] IAS 2‘0 25

« KOH-only sample recovers pristine behavior with repeated electrochemical cycling; KOH+KCI

sample shows continuous adverse reactivity

* Reaction in “non-NMC” electrochemical window: intercalation of K*/CI- into graphite; LiOH oxidation

" LABCORATORY

Innovation for Our Energy Future
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Ongoing Effort: Post-Treatment Solvent Choice | ReCell ENERGY muitw,
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- Base Treatment Only (KOH) _} Base Treatment + Various Post-Treatment Solvent Rinses

®
£110 1 2 .
E i *
> ] ] 20 el
£ ) ~115% improvement _
o~
S 90 A £
O . & 1
o] S
E i (—f_ 10
3 70 +
5 -
2 i 5
E I
% 50 1 ] ] ] ] ] ] ] ] ] ] 1 | I I I I I I I I I | 0

1 3 5 7 9 11 13 15 17 19 21 23 25 0 20 40 60 80
Cycle Number Re(Z) (Qecm2)

« Combining (electro)chemical analysis and chemical rationale, we attribute the reduced capacity observed in full
cells primarily to the use of DI water as a post-treatment rinse solvent:
-Surface-structural rearrangement
-Ineffective removal of solubilized contaminants (Al) and treatment solvents (K)

 Evaluation of alternative post-treatment solvents is underway, with promising initial results for practical BM
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Task #4: Treatment Efficacy on Practical BM ReCell ENERGY rwecrs,
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SEM/EDS imaging conducted [
by Max Schulze (NREL) & gtrames

’ o p— 1| P K o ——

Idealized: Idealized:
Al, = Al(OH), Cuy > HCuO, ; CuO,*

Test impact of treatment conditions on NMC

NMC spiked NMC spiked
with Al° with Cu®

Al K 0|:|10 0 [ —

NMC spiked with

Al°, Cu®
-~ = = = e - .
'(“Real-world” BM) | , | May contain additional metallic impurities not tested in
N~ _! idealized studies and/or non-NMC components
(graphite, polymer separator, casing scraps, etc.)
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Ongoing: Purification of (Practical) BM

U.5. DEPARTMENT OF Energy EﬁICIeﬂCY &
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Supernatant (recovered
liquid phase) shows bluish
color, indicating successful
Cu ionization & binding

ar L
s 0
.
“-

» Larger shreds of NMC double- BM Purification”:

« KOH - pH 13
coated onto current collector .
- : * DTPA
» Visible contaminant chunks . 60 °C
» Separator pieces present « 2.5 hr stirring
» Sonication

*2x molar conc. of “worst-case” total est. contaminants
(Cu + Mg + Fe) from fines (as determined via ICP)

]

) s— R

Lo

* Visible improvements to BM purity:
-Dissolution of Al current collector
-Major size reduction in Cu chunks

 However, some contamination still
present (Cu particles; separator)
and residual treatment species

MATIONAL RENEWABLE EMERGY LABORATORY Innovation for Our Energy Future




Conclusions & Continuing Work ReCell ENERGY rniane crry
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Summary of Completed Work:

v" Complete ionization of practically relevant concentrations of Al°, Cu® achieved under idealized conditions using
low-cost, relatively mild processes
« Sonication (AI°, Cu®) and use of a strong chelating agent accelerate corrosion kinetics & reaction extent

v" CI- salts found to inhibit, rather than enhance, Cu® corrosion at mildly elevated temperatures
v’ Salts with larger cationic radius (i.e., K*) reduce Li substitution and improve performance of treated material

v Optimized purification process has successfully been demonstrated for NMC spiked with 1% AI° and 1% Cu®, with
bulk structure and half-cell capacity of treated material matching pristine material

v" Variability and reduced capacity in full-cells is attributed to surface changes (structure, chemistry) induced by post-
treatment conditions (DI water washing) rather than the treatment process itself
» Residual products are electrochemically consumed upon repeated cycling, restoring pristine behavior

v" Demonstration of first application to industrial practical mass; optimization continues!

Ongoing Efforts:

[J1 Optimized post-treatment conditions for applications to industrial BM (shredded end-of-life batteries)
[1 Scale up for demonstration at ReCell direct recycling pilot plant (current max: 15 g)

[1 Development of tailored sorbents for selective recovery of Al and Cu from solution

MATIONAL RENEWABLE EMERGY LABORATORY Transforming ENERGY



Thank you for your attention!

U.S. DEPARTMENT OF Energy EﬁlClency &
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ADVANCED

BATTERY RECYCLING

www.recellcenter.org
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Morphological Impacts of Treatment on NMC ReCell ENERGY rreiasicresy
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Pristine KOH Treatment KOH + KCI Treatment

x6.00K 5.00pm e 6.00K
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Structural Impacts of Treatment on NMC Re(Cell ENERGY | renevase crey
Condition % Co;0, = SE c (A) 1(003)/1(104) “R-factor”:
KOH Treatment {1(006)+/(012)}/(101)
Treated, No Extra Wash 6.1+£0.8 286 14.23 1.19 0.360
Treated, Extra Wash 6.3+0.8 2.86 14.23 1.20 0.401
1% Al Spike, Untreated 46+0.5 2.86 14.23 1.20 0.426
Pristine 0.05+0.01 2.86 14.23 1.05 0.379
3 . .
8 departmgnt of energy vehicle technologies office logo Rietveld refinement suggests
= no impact of treatment on
n . . . .
S cation mixing or lattice
< parameters (i.e., no evidence of

* bulk Li loss, even with
Treated, Extra Wash supplemental DI H,O rinse).

1% Al Spike

Some evidence of spinel phase
transformation; impacts to long-

N I f\ Pristine term electrochemical stability
~ e — —— are under investigation.
10 20 30 40 50 60 70 80
26 (°)
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S | ] fT NMC ReCell ENERGY ruiuiecresy
enewable Energy
tructural Impacts of Treatment on O e e novae
Condition % Co;0, = SE c (A) 1(003)/1(104) “R-factor”:
KOH + DTPA Treatment {1(006)+/(012)}/[(101)
Treated, No Extra Wash 6.5+0.8 286 14.23 1.16 0.385
Treated, Extra Wash 7.1+£0.6 2.86 14.23 1.16 0.387
1% Cu Spike, Untreated 5.7+0.5 286 14.23 1.20 0.378
Pristine 0.05+£0.01 2.86 14.23 1.05 0.379

No additional impact of DTPA
presence on cation mixing or
remted Exira Wach lattice parameters (i.e., no

’ evidence of bulk Li loss caused

W‘“WMMM F P M , Treated, Extra Wash by chelating agent).

A,.,J\ ‘A Pristine
- A A NA A s IR
20 30 40 50 60 70 80

Intensity (a.u.)

/B

1
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Electrochemical Impacts of Treatment on NMC ReCell ENERGY ruclaecrom

ADVANCED
ADVANCED VEHICLE TECHNOLOGIES OFFICE

Half Cells: NMC-111; K* Salts Full Cells: NMC-111; K* Salts (n/p: ~1.15)

© 200 T ———— e B © 200 1
L 7 = B e B
- | g
~ : I é B
> 150 | Py | 0.8 ? > 150 1 - 08
@ ‘ S ° S
Q. - O S I 'O
8 T 065 S - 0.6 &
O 100 + I Q o 100 + I O
O 042 > 04
_‘C(: —; 045 _CCU + 0.4 g
L 50 1 . i 8 8 | I 3
(D) | —=—Pristine 029 (DJ 50 T —=Pristine L 02 S
= | =+—KOH Only : & | ——KOH Only £
S ] _ [
8 o 1—=-KOH+KC 0 & o 1=KOH+KCl ¥

0 10 20 30 0 10 20 30

Cycle Number Cycle Number

* NMC treated with K* salts shows improved performance over NMC treated with Na* salts (reduced cationic substitution)
» Reduced capacity in full cells may be attributable to residual ClI- salts on the surface of NMC (irregular SEI formation).

+ Mitigation strategies for residual salts under investigation; simple DI H,O wash may leach Li*
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U.5. DEPARTMENT OF Energy EﬁlClency &

Electrochemical Impacts of Treatment on NMC ReCell ENERGY ety

ADVANCED
BATTERY RECYCLING VEHICLE TECHNOLOGIES OFFICE

Cycle 1
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8 30] K 369 * Irregular first-cycle behavior may be attributable to
S 56 S residual salts on the surface of NMC (affecting SEI
37 - evolution). Performance stabilizes after formation.
R 301 - * Mitigation strategies for residual salts under
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140 InV tl tl n Im I DI H W h m I h Li+.
Sp. Charge Capacity (mAh/g) Sp. Dischg. Capacity (mAh/g) estigation, simp'e 20 was dy 'eac

MATIONAL RENEWABLE EMERGY LABORATORY Transforming ENERGY



Electrochemical Impacts of Treatment on NMC

U.5. DEPARTMENT OF

VEHICLE TECHNOLOGIES OFFICE

Energy Efficiency &
Renewable Energy

ReCell

ADVANCED
BATTERY RECYCLING

Half Cells: NMC-111; K* Salts

Cycle 4 (end of formation)
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Cycle 14 (10 cycles @ C/10)

— Pristine
—— KOH Treated
— KOH/KCI Treated

4.31—— Pristine
4,1~ KOH Treated
— KOH/KCI Treated

Voltage (V)
w w » >
[ee] o o =

w
~

w
o
)

0 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140 160
Specific Charge Capacity (mAh/g) Specific Discharge Capacity (mAh/g)

Full Cells: NMC-111; K* Salts

Cycle 4 (end of formation)
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Change in voltage profiles for treated full cells is thought to be from residual salts, and not cathode degradation.
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IMPEDANCE DATA (EIS); TREATED NMC-111 & NMC-532; POST-FORM.
Full Cells: NMC-111; K* Salts (n/p: ~1.15)
Post-Formation

Half Cells: NMC-111; K* Salts
Post-Formation
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IMPEDANCE DATA (EIS); TREATED NMC-111 & NMC-532; POST-FORM.

Full Cells: NMC-111; K* Salts (n/p: ~1.15)

Half Cells: NMC-111; K* Salts
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U.5. DEPARTMENT OF Energy Eﬁ:ICIency &

Structural Impacts of Treatment on NMC Re(ell ENERGY wevicrey
NMC-532; Na* salts; pH 11 NMC-111; K* salts; pH 13
— Pristine —Pristine
——NaOH Treated ——KOH Treated
——NaOH/NaCl Treated ——KOH/KCI Treated

10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80
26 20
Condition % Co;0, = SE a c 1(003)/1(104) Condition % Co;0, * SE a c 1(003)/1(104)
Pristine 1.0+£0.7 0.288 1.426 1.03 Pristine 0.05+0.01 0.286 1.423 1.05
NaOH 1.5+0.9 0.289 1.425 1.06 KOH 0.04 £ 0.01 0.286 1.423 1.08
NaOH/NaCl 1.1+05 0.288 1.426 1.12 KOH/KCI 0.05+0.01 0.286 1.422 1.09

No significant bulk structural transformations (cation mixing,
lattice expansion, phase change) observed for treated NMC.

MATIONAL RENEWABLE EMERGY LABORATORY Transforming ENERGY



U.5. DEPARTMENT OF Energy EﬁlClency &

Structural Impacts of Treatment on NMC, Cont’d ‘ ReCell ENERGY rucluiccns,

ADVANCED
ADVANCED VEHICLE TECHNOLOGIES OFFICE

Impacts of Optimized Treatment
Conditions on NMC Structure:
= * No observed change to bulk
s lattice parameters; no significant
> o
E peak shifting
= | « Conflicting evidence around
cation mixing...may need to
repeat sample due to low intensity
| . . . * Possible increase in spinel phase
10 20 30 40 oS 60 70 80 (within range of refinement error)
. o “R-factor”:
Treatment Type Temperature Time (hr) % Co,0, £ SE 1(003)/1(104) {1(006)+/(012)}/1(101)
532 Pristine 1.0+0.7 0.288 1.426 1.03 0.408
532 NaOH 11 Ambient Shaking No 1 1.5+£09 0.289 1.425 1.06 0.458
532 NaOH/NacCl 11 Ambient Shaking No 1 1.1+05 0.288 1.426 1.12 0.443
1 Pristine 0.05+0.01  0.286 1.423 1.05 0.379
*| KOH 13 Ambient Shaking No 1 0.04%+0.01  0.286 1.423 1.08 0.376
111 KOH/KCI 13 Ambient Shaking No 1 0.05+0.01 0286 1.422 1.09 0.333
* 111 KOH 13 60 °C Overhead Stir Yes 2 0.07+ 0.01 0.286 1.422 1.18 0.505

*Reduced intensity of red sample due to smaller divergence slit (low sample volume); repeat analysis planned
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