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Abstract 
Energy system projections from quantitative models inform actions including nearer-term and 
local decisions (e.g., technology adoption, infrastructure investment) as well as global and 
longer-term actions (e.g., international negotiations, global targets). Computational limits require 
model designers to balance coverage and resolution (i.e., breadth versus depth). Some models, 
such as the Global Change Analysis Model (GCAM), represent all energy sources and uses with 
less resolution than models that focus on a single sector’s energy use. GCAM balances global 
supply and demand of all energy carriers projecting prices using internal calculations for energy 
sources and costs of greenhouse gas mitigation while capturing interlinkages between the energy 
system, water, agriculture and land use, the economy, and the climate. This globally 
comprehensive model was used to frame the Long-Term Strategy of the United States: Pathways 
to Net-Zero Greenhouse Gas Emissions by 2050, which the White House released in 2021 and 
has been used to inform national and global economy-wide climate change mitigation 
discussions and strategy development for decades.  

Unlike GCAM, sectoral models focus on a portion of the energy sector and with greater detail 
and resolution. The Regional Energy Deployment System (ReEDS) electricity-sector model, for 
example, projects electricity system capacity expansion and operation with high-fidelity 
representation of emerging technologies for deep decarbonization, such as variable renewable 
energy and energy storage, and integration of these technologies into the electric grid. The 
Transportation Energy and Mobility Pathway Options (TEMPO) transportation-sector model 
enables analysis of household choices, with a focus on adoption, charging, and use of electric 
vehicles. The Scout buildings-sector model supports detailed consideration of the policies and 
markets that can accelerate the adoption of electrification and energy conservation measures in 
buildings. Such sector-specific models are instrumental in informing technology research, 
sectoral planning strategies, and sector-specific aspects of greenhouse gas mitigation strategies in 
the United States.  

The integrated multisector and sector-specific modeling approaches represented by GCAM and 
these sectoral models are complementary. The integrated multisector approach calculates energy 
pricing and resource allocation within the model, which is important for consistency when future 
conditions substantially diverge from current conditions in transformative scenarios. The sector-
specific approach facilitates representation of granular details across spatial, temporal, 
technological, and market dimensions that enable exploration of particular interactions and trade-
offs. This report presents the results of recent work to explore the differences and trade-offs 
between these approaches by comparing GCAM with the sector-specific ReEDS, TEMPO, and 
Scout models. The report compares both model structures and results, and it addresses their 
potential relevance and applications. 
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Executive Summary 
Transforming energy systems to achieve a sustainable, resilient, and equitable future is a 
complex, difficult, and uncertain process. The transformation must consider numerous actors, 
technologies, infrastructures, and physical processes across multiple, interconnected systems as 
they develop over decades. Quantitative models can help improve the understanding of these 
transformations by producing results that quantify technology deployment, performance, and 
utilization in scenarios that explore a range of potential futures. Analytic approaches can 
represent the energy system from multiple vantage points, each with distinctive geospatial, 
temporal, and techno-economic system scope. Energy system projections inform various 
stakeholders on myriad topics, from short-term and local decisions, such as technology and 
infrastructure deployment, to global and long-term negotiations and policy targets, such as those 
of the United Nations Framework Convention on Climate Change. Model designers trade off 
coverage and resolution within computational limits; for example, some models represent all 
energy sources and uses with less resolution, while others focus on a portion of the energy sector 
with greater detail and resolution.  

The Global Change Analysis Model (GCAM) has been used for decades to inform national and 
global economy-wide climate change mitigation discussions and strategy development, and more 
recently was used to frame the Long-Term Strategy of the United States: Pathways to Net-Zero 
Greenhouse Gas Emissions by 2050, which the White House released in 2021. To better 
understand the differences and trade-offs between GCAM and sector-specific models for the 
United States, we compared GCAM with the Regional Energy Deployment System (ReEDS) for 
the electricity sector, the Transportation Energy and Mobility Pathway Options (TEMPO) model 
for transportation, and the Scout model for buildings. Examples of the major questions that the 
models address are: 

• GCAM 
o How might socioeconomic, 

energy, land, and water systems 
coevolve in the coming decades?  

o How do sectoral and regional 
choices interact?  

o What are the emission and 
climate implications of these 
pathways? 

• ReEDS 
o Which electricity generation and 

transmission gets built?  

• TEMPO 
o How are trips taken (using 

which mode and technology)?  
o How much energy is consumed 

and what emissions are 
produced? 

• Scout 
o Which buildings technologies are 

adopted?  
o How much energy is consumed 

and what emissions are 
produced? 

 
GCAM balances global supply and demand of all energy carriers by endogenously projecting 
prices for energy sources and costs of greenhouse gas (GHG) mitigation while capturing 
interlinkages between the energy system; water, agriculture, and land use; the economy; and the 
climate. Sector-specific models inform technology research, sectoral planning strategies, and 
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sector-specific aspects of GHG mitigation strategies in the United States. ReEDS projects 
capacity expansion with high-fidelity representation of emerging technologies for deep 
decarbonization, such as variable renewable energy and energy storage, and their integration into 
the electric grid. TEMPO enables analysis of household vehicle choices, with detailed 
consideration of factors that influence adoption, charging, and use of electric vehicles. Scout 
supports detailed consideration of the policies and markets that can accelerate the adoption of 
electrification and energy conservation measures in buildings. 

This work highlights the complementarity of these two approaches: integrated multisector and 
sector-specific. The integrated multisector approach ensures consistent, endogenous energy 
pricing and resource allocation, which can substantially diverge from current conditions in 
transformative scenarios, while the sector-specific approach facilitates representation of granular 
details across spatial, temporal, technological, and market dimensions that enable exploration of 
particular interactions and trade-offs. 

Sector-specific comparisons show the potential complementarity of the two types of models. We 
aligned the categorization of technologies and selectively harmonized input assumptions because 
differing results primarily attributable to input assumptions would not highlight the model 
differences of interest. Results for electricity illustrate the challenge of representing the value of 
electricity generation technologies, especially variable renewable energy, as their deployment 
shares increase. We consider two methods to address this challenge: (1) a version of GCAM that 
models power sector operations with subannual detail and (2) a novel metric and method 
developed to enable aggregate ReEDS results to inform less detailed models as described in 
Mowers et al. (2023).  

Results for transportation indicate GCAM and TEMPO show similar responsiveness of 
passenger transportation system change to carbon price. Freight results may differ due to model 
resolution, infrastructure representation, and discount rates. Results also differ for a scenario of 
100% electric vehicle sales mandate for passenger vehicles due to longer vehicle survival 
assumptions in TEMPO and its modeling of household-level vehicle use resulting in greater 
vehicle miles traveled for older internal combustion engine vehicles in some scenarios. 

The buildings sector models required the most effort to harmonize because of the greater number 
of equipment types and energy services represented in buildings (e.g., heating, cooling, water 
heating, lighting, refrigeration, and multiple appliances categories) and the greater difference in 
the granularity of technological detail between GCAM and Scout. Initial results for buildings 
show greater responsiveness in scenarios with energy efficiency and electrification measures 
in Scout, with GCAM being more responsive in scenarios with carbon pricing alone.  

This report presents the results of model comparisons explored in this project, including 
comparisons of both model structure and results. Table ES-1 summarizes comparisons to GCAM 
for elements of model structure that are similar among all the sector-specific models. Other 
structural elements—from Hiremath et al. (2007), such as assumptions, top-down versus bottom-
up, methodology, and choice functions—appear in the sector-specific comparisons. 
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Table ES-1. Comparison of Elements of Model Structure for GCAM-Integrated Modeling 
Framework and Sector-Specific Models 

Category GCAM v6.0 Sector-Specific Models 

Purpose • Economy-wide transitions 
• Cross-sectoral interactions 

• Sector-specific energy technology 
transition options 

Granularity • Physical-based economic model 
• Limited technology and process detail 

• Greater technological, temporal, and 
spatial granularity  

Extent • Global coverage (32 energy-
economy regions) 

• Economy-wide coverage of energy 
sources and uses, including 
representation of individual sectors  

• 5-year time-steps through 2100 

• U.S. geographical scope, often with 
high regional detail 

• Representation of individual sectors 
• 1-year to 2-year time-steps through 

2050 

Input data • 2015 base year 
• Need for comprehensive, global data 

• Many sector-specific inputs updated 
annually 

Categories adapted from Hiremath et al. (2007). 

This report is intended to support planning and interpretation of analytic studies and identify 
opportunities for model improvement. An integrated, multisector model such as GCAM is best 
used to understand overall global, economy-wide system change and feedbacks in response to 
a major shift, such as GHG mitigation. GCAM and other integrated assessment models can be 
used to develop consistent conditions that quantify each scenario, even for scenarios that diverge 
from historical precedents with respect to global economic, technological, and environmental 
conditions. These consistent conditions—for factors such as fuel prices, resource demands, and 
costs of GHG mitigation—can then serve as inputs to sector-specific models. The sectoral 
models can then focus on questions where greater technology and market resolution are likely 
to be useful.  

Limitations of our model comparisons in this report arise from the imperfections of models as 
predictive tools and the exploratory scope of this project. Model validation is challenging at best 
for technological changes that lack historical precedent. Due to the exploratory scope, this study 
only accomplished selective harmonization and initial sensitivity analysis. Although this study 
presents reference and GHG mitigation scenarios, the GHG mitigation scenarios were 
constructed in different ways the sectors considered: electricity, transportation, and buildings. 
Future analysis would be required to apply consistent approaches across all sectors in a detailed 
multimodel climate change mitigation analysis.  

Even if many of these limitations were overcome, there would still be no single answer to the 
question of which model should be used when, because they serve different purposes. For global, 
economy-wide analysis, GCAM is more appropriate than any single U.S. sector-specific model, 
and sector models can offer complementary U.S. detail. For sector-specific U.S. analysis, a 
sector model may be more appropriate, and a set of economy-wide boundary conditions must be 
assumed, which could be informed by a model such as GCAM for scenarios that differ from 
baseline conditions. For analyses targeting detail in multiple sectors, combinations of multiple 
models may be most useful. 
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Future work could improve both types of models. Streamlining processes for integrated 
multisector models such as GCAM to provide boundary conditions could improve sector-specific 
analyses. Improvements that could be made in integrated multisector models, include methods to 
improve representation of the value of each technology in the electric-sector, household-level 
transportation decisions, and the value of greater segmentation of buildings markets. Future work 
could apply the scenario concepts developed for in this report across all sectors (e.g., carbon 
price responsiveness, emissions targets, technology availability, and technology standards). 
We suggest future work to facilitate input harmonization and output comparison, and to test key 
findings in multiple models. Overall, this work shows the value of complementary modeling 
approaches in developing robust conclusions to inform energy technology innovation and 
deployment to meet GHG mitigation goals. 
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1 Rationale for Comparison of Models 
Obtaining and using energy to power the economy requires planning and investment decisions 
over years and decades. Quantitative models of future energy systems are useful in this context 
to quantify various scenarios of technology innovation, deployment, performance, and utilization 
to meet various scenarios of energy market demand. Numerous models depict the energy system 
from multiple vantage points, each with distinctive geospatial, temporal, socioeconomic, and 
techno-economic system1 scope, and developed for various purposes. This report presents the 
results of a comparison of a model of the global integrated multisector energy-economic system 
with sector-specific models of three sectors in the United States—the electricity, transportation, 
and buildings sectors. The integrated multisector model, GCAM, produces results that inform 
national and global economy-wide decarbonization2 decisions. For example, the Long-Term 
Strategy of the United States: Pathways to Net-Zero Greenhouse Gas Emissions by 2050, which 
the White House released in 2021, used GCAM analysis. GCAM calculates internally consistent 
supply, demand, and prices for energy sources and costs of GHG3 abatement. The results of 
sector-specific models inform technology research, sectoral planning strategies, and sector-
specific aspects of national decarbonization strategies. In general, they offer greater granularity 
than a global, economy-wide model in spatial, temporal, technological, and market dimensions. 
In this report, we consider models for electricity, buildings, and transportation sectors—the 
Regional Energy Deployment System (ReEDS) model, the Transportation Energy and Mobility 
Pathway Options (TEMPO) model, and Scout. 

Previous work has reported on multimodel comparison studies through efforts such as those of 
the Stanford Energy Modeling Forum (Huntington et al. 2020) and integrated assessment model 
comparisons (Prina et al. 2022). This report compares two very different classes of models, and it 
includes several models that have not previously been compared. These models were also 
selected for comparison because they are used within the U.S. Department of Energy and 
national laboratory system to consider energy technology strategies. Related work has compared 
global integrated assessment models with global sectoral models (Yeh et al. 2017), but has not 
explained how and why this particular set of detailed U.S. sector-specific models differ from the 
corresponding representation of the United States in GCAM. Complementarity among models is 
being pursued internationally as well through an ongoing project,4 and this report contributes to 
understanding how each type of model might be used to complement or improve the other. This 
report will summarize initial comparisons of the models, explain some of the reasons for 
similarities and differences, identify complementary roles for each type of model, and suggest 
ideas for future work. 

 
 
1 Techno-economic system refers to technologies and their market and economic context. For example, an electric 
sector capacity expansion model would likely represent the performance of renewable generation technologies that 
are most salient for capacity expansion decisions. 
2 Throughout this report, decarbonization is used as a shorthand for energy sector measures for climate change 
mitigation and GHG mitigation, many but not all of which emphasize on reducing emissions of carbon-based 
greenhouse gases. Specific metrics (e.g., metric tons CO2) are indicated as appropriate. 
3 This refers to the overall goal of mitigating greenhouse gases even though the quantitative results are only for CO2.  
4 “Energy Demand changes Induced by Technological and Social innovations (EDITS),” 
https://iiasa.ac.at/projects/energy-demand-changes-induced-by-technological-and-social-innovations-edits.  

https://iiasa.ac.at/projects/energy-demand-changes-induced-by-technological-and-social-innovations-edits
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This report first describes the models and the framework that we used to compare them. It then 
summarizes results by sector. Finally, it offers a discussion of potential applications, conclusions, 
and future work.  

2 Introduction to the Models and the Framework 
for Comparison 

In this section, we first briefly describe each of the four models that were used in this work: 
GCAM, ReEDS, TEMPO, and Scout. We then define and summarize the model attributes that 
are used to structure our model comparisons. Last, we explain the metrics that are compared in 
the sector-specific results sections.  

2.1 Overview of Models 

2.1.1 Economy-Wide: GCAM 
The Global Change Analysis Model (GCAM) is an integrated, multisector model developed and 
maintained by the Pacific Northwest National Laboratory. GCAM simulates the future evolution 
of, and interaction between, global energy, water, land, economic and climate systems. GCAM5 
divides the world into 32 energy-economy regions, of which the United States is one; these 
regions are linked through global markets for primary energy resources (e.g., oil, gas, and coal) 
and agricultural commodities. The model operates recursively in 5-year time-steps from 2015 to 
2100, and it solves by finding the equilibrium prices and quantities of energy, agricultural, water, 
and emissions markets in each region and time period. 

Key model inputs include socioeconomic drivers (population and gross domestic product [GDP]) 
for each model region and characterizations of resources (potentials, extraction costs), 
technologies (costs, efficiencies), and policies. Key model outputs include: 

• Prices and quantities produced, and consumed for primary energy resources, intermediate 
energy carriers, agricultural commodities, and water 

• Technology deployment and turnover in energy transformation (e.g., electricity 
generation, refining, gas processing, hydrogen production) and end-use sectors (including 
residential and commercial buildings, passenger and freight transportation, and industry) 

• GHG and traditional air pollutant emissions  
• Key climate outcomes.  

GCAM allocates shares among competing technologies using a logit-based formulation that 
assumes a distribution of realized costs due to heterogeneous real-world conditions (Clarke and 
Edmonds 1993). Calvin et al. (2019) describe GCAM’s logit choice formulation and calibration 
process in detail. In short, GCAM’s logit exponents inform how directly the model’s choice 
indicator (cost or profit) dictates technology shares, with lower absolute magnitude exponents 
broadening the logit distribution and higher absolute magnitude exponent concentrating shares in 
least-cost technologies. GCAM’s logit exponents are exogenously specified, although some 

 
 
5 A version of GCAM similar to GCAM v6.0 (https://github.com/JGCRI/gcam-core/releases) was used for 
this analysis. 

https://github.com/JGCRI/gcam-core/releases
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recent studies have used backcasting to estimate parameters for GCAM’s land (K. V. Calvin et 
al. 2022) and agricultural trade (Zhao et al. 2021) modules. Logit share weights are calculated in 
the historical period (based on historical costs and technology shares) to capture non-modeled 
factors that influence technology choice (e.g., consumer preferences or the availability of 
supporting infrastructure) and ensure GCAM replicates its historical energy balance, land 
allocation, and trade data. By default, these share weights are fixed at historical values into the 
future, although they are sometimes adjusted in future periods, in cases when historical precedent 
might not accurately represent future behavior (e.g., for emerging technologies where factors that 
impeded a technology’s deployment historically, such as availability of supporting infrastructure, 
are expected to diminish over time). 

Parts of this study also use GCAM-USA, a version of GCAM with subnational detail in the 
United States. GCAM-USA subdivides the U.S. economy, energy, and water systems into 50 
U.S. states and Washington D.C. (Binsted et al. 2022; 2020). Markets in these 51 subnational 
regions are solved concurrently with the other 31 non-U.S. regions in GCAM-USA; outcomes in 
the United States are connected to and consistent with international conditions. The subnational 
regions in GCAM-USA contain more detailed and more heterogeneous representations of 
socioeconomic drivers, renewable resource characteristics, energy transformation sectors, and 
end-use energy demands than the core GCAM (single U.S. region) model.  

GCAM and GCAM-USA are open-source, community models, and they are available for 
download on GitHub.6 A thorough description of GCAM is available in Calvin et al. (2019).7 

2.1.2 Electricity Sector: ReEDS 
The Regional Energy Deployment System Model (ReEDS)8 is a model of electricity, generation, 
storage, and transmissions capacity expansion and operation in the contiguous United States. It 
solves via dynamic-recursive system cost minimization with 2-year time-steps (typically) for 
2010–2050. The model structure includes 134 balancing areas, 17 seasonal-diurnal time-slices, 
and an hourly submodule that operates between every 2-year model solve to enable consideration 
of effects more-detailed than those of the major time-slices, such as variable renewable energy 
(VRE) curtailment fraction and capacity credit, and storage curtailment recovery, capacity credit, 
and arbitrage value. 

Key inputs to ReEDS include:  

• Electricity demand profiles by region and future demand growth projections 
• Technology and fuel cost projections 
• Detailed wind and solar resource supply curves by region 
• State-level and national policies, including existing and potential future policies. 

 
 
6 “Global Change Analysis Model (GCAM),” https://github.com/JGCRI/gcam-core, including precompiled release 
packages (“GCAM 6.0,” https://github.com/JGCRI/gcam-core/releases). 
7 Online model documentation is available at “GCAM v6 Documentation: Table of Contents,” 
http://jgcri.github.io/gcam-doc/toc.html.  
8 For more information, see “About the Regional Energy Deployment System Model,” NREL, 
https://www.nrel.gov/analysis/reeds/about-reeds.html. 

https://github.com/JGCRI/gcam-core
https://github.com/JGCRI/gcam-core/releases
http://jgcri.github.io/gcam-doc/toc.html
https://www.nrel.gov/analysis/reeds/about-reeds.html
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Key outputs of ReEDS include: 

• Electricity generation and capacity by technology 
• Transmission capacity and flows 
• Emissions of GHG and air pollutants 
• System costs. 

ReEDS has been used in scenario analysis of electric-sector futures for the United States that 
include the Electrification Futures Study,9 Standard Scenarios10 studies (Cole et al. 2021; 
Denholm et al. 2022), and a study exploring a 100% renewable energy power system for the 
United States (Cole et al. 2021; Denholm et al. 2022). A public version of the model is 
available.11 

2.1.3 Transportation Sector: TEMPO  
The Transportation Energy & Mobility Pathway Options model (TEMPO) (Muratori et al. 2021) 
is a transportation energy system model encompassing the entire U.S. transportation sector. 
TEMPO develops projections of transportation demand, mode choice, technology choice, vehicle 
stock, energy consumption, and emissions for both the passenger sector and the freight sector at 
an annual resolution. It uses a logit formulation to estimate mode and technology shares for 
passenger and freight demand based on the cost and time intensity of alternative modes and 
technologies. TEMPO has the capability to be run at the national level (passenger and freight) or 
the county level (passenger only). In the passenger sector, TEMPO considers travel demand at 
the household level, estimating household-level mode choice, technology choice, and demand for 
personal vehicles. It considers household-level charging infrastructure constraints when 
estimating demand for and use of personal electric vehicles. In the freight sector, TEMPO 
models movement of freight goods in eight shipment distance bins. A medium- and heavy-duty 
truck technology choice incorporates differences in vehicle use across shipment distances and for 
vehicle classes, including infrastructure considerations. 

Key inputs to TEMPO include:  

• Vehicle technology attributes (including capital cost and fuel economy for on-road 
vehicles and operating cost for non-road modes)  

• Fuel prices  
• Population 
• Carbon intensity of fuels.  

Key model outputs of TEMPO include:  

• Vehicle stock  
• Energy consumption 
• Service demand 
• Emissions by mode, technology, and fuel.  

 
 
9 “Electrification Futures Study,” NREL, https://www.nrel.gov/analysis/electrification-futures.html. 
10 “Standard Scenarios,” NREL, https://www.nrel.gov/analysis/standard-scenarios.html.  
11 “Request Access to Download Model,” NREL, https://www.nrel.gov/analysis/reeds/request-access.html. 

https://www.nrel.gov/analysis/electrification-futures.html
https://www.nrel.gov/analysis/standard-scenarios.html
https://www.nrel.gov/analysis/reeds/request-access.html
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2.1.4 Buildings Sector: Scout 
Scout is a stock-and-flow model of U.S. residential and commercial buildings and building 
components (Langevin, Harris, and Reyna 2019; Langevin et al. 2021). It is used to estimate the 
energy and CO2 impacts of energy conservation measures (ECMs), and it facilitates the 
comparison of ECM impacts across end uses (e.g., heating, lighting, and envelope). Scout results 
are informed by building and equipment stock turnover and the particular ECMs included that 
may displace adoption of business-as-usual technologies in an analysis. Scout has flexible 
geographic resolution―U.S. states, the National Energy Modeling System (NEMS) Electricity 
Market Module regions (25), and American Institute of Architects’ climate zones (5)―and it 
estimates ECM impacts annually from the present year through 2050.  

Scout can evaluate a portfolio of ECMs in competition with each other, ensuring ECM savings 
impacts are not double-counted. Multiple ECMs that apply to the same market segment compete 
for shares of the segment based on user specified cost-effectiveness metrics, which include 
simple payback, internal rate of return, cost of conserved energy, or cost of conserved carbon 
(cost per metric ton CO2). 

Key inputs for Scout include:  

• From Energy Information Administration’s (EIA) Annual Energy Outlook (AEO) 
o Baseline building and technology stock turnover; technology cost, performance, 

and lifetime 
o Energy prices and electricity carbon intensity (can also be drawn from 

alternative sources) 

• From the user 
o ECMs available in the current year and/or the future 

Key outputs of Scout include:  

• Energy savings 
• CO2 emission reductions 
• Energy cost (utility bills) savings  
• Economic (cost-effectiveness) metrics 
• Public health costs by ECM.  

2.2 Framework for Comparison 
Key differences between energy system models may be described in terms of their attributes, 
including model extent, granularity and resolution, input data and parameters, decision approach, 
and time-step dynamics, as they are applied to spatiotemporal dynamics, technologies, energy 
resources, and energy demands. Table 1 compares GCAM with the sector-specific models as a 
group with respect to these attributes. In this report, we examine how some of these differences 
contribute to differences in model results. The list of model attributes considered here extends to 
two aspects of sector-specific model structure beyond those covered in the executive summary: 
choice functions and the methodology for handling time-steps. The electricity, transportation, 
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and buildings sections of this report address in detail how model attributes contribute to 
differences in model results. 

Table 1. Comparison of Elements of Model Structure for GCAM and Sector-Specific Models 

Category GCAM Sector-Specific Models 

Purpose • Economy-wide transitions 
• Cross-sectoral interactions 

• Sector-specific energy technology 
transition options 

Granularity • Economic model with physical energy 
and material flows 

• Limited technology and process detail 

• Greater technological, temporal, and 
spatial granularity  

Extent • Global coverage (32 energy-economy 
regions) 

• Economy-wide coverage of energy 
sources and uses, including 
representation of individual sectors 

• 5-year time-steps through 2100 

• U.S. geographical scope, often 
with high regional detail 

• Represent individual sectors 
• 1-year to 2-year time-steps 

through 2050 

Input Data • 2015 base year 
• Need for comprehensive, global data 

• Many sector-specific inputs 
updated annually 

Decisions • Logit choice function 
• Single choice indicator (cost or profit) 
• Historical preferences captured in 

calibration (share weight) parameters 

• Varies by sector 
ReEDS: cost minimization 
TEMPO: logit choice function 
Scout: stock and flow with choice 
functions 

Time Step 
Dynamics 

• Myopic (no foresight) 
• No explicit constraints on rates of 

change between time-steps 

• Varies by sector 
ReEDS: myopic, nonlinear adjustments 
between  time steps 
TEMPO: myopic; no explicit constraints 
on rates of change between timesteps 
Scout: myopic, stock turnover defines 
changes between time steps  

Categories adapted from Hiremath et al. (2007). 

2.2.1  Granularity and Resolution 
One type of simplifying assumption used in models is made when phenomena are organized into 
discrete groups and an average or representative value is used to describe all members of that 
group. Depending on the application of the model, these groups may represent numerous, fine 
distinctions, or broader aggregations. Geospatial, temporal, technological, energy resource, and 
energy demand features may all be grouped into more or fewer categories depending on the need 
for resolution of these attributes. In this report, we identify and explain certain differences in 
results that are attributable to models’ different levels of granularity or resolution. In considering 
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these results, it may be useful to think about granularity in terms of a supply or demand curve: 
everything in a single category becomes competitive when its average value is competitive, so a 
lower resolution will result in “lumpier” behavior that can be either an underestimate or an 
overestimate relative to a more continuous depiction. 

2.2.2  Extent 
Models make simplifying assumptions to select a scope for geographic, temporal, technological, 
and energy system (resource, demand, infrastructure, dynamics) extent. For this project, we 
compare the U.S. region of a global model to U.S. models over 2020–2050, a period covered in 
both of the models. Differences in technology coverage explain some of the differences in model 
results, and they have been harmonized or noted. Energy resource coverage and energy demands 
are not comprehensive of every possibility, and areas of alignment and difference are noted.  

2.2.3  Input Data and Parameters 
Modeling requires input data to characterize initial conditions based on historical calibration and 
often future technology costs, as well as other parameters. The base year is the temporal starting 
point, and characterizing key attributes in the base year entails acquiring data and making 
assumptions to fill gaps in information. Most models (including all those in this study) uses 
future technology cost and performance projections from external sources. Models may use 
different sources of base and future year data, interpret the same sources differently, or make 
different assumptions to fill gaps. In this report, we harmonize certain key inputs, including to 
some extent both base year energy sector demand and supply as well as future technology cost 
and performance, but other inputs may remain as a reason for differences in results. 

GCAM’s historical (1975–2015) calibration data for energy production, transformation, and 
consumption are based on global energy balance data from the International Energy Agency 
(International Energy Agency 2019). These inputs are typically updated every 5 years, because 
the model operates in 5-year time-steps, and because updating GCAM to a new historical base 
year entails updating data on land allocation, agricultural production and trade, water 
consumption, and other parameters, in addition to energy balances. This update rate presents a 
particular challenge for aligning historical energy use between GCAM and sector models, which 
more frequently update their historical data based on yearly updates to the AEO. In this report, 
historical energy data are not fully harmonized between GCAM and the sector models because of 
the challenges of updating GCAM’s historical energy balances. If future research attempted to 
further harmonize these historical energy data, analysts would need to decide whether to use 
GCAM values because of the complexity of updating its global energy balances or use the more 
recent AEO historical data used by the sector models and then adjust global energy balances in 
GCAM. 

Backcasting or other benchmarking to empirical data can inform the selection of model 
parameters and ideally result in a model that matches behaviors in response to key drivers rather 
than only matching historical year values. Though each model’s parameters have been carefully 
selected, systematic backcasting studies are only available for GCAM’s land and agricultural 
models, as described in Section 2.1.1. The individual sector sections detail the historical 
calibration for each sector.  
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2.2.4  Decisions 
Regarding choice functions, the evolution of the energy system depends on decisions, including 
decisions about individuals’ purchases, business investments, and government investment and 
policies. Models represent such decisions by determining which factors are considered (e.g., 
cost, time, constraints such as environmental regulations, and future outcomes) and how each 
factor is weighted. Models may identify a single winner-take-all outcome or spread outcomes 
over a range of choices as a proxy for uncertainty in the factors and weighting. In this report, 
we identify examples where differences in the models’ decision algorithms lead to different 
outcomes. 

2.2.5  Time Step Dynamics 
Another key modeling structural issue is what happens between one time-step and the next. 
Changes in technology, demands, and prices may be exogenous inputs to a model or may be 
endogenously determined. Constraints may be imposed on rates of change between time-steps. 
System dynamics models (e.g., Scout) simulate each time-step from the previous one based on 
these rates of change, in contrast to equilibrium or optimization models (e.g., GCAM and 
ReEDS) do not necessarily constrain rates of change between time-steps.  

Input parameters, decisions, and time-step dynamics combine to determine a modeled rate of 
technological change in each sector, including the extent to which a model allows rates of change 
that have not been observed historically. In this study, we compare rates of change and reasons 
for differences, but we do not examine feasibility concerns.  

2.3 Metrics 
Despite their varying extent, granularity and resolution, parameters, decision approaches, and 
time-step dynamics, the models included in this study use similar types of input data—some of 
which are harmonized to facilitate a more direct comparison of differences in model behavior 
due to model structure. The models also produce similar types of outputs, which we compare to 
explore similarities and differences in model behaviors. We briefly describe each in this section. 

Key model inputs that can be readily harmonized (across sectors) for GCAM/GCAM-USA and 
National Renewable Energy Laboratory (NREL) models to facilitate model comparison include: 

• Technology 
o Cost 

̶ Overnight capital cost/purchase cost 
̶ Operation and maintenance costs 

o Efficiency 
o Technology lifetime 

• Fuel prices 
• Carbon emission prices  

Generally, our approach in this study is to harmonize selected technology-specific input 
assumptions from the sector-specific models, which tend to be updated more frequently (e.g., 
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annually), by changing inputs in GCAM. After running GCAM with these updated inputs, some 
of the resulting metrics such as fuel prices and carbon prices, which are calculated endogenously 
in GCAM are entered into the sector-specific models, for which these parameters are typically 
exogenous input assumptions. Results from the sector models for other output metrics are then 
compared for GCAM and the sector models. Figure 1 shows a summary of energy service 
demands in GCAM with input price connections from GCAM to TEMPO and Scout, as well as 
the comparison of results between GCAM and each sector-specific model. 

 
Figure 1. GCAM and three sector models—ReEDS (electricity), TEMPO (transportation), and 

Scout (buildings)—were used in this study. 
Fuel prices from GCAM that included carbon price were passed to TEMPO and Scout for new modeling. We 

compared GCAM results with results from each sector model (ReEDS, TEMPO, and Scout). The GCAM portion of 
this figure, which is distributed under the Creative Commons Attribution 4.0 License, is based on Calvin et al. (2019) 

in Geoscientific Model Development 

Key model outputs that can be compared (across sectors) to evaluate model behavior and 
understand key similarities and differences and their drivers include:  

• Technology product: electricity generation, transportation service, building services 
• Technology stock: power sector capacity, vehicle stock, building equipment stock 
• Energy consumption by technology 
• Emissions. 

For each GCAM-sectoral model pair, we compare model outputs across these metrics categories 
to explore similarity and differences in model behavior. To explain the key sources of 
differences in model results, we compare the metrics at different levels of resolution: 

• National versus subnational, where applicable 
• Sector-wide versus subsector (e.g., passenger versus freight transportation, 

and residential versus commercial buildings).  
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2.4 Scenario Design for Model Comparison 
We used different scenario design approaches for each of the sectors—electricity, transportation, 
and buildings—as shown in Table 2 (page 12), because the limited scope of the study prompted 
us to leverage existing work. As a result, the following sector-specific sections share common 
objectives but differ in specific structure and content. Our power sector work focused on an 
emissions reduction target; for the buildings sector, we explored responses to a carbon price 
under different scenarios of efficiency technology availability; and for the transportation sector, 
we considered variation in carbon price and response to a technology standard for zero-emission 
vehicles by 2035. Because the limited scope of the project did not allow fully comparable 
analysis in each sector, one possible future step could be to apply scenario concepts across all 
sectors (e.g., carbon price responsiveness, emissions targets, technology availability, and 
technology standards). Although this model comparison effort proceeds sector-by-sector (and 
scenario design differs by sector), we apply harmonized inputs from each sector to all GCAM 
scenarios. Additionally, while scenarios are tailored to explore sector-specific policy issues—for 
example, 95% power sector emissions reduction by 2035 and 100% electric vehicle (EV) 
passenger vehicle sales by 2035—we use a common carbon price to help facilitate comparison 
across sectors. The carbon price (Figure 2) is an economy-wide carbon tax consistent with 2.6 
W/m2 radiative forcing. This level of greenhouse gas (GHG) effect is often used to approximate 
2°C of global warming by 2100. 

 
Figure 2. Economy-wide carbon price consistent with constraining end-of-century radiative 

forcing to 2.6 W/m2 
Price escalates at an annual hoteling rate of 5%/year. 
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The models’ reference scenario assumptions (beyond assumptions about technology 
characteristics) were not explicitly harmonized for this analysis, but they are qualitatively 
similar. GCAM and GCAM-USA use population and GDP growth assumptions consistent with 
Shared Socioeconomic Pathways 2, or SSP2, scenarios (O’Neill et al. 2017; KC and Lutz 2017; 
Leimbach et al. 2017); however, ReEDS, TEMPO, and Scout service demands are driven 
(directly or indirectly) by various versions of the AEO and other sector-specific sources.12 The 
models assume comparable levels of population and GDP growth to 2050; for example, GCAM-
USA assumes a 19% increase in population and an 87% increase in GDP from 2020 to 2050, and 
AEO2021 assumes 17% and 89% increases, respectively, for population and GDP.  

From a policy perspective, GCAM and GCAM-USA have limited representation of existing 
policies, but the models’ calibration routine captures the impact of some existing policies in the 
near term. Broadly, the GCAM and GCAM-USA reference scenarios reflect an underlying 
storyline that historical trends continue in the near term due to inertia in the energy system and 
continuation of current policies, while longer-term outcomes are driven mostly by economic 
competition. 

ReEDS also represents a larger suite of power-sector relevant state, regional, and federal policies 
in effect as of June 2021, including state renewable portfolio standards policies, California’s 
power sector carbon cap, the Regional Greenhouse Gas Initiative, and the Cross-State Air 
Pollution Rule (Cole et al. 2021). 

TEMPO is similar to GCAM and GCAM-USA in its policy and reference scenario perspective: 
its initial calibration (i.e., mode-level energy consumption) and sector-wide demand drivers (i.e., 
population and freight demand growth projections) are informed by AEO and may implicitly 
capture near-term policies, but its future projections are driven primarily by competition between 
modes and technologies based on economic criteria. TEMPO’s Reference scenario does not 
include any explicit representations of future policies such as CAFE (Corporate Average Fuel 
Economy) standards or tax credits; future shifts in energy consumption are primarily driven by 
changes in exogenous technology projections. 

Scout is also similar to GCAM and GCAM-USA in its underlying policy assumptions and 
reference scenario. Baseline building and equipment stock turnover, electricity system CO2 
intensity, and energy prices are derived from AEO. If desired for a given scenario, Scout can 
reflect a wide range of policy conditions more aggressive than those included in the AEO, for 
example, accelerated equipment stock turnover or restrictions on the adoption of certain 
equipment types or fuels. AEO side cases (e.g., Low Renewables Cost) can be used in Scout 
to define alternative baseline energy system conditions. 

The models have some differences in the availability of specific technologies. For example, 
ReEDS has a more detailed representation of electricity storage than GCAM. GCAM includes 
electric and hydrogen options for short-haul aviation, while TEMPO does not. However, 
technology characteristics (cost and performance) were largely harmonized for this analysis. 

 
 
12 For the model versions used in this study, ReEDS and Scout use demand drivers from AEO2021, and 
TEMPO uses population growth from AEO2019. 
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Table 2. Scenario Design by Sector 

Sector Scenario Name Policy Other Attributes 

Electricity Ref Reference ReEDS Only Demand Scenarios: 
• HighDemand  
• Electrification 
GCAM demand is an output. 

95by2035 95% CO2 Mitigation by 2035 in the electricity sector 
GCAM applies background carbon price consistent with 
constraining end-of-century radiative forcing to 2.6 W/m2 

ReEDS Only Demand Scenarios: 
• HighDemand  
• Electrification 
GCAM demand is an output. 

Transportation Reference 
 

Reference — 

Carbon Price 
$10/tCO2 
$20/tCO2 
$30/tCO2 
$40/tCO2 
2.6 W/m2 

Carbon price trajectory beginning at $10–$40 $/tCO2 and 
increasing at an annual hoteling rate of 5%  
Carbon price trajectory consistent with 2.6 W/m2 
 

— 

100% EV 100% LDV EV Sales by 2035 — 

Buildings Reference-noEEE Reference Reference ECMs 

Ctax-noEEE Carbon price trajectory consistent with 2.6 W/m2 Reference ECMs 

Reference-
Market_EEE 

Reference Market_EEE ECMs 

Ctax-Market_EEE Carbon price trajectory consistent with 2.6 W/m2 Market_EEE ECMs 

ECM = energy conservation measures; EEE = electrification and energy efficiency; ctax = carbon price in dollars per metric ton of CO2 consistent with 2.6 W/m2 
radiative forcing in the year 2100
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3 Electricity Sector 
Electric power is often thought likely to be the first and least costly of the energy sectors for 
achieving substantial emissions reduction, in part because of the availability of established 
technologies that do not directly emit GHG (“GHG-free”). However, modeling of this sector 
must address several complexities. Although the electrical supply includes GHG-free 
technologies today (e.g., nuclear, wind, and solar), considerable uncertainty remains about the 
timing and ultimate potential of commercial deployment of carbon capture and storage (CCS), 
which could allow biomass and fossil fuel-fired powerplants to operate with greatly reduced 
GHG emissions. 

Each technology option has strengths and weaknesses related to its specific operating 
characteristics in the context of the electric system. Electricity supply and demand must 
continually balance to ensure stability of the grid. Both electricity demand and VRE output 
fluctuate throughout the day and seasonally throughout the year. Also, the resource bases of VRE 
are spatially heterogenous and their potential to contribute to the generation mix is stronger in 
some regions than others. Decarbonization of the broader energy system is also expected to 
introduce new electricity loads as end-use sectors decarbonize (e.g., via electrification); the 
electric power sector must grow to accommodate these new demands (and possibly a shifting 
profile of demand timing and flexibility) while also reducing emissions and ensuring adequate 
supply continuously throughout the year. 

Models that simulate the future evolution of the electric power system must balance trade-offs 
among scope (e.g., dynamic interaction of power supply and end-use sectors demanding 
electricity), geographic resolution, and temporal resolution, among other factors. In this section, 
we summarize the modeling approaches for three versions of GCAM with different levels of 
spatial and temporal detail, as well as NREL’s ReEDS power sector model. We describe our 
efforts to harmonize key model inputs to facilitate comparison, and we introduce our scenarios 
that explore deep decarbonization of the power sector by 2035. We then explore and compare 
model results for electricity generation, power sector capacity, fuel consumption, and CO2 
emissions. We conclude this section with a discussion of key observations, including the 
opportunity for more-robust representation of VRE’s value to the power system in GCAM 
by leveraging information from ReEDS. 

3.1 Model Scope and Structures 
Similarities and differences in model behavior can be driven by many structural factors across 
the categories described in Table 1 (page 6, Section 2.2). This section provides a brief 
description of the power sector representation for the models in this comparison. The model 
structure in this section will help illuminate the reasons for the different results explored in 
Section 3.3. 

3.1.1 GCAM 
GCAM’s electricity sector resolves electricity demand on an annual basis, solving for the price 
where electricity supply equals dynamically evolving annual demands across building, industry, 
and transportation end-use sectors. GCAM represents conversion of nine primary energy carriers 
(coal, gas, liquid fuel, biomass, nuclear, hydropower, wind, solar, geothermal) into electricity, 
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with multiple power plant technologies being represented for most fuels. CCS technologies are 
available for coal, gas, liquid fuel, and biomass power plant types. A full list of power plant 
types in GCAM are provided in Table A-1 in the appendix (page 105) . Power sector 
technologies are vintaged, with technical lifetimes of 30–60 years. Investment in new capacity is 
determined based on relative levelized costs of electricity (inclusive of capital costs, fixed 
operation and maintenance costs, variable operation and maintenance costs, fuel costs, cooling 
water costs, and policy costs or subsidies) using GCAM’s imperfect, probabilistic (logit-based) 
choice function. Once invested, a technology continues to operate until the end of its technical 
lifetime unless it becomes sufficiently unprofitable (i.e., variable costs such as fuel, water, and 
emissions penalties exceed revenues) to merit premature retirement. 

Exogenous socioeconomic drivers (population and GDP) set the initial trajectory for energy 
service demands in building, industry, and transportation end-use sectors. The demands vary 
endogenously in scenarios according to price and income elasticities. Within each end-use sector, 
technologies that use different energy carriers—for example gasoline internal combustion 
vehicles versus battery electric vehicles (BEVs) in transport, and gas furnaces versus electric 
heat pumps in buildings—compete on a levelized service cost basis (equipment and fuel costs) 
for shares of the ultimate service demand. 

For this study, we made two modifications to GCAM’s default power sector to better align it 
with assumptions used in GCAM-USA and ReEDS. First, new coal-fired generation without 
CCS was removed from the choice set for the United States. This was done to reflect the impact 
of Clean Air Act Section 111 (b) New Source Performance Standards for CO2 emissions from 
new steam-generating electricity generation. Second, nuclear power plant installations were 
postponed until after 2025 because of the recent decrease in U.S. nuclear power plant 
construction, and because building a nuclear power plant requires significant lead time.  

3.1.2 GCAM-USA 
In GCAM-USA, electricity generation, renewable energy resources (including solar 
photovoltaics [PV], solar concentrating solar power [CSP], onshore wind, offshore wind, and 
geothermal), and all end-use demands (which consume electricity) are represented at the state 
level. Like GCAM, GCAM-USA represents supply and demand for electricity in terms of annual 
energy. However, GCAM-USA divides the competition for investments in new generating 
technologies into a four-segment load duration curve (base load, intermediate, subpeak, and 
peak), reflecting the ways different types of power plants are expected to operate; for example, 
base load nuclear and gas combined cycle technologies compete against each other but not 
against gas combustion turbines, which compete against other peaking technologies for shares of 
new investment. Electricity investment decisions are made at the state level, but electricity 
supply and demand are balanced among 15 “grid regions,” or groups of states reflecting 
electricity market and planning areas that are consistent with the North American Electric 
Reliability Corporation, or NERC, regions (see Table A-2 in the appendix, page 106, for GCAM-
USA grid region specification). States within these grid regions trade electricity freely among 
each other, and trade among these grid regions is small both historically and into the future. 
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GCAM-USA is included in public release versions of GCAM.13 Detailed documentation of 
GCAM-USA is available as part of the GCAM Model Documentation on GitHub 
(http://jgcri.github.io/gcam-doc/gcam-usa.html).14 Binsted et al. (2020) provide a detailed 
description of GCAM-USA’s electric power sector. 

3.1.3 GCAM-USA Dispatch 
We also used a third version of GCAM for our electricity sector comparison. GCAM-USA 
Dispatch is a version of GCAM-USA with a more detailed representation of the U.S. electric 
power sector (M. Binsted et al. 2022; Khan et al. 2021; Ou et al. 2021; Wise et al. 2019). 
GCAM-USA Dispatch separates decisions about investment in new capacity that lasts for 
decades from decisions about how to operate that capacity to meet demand in 25 subannual 
electricity demand segments (day and night for every month of the year, plus an annual peak 
equal to the 10 highest load hours of the year). This approach combines GCAM’s traditional 
probabilistic (logit-based) investment choice function with a linear optimal dispatch where 
generators are operated based on least variable cost. As with GCAM-USA, GCAM-USA 
Dispatch separates investment in new capacity into four segments (based on an annual load 
duration curve). Once capacity is invested, it can operate in any of the subannual demand 
segments, subject to constraints on annual availability (maintenance time) and resource 
availability for VRE generators like wind and solar. Electric capacity is operated to meet 
electricity demand in the 15 grid regions described above (Section 3.1.2); the shape of the 
25 subannual demand segments vary by grid region. 

The GCAM-USA Dispatch model is described extensively by M. Binsted et al. (2022). GCAM-
USA Dispatch is not currently included in public model releases, but the version described by 
Binsted et al. (2022) is available in that paper’s code repository.   

3.1.4 ReEDS 
The Regional Energy Deployment System (ReEDS) is a model of electricity generation, storage, 
and transmission capacity expansion and operation for the contiguous United States. ReEDS is a 
dynamic-recursive system cost minimization that typically operates in 2-year time-steps from 
2010 to 2050. ReEDS divides the contiguous U.S. electricity demand into 134 balancing areas 
and 17 seasonal-diurnal time-slices; it also includes an hourly submodule for capturing sub-time-
slice effects (e.g., VRE curtailment fraction, capacity credit, storage curtailment reduction and 
sub-time-slice arbitrage value). 

Key inputs to ReEDS include hourly electricity demand profiles by balancing area and future 
demand growth projections, technology and fuel cost projections, and detailed wind and solar 
resource supply curves by region. ReEDS also represents several types of state-level and national 
policies, including existing state renewable portfolio standards and regional CO2 emissions 
constraints. Key model outputs for each model year include electricity capacity by technology 
and region; electricity generation by technology, region, and time-slice; transmission capacity 

 
 
13 “Global Change Analysis Model (GCAM),” https://github.com/JGCRI/gcam-core; “GCAM 6.0,” 
https://github.com/JGCRI/gcam-core/releases. 
14 “The Global Change Analysis Model (GCAM) and GCAM-USA,” http://jgcri.github.io/gcam-doc/gcam-usa.html. 

http://jgcri.github.io/gcam-doc/gcam-usa.html
https://github.com/JGCRI/gcam-core
https://github.com/JGCRI/gcam-core/releases
http://jgcri.github.io/gcam-doc/gcam-usa.html
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and flows (including transmission capacity expansion); GHG and air pollutant emissions; and 
electric power system costs. 

3.1.5 Comparison of Model Approaches 
Table 3 compares key model structures for ReEDS, GCAM, GCAM-USA, and GCAM-USA 
Dispatch. In terms of overall solution approach, ReEDS’ objective is system cost minimization, 
while GCAM is a market equilibrium model with a nonlinear logit technology choice function 
that avoids winner-take-all outcomes. This is also true for GCAM-USA Dispatch, with the 
caveat that power sector capacity is optimally operated based on least variable cost, as discussed 
in Section 3.1.3. 

Table 3. Comparison of Key Electric Power Sector Model Features of ReEDS and GCAM Versions 
Included in this Analysis 

Feature ReEDS GCAM GCAM-USA GCAM-USA Dispatch 

Solution concept • System cost 
(e.g., 
investment, 
operations, fuel, 
and 
transmission) 
minimization 

• Market equilibrium 
• Technology choice based on 

nonlinear logit formulation 

• Market equilibrium 
• Logit investment 

and optimal 
operation in power 
sector 

Sectoral scope • Power sector • Energy, water, land, and emissions 

Electricity 
demand 

• Exogenously 
specified 
projection 

• Represented endogenously in buildings (further 
disaggregated into residential and commercial), industry, 
and transportation sectors 

Spatial scope 
and detail 

• Contiguous 
United States 

• 134 U.S. 
balancing areas 
for demand 
and most 
technologies 

• 356 wind and 
CSP resource 
regions 

• Global coverage 
with the world 
divided into 32 
energy-economy 
regions 

• United States a 
single region 

• Global coverage with the world 
divided into 32 energy-economy 
regions 

• United States further disaggregated to 
50 states and Washington D.C. 

Subannual 
dynamics 
related to 
electricity 
demand 

• 17 time-slices 
per solve year 
(four seasons 
with four diurnal 
periods, plus 
peak load) 

• Hourly 
submodule for 
evaluating peak 
time periods as 
well as times of 
system 
curtailment  

• Annual 
electricity 
demand 

• Four-
segment 
load duration 
curve (base 
load, 
intermediate, 
subpeak, 
peak) 

• 25 time-slices (day 
and night for each 
month of the year, 
plus annual super-
peak) 
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Feature ReEDS GCAM GCAM-USA GCAM-USA Dispatch 

Transmission • Balancing areas 
connected by 
an aggregated 
transmission 
system 

• Able to build 
new 
transmission 
capacity 
between 
balancing areas 

• System cost 
optimization 
includes 
transmission. 

• Implicit unlimited 
intranational 
electricity trade 

• States grouped into 15 grid regions 
• Constrained trading between regions 
• States within a region able to freely 

trade with each other 

Storage • Includes 
pumped 
storage 
hydropower,  
compressed air 
energy storage, 
and battery 
technologies 

• Hourly 
submodule for 
hourly arbitrage 
and curtailment 
reduction 

• For PV and 
onshore wind, 
both a purely 
variable 
technology and 
a technology 
paired with 
dedicated 
storage are 
included in the 
choice set. 

• Same as 
GCAM, plus 
a grid-scale 
battery 
storage 
technology 
which 
consumes 
baseload 
electricity 
and supplies 
peak 
electricity. 

• Under development 
• Not currently 

included in model 

Renewable 
variability 

• Hourly 
submodule for 
fractional 
curtailment, 
capacity credit, 
and induced 
operating 
reserve from 
forecast error 

• As the share of variable renewable 
technologies on the grid increases, 
cost is applied to reflect 
diminishing contributions to 
electric capacity reserve and the 
need for additional capacity to 
supply reserve. 

• Variable 
renewables receive 
diminishing capacity 
credit with 
increasing share of 
installed capacity. 

All three versions of GCAM have global scope and cover economy, energy, agriculture/land, and 
water systems, and as a sector-specific model, ReEDS covers only the electric power sector in 
the contiguous United States. Electricity demands within GCAM are endogenously calculated 
over time to reflect changes in buildings (which are further disaggregated into residential and 
commercial buildings), industry, and transportation sectors. ReEDS does not include any sectors 
outside the power sector, so electricity demands must be exogenously defined. While GCAM has 
global coverage (and state-level detail for GCAM-USA and GCAM-USA Dispatch), ReEDS has 
greater geographic resolution for the United States, dividing the contiguous United States into 
134 U.S. balancing areas for demand and representing renewable resource potentials for 356 
distinct regions. ReEDS also offers greater detail related to electricity transmission, with an 
aggregate transmission system connecting balancing areas and the potential for explicit build-out 
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of new transmission capacity. GCAM, operating at the national level, implicitly assumes 
unlimited intranational electricity trade, while GCAM-USA and GCAM-USA Dispatch allows 
unlimited trade within the electric grid regions (as discussed in Section 3.1.2) and some 
constrained inter-grid electricity trade. 

In terms of temporal detail, GCAM and GCAM-USA represent annual electricity demands only 
(with a four-segment load duration curve capturing some dynamics related to variations in 
electricity load throughout the day in GCAM-USA). In contrast, ReEDS represents 17 time-
slices per year (four seasons with four diurnal periods, plus peak load), and GCAM-USA 
Dispatch divides annual demands into 25 time-slices (day and night for each month of the year, 
and an annual super-peak). Thus, ReEDS and GCAM-USA Dispatch provide more detail about 
how capacity is operated to meet demand at various points throughout the year, as well as how 
VRE availability aligns with electricity demand at different points throughout the year. 

ReEDS also provides significant detail about renewable energy variability and electricity storage. 
ReEDS includes an hourly submodule to capture key issues surrounding VRE and storage, such 
as renewable curtailment and arbitrage opportunities; it also includes several types of electricity 
storage technologies, including pumped storage hydropower and multiple battery technologies. 
GCAM and GCAM-USA use a simple logistic function to represent diminishing contributions of 
variable renewable technologies to electric capacity reserve as the share of VRE on the grid 
increases. GCAM-USA Dispatch uses a similar function, where VRE technologies receive 
diminishing capacity credits as their share of installed capacity increases, but the lost capacity 
credit revenue is less penalizing than the cost added by the backup function in GCAM and 
GCAM-USA. From a storage perspective, GCAM and GCAM-USA include technology options 
for PV and onshore wind paired with dedicated storage. These technologies have greater capital 
costs and are more expensive with low shares of VRE generation, but they become more 
competitive as VRE shares increase and backup costs are applied to the PV and onshore wind 
technologies that are not paired with dedicated storage. Electricity storage is an active area of 
development in GCAM-USA Dispatch, but it is not included in the model as of this analysis. 

Given their different solution approaches, scopes, regional and temporal resolution, and detail 
related to key power sector dynamics, divergence in model results is to be expected. Each model 
has unique strengths (e.g., cross-sectoral interactions for GCAM and regional, temporal, and 
transmission/storage detail for ReEDS) and limitations, so comparing results across models and 
exploring synergies and differences can be highly valuable. To understand how differences in 
results emerge from differences in model structure, it is important to align key input assumptions 
for both models. 

3.2 Input Assumptions, Model Alignment, and Scenarios 

3.2.1 Previous GCAM-ReEDS Model Comparison Efforts 
The GCAM and ReEDS teams have a fruitful history of collaboration and model comparison. 
Prior GCAM-USA and ReEDS harmonization efforts helped identify the most important drivers 
to align to promote consistency between the models’ reference scenarios (Iyer et al. 2019). In 
that study, consistency was improved the most when fuel price drivers were passed from 
GCAM-USA to ReEDS and when data on renewable resource potential and quality was 
synchronized between ReEDS and GCAM-USA. Harmonizing electricity demand levels 
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(GCAM-USA to ReEDS) and information about retirement of existing generation capacity 
(ReEDS to GCAM-USA) had little impact on model results consistency. Updating GCAM-
USA’s time segments to better match those in ReEDS was detrimental to consistency. Overall, 
the most consistent scenario resulted from harmonizing: 

• Electricity demand and fuel prices, where results from GCAM-USA were used as inputs 
to ReEDS 

• Renewable resource data and fossil-fueled power plant retirement, where detailed input 
data from ReEDS was used as inputs to GCAM-USA. 

A follow-on study showed that harmonization of key model inputs did not always increase 
consistency across a broader set of scenarios (Cohen et al. 2021). Consistency was found to vary 
across scenarios for a given set of harmonized inputs, with structural differences leading to 
persistent inconsistency. Such structural differences may be reduced by either adding more 
operational detail in GCAM (e.g., GCAM-USA Dispatch; results presented here) or developing 
simplified methods of parameterizing GCAM to reflect key dynamics from more detailed 
sectoral models. We discuss the potential for such an approach to reflecting technology value in 
GCAM in Section . 

3.2.2 Harmonization in Current Model Comparison 
Drawing on insights from previous GCAM-USA ReEDS model comparison exercises, this study 
includes harmonization of only a few key parameters. Because this study uses preexisting 
scenarios from NREL’s 2021 Standard Scenarios (Cole et al. 2021), all the parameters were 
updated in the GCAM models only, although in previous studies parameter harmonization 
flowed in both directions. Key parameters updated for this study include: 

• Power sector capital, fixed operation and maintenance  costs, and variable operation and 
maintenance costs from NREL’s 2021 Annual Technology Baseline Mid-case 

• Fuel prices from the AEO2021 Reference case. 
Additionally, prior harmonization efforts provided parameterizations of wind and solar resource 
supply curves based on ReEDS 2017, which are still used in GCAM-USA and GCAM-USA 
Dispatch. GCAM also uses onshore and offshore wind power resource curves developed by 
NREL (Eurek et al. 2017).  

3.2.3 Scenarios 
As mentioned above, our model comparison effort for this study leveraged preexisting ReEDS 
scenarios from NREL’s Standard Scenarios 2021 (Cole et al. 2021), from which specific 
scenarios were selected to explore two key dimensions: CO2 emissions policy and electricity 
demand levels. For the policy dimension, two cases were considered: a reference case (Ref) with 
no new CO2 emissions mitigation policy and a case in which power sector CO2 emissions are 
reduced 95% by 2035 (100% reduction by 2050) relative to 2005 levels (95by2035). In the 
GCAM models, an economy-wide carbon price consistent with a global radiative forcing target 
of 2.6 W/m2 in 2100 is applied to all sectors in the United States, and all regions globally, to 
avoid market distortions that may arise from penalizing emissions from one region and sector 
(U.S. electric power) but not others. 
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Cases with varying levels of electricity demand were also drawn from the 2021 Standard 
Scenarios. In GCAM, electricity demand is endogenous and varies with policy case. GCAM’s 
reference cases have higher electricity demand than the 2021 Standard Scenarios Reference 
demand level, which is taken from AEO2021. GCAM’s reference scenario has greater 
electrification across all end-use sectors than AEO2021, with the biggest difference coming 
from transportation; GCAM’s Reference case entails significant EV deployment for passenger 
vehicles. For these reasons, the High Demand and Electrification cases were selected from the 
2021 Standard Scenarios to roughly approximate the range in electricity demand across 
GCAM’s Ref and 95by2035 scenarios. 

3.3 Results 
In this section, we present the results of our model comparison for the electric sector. Other 
sectors’ results sections have different structure and content due to differences in scenario 
construction for electricity, transportation, and buildings. The figures include two scenarios 
(Ref and 95by2035) for three GCAM models (GCAM, GCAM-USA, and GCAM-USA 
Dispatch) and four ReEDS scenarios (Ref and 95by2035 policy in combination with High 
Demand and Electrification demand levels). The key metrics compared across models include 
electricity generation, electricity generation shares, power sector fuel consumption (specifically 
natural gas), CO2 emissions, electricity prices, and power sector generation capacity (for ReEDS 
and GCAM-USA-dispatch only). 

These metrics are reported by scenario, year (common model years are 2020, 2030, 2040, and 
2050), and technology. Some analysis was also conducted at the subnational (state or grid region 
level); subnational analysis is described in the appendix. One important note is that ReEDS’ 
geographic scope is the contiguous U.S., while all GCAM versions include Alaska and Hawaii. 
(GCAM includes Alaska and Hawaii energy and emissions in aggregate, while GCAM-USA and 
GCAM-USA Dispatch include those states explicitly.) Though results for all GCAM versions 
include Alaska and Hawaii in the figures presented, these states represent ~0.5% of total U.S. 
electricity generation in 2021 and do not appreciably impact results. 

3.3.1 Electricity Generation by Technology 
Figure 3 presents total electricity generation by scenario. Overall, total electricity in 2050 
generation ranges from roughly 5,800 TWh (ReEDS Ref-HighDemand scenario) to roughly 
7,800 TWh (GCAM-USA Dispatch 95by2035 scenario). In 2050, GCAM-USA Dispatch’s Ref 
scenario has approximately 6,300 TWh of generation, GCAM-USA has roughly 6,400 TWh, and 
GCAM has about 6,700 TWh. For each GCAM model, 95by2035 generation exceeds Ref 
generation, although the magnitude of the increased electrification in response to emissions 
policy varies. 
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Figure 3. U.S. electricity generation by scenario 

Electricity demand in ReEDS is exogenous, but some differences do emerge between the Ref 
and 95by2035 cases for a given demand level. This is because ReEDS includes an option for 
direct air capture (DAC) as a negative emissions technology in the power sector in emissions 
policy scenarios. DAC removes CO2 from the atmosphere, creating negative emissions that 
offset remaining positive emissions from the power sector in order to help achieve the ambitious 
deep decarbonization targets in the 95by2035 scenario. DAC also consumes electricity to power 
its processes, creating additional electricity demand which causes total generation to diverge 
between the Ref and 95by2035 cases for a given demand level. 

Figure 4 and Figure 5 present electricity generation by technology for each scenario, as well as 
the difference between each model and the ReEDS-HighDemand case. Results for the GCAM 
models and ReEDS are similar in 2020, although some differences are present because ReEDS 
generation and transmission capacity is calibrated to 2020 historical data while GCAM’s final 
historical year is 2015. As the models simulate into the future, larger differences begin to 
emerge. Across both Ref and 95by2035 cases, GCAM and GCAM-USA have greater fossil fuel 
(especially natural gas) generation than ReEDS. This leads to higher emissions in the Ref case, 
as well as greater CCS deployment in the 95by2035 case.  
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Figure 4. U.S. electricity generation by aggregate technology and scenario 

 
Figure 5. U.S. electricity generation by aggregate technology and scenario: Difference from 

ReEDS-HighDemand scenario 

Nuclear generation differs across models because of differences in both input assumptions and 
model structure. GCAM-USA and GCAM-USA-dispatch have less nuclear generation than 
ReEDS because the state-level models include constraints on operating lifetime (no extension of 
existing nuclear operating licenses) and where new nuclear can deploy (new nuclear investment 
is only allowed in states which have built nuclear previously). ReEDS assumes nuclear operating 
licenses for all plants without currently announced retirement plans can be extended to 80-years 
from the original operation date. Future extensions of nuclear operating licenses and political 
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acceptance of nuclear power are uncertain, and the models make different assumptions about 
these factors. GCAM simulates more nuclear generation than the other models; GCAM’s lack of 
geographic detail makes it unable to capture these regional differences in preference for nuclear 
power. 

With respect to VRE generation, GCAM and GCAM-USA have lower VRE (wind and solar) 
generation shares than ReEDS in the Ref case, with 36% and 38% of total technologies coming 
from VRE technologies in GCAM and GCAM-USA respectively ( Figure 6 and Figure 7). 
GCAM-USA Dispatch has significantly higher VRE generation (56%) because it better 
represents operational decisions in the power sector, and because its subannual detail eliminates 
the need for the VRE integration cost representation used in GCAM and GCAM-USA (both 
dynamics are discussed in detail in subsequent paragraphs). ReEDS’ HighDemand-Ref case has 
47% VRE generation, while ReEDS Electrification-Ref case has 57% VRE generation, 
suggesting that at the margins, VRE technologies represent most additional generation in the 
Electrification case. Specifically, the ReEDS Electrification-Ref case has about 1,500 TWh more 
generation than the ReEDS HighDemand case and about 1,300 TWh more VRE generation 
(about 85% of the total generation difference between the scenarios). 

 
 Figure 6. U.S. electricity generation shares by aggregate technology and scenario 
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Figure 7. U.S. electricity generation shares by aggregate technology and scenario: Difference from 

ReEDS-HighDemand scenario 

All models have higher VRE shares in the 95by2035 case than in the Ref case. GCAM has the 
lowest VRE generation shares (and the lowest increase relative to Ref) at 43% VRE generation 
in 2050; GCAM-USA simulates 60% VRE generation in the 95by2035 case in 2050, with 
GCAM-USA Dispatch at 74%, ReEDS-HighDemand at 80%, and ReEDS-Electrification at 
84%. 

For specific VRE technologies, all GCAM versions have lower solar generation shares than 
ReEDS. Solar generation ranges from 15% (GCAM) to 20% (GCAM-USA Dispatch) by 2050 in 
the Ref case, and in ReEDS it ranges from 23% (HighDemand) to 33% (Electrification) by 2050. 
For the 95by2035 case, solar generation ranges from 17% (GCAM) to 31% (GCAM-USA 
Dispatch) solar generation in 2050, and 34% (ReEDS HighDemand) to 39% (ReEDS 
Electrification) in 2050. With respect to wind generation, GCAM (22%) and GCAM-USA (15%) 
have similar onshore wind generation shares as ReEDS (22% for both demand levels) in the Ref 
case (2050), while GCAM-USA-dispatch is more bullish about onshore wind in the Ref case 
with 35% generation shares in 2050. In the 95by2035 case, GCAM (25%) and GCAM-USA 
(25%) simulate lower onshore wind generation than GCAM-USA Dispatch (45%) and ReEDS 
(43% for HighDemand and 44% for Electrification). Offshore wind does not contribute more 
than 4% to national electricity generation by 2050 across any model or scenario. 

These differences in VRE generation are partially driven by the model’s differing solution 
approaches: GCAM’s logit choice function tends to distribute shares more broadly across 
technology options, while ReEDS’ cost minimization objective is more likely to concentrate 
shares to least-cost technologies. GCAM-USA Dispatch blends the two approaches: investments 
are distributed using GCAM’s standard logit choice function, but once invested, technologies are 
operated based on least variable cost, which can result in lower utilization of technologies with 
higher variable costs and therefore higher generation from VRE technologies. 
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The way GCAM and GCAM-USA represent integration costs for VRE technologies also 
contributes to their having lower VRE generation shares than ReEDS and GCAM-USA 
Dispatch. GCAM and GCAM-USA apply an integration cost to variable renewable technologies 
as their share of total generation increases. This cost adjustment reflects the challenges 
associated with the variability of VRE technologies and their reduced contributions to planning 
reserve as VRE generation shares increase.15 The approach is a stylized and coarse but 
computationally tractable way to reflect these dynamics in GCAM’s integrated, multisector 
modeling context. ReEDS and GCAM-USA Dispatch capture these higher-resolution impacts 
explicitly and thus do not employ a VRE cost adder.16 This difference is quantified and detailed 
in Section 3.4.2 (page 31). 

Finally, the GCAM models’ representation of wind and solar supply curves may also contribute 
to VRE generation being different than that of ReEDS. GCAM-USA and GCAM-USA Dispatch 
use wind and solar resource curves based on data from ReEDS 2017,17 and GCAM uses wind 
(onshore and offshore) resource curves from NREL. Updating these in GCAM to use resource 
curves from a newer ReEDS version may increase consistency. 

3.3.2 Capacity by Technology 
Figure 8 and Figure 9 present power sector capacity by technology and scenario for GCAM-USA 
Dispatch and ReEDS. GCAM and GCAM-USA are excluded from this comparison because they 
do not explicitly track capacity (although it can be estimated from annual generation using 
exogenous capacity factors). As shown in Figure 3 (page 21), GCAM-USA Dispatch’s Ref case 
has somewhat higher total electricity generation than the ReEDS-HighDemand case, while the 
GCAM-USA Dispatch 95by2035 case has similar generation to the ReEDS-Electrification case. 
(Total electricity generation is obviously correlated with capacity requirements.) Overall, 
GCAM-USA Dispatch and ReEDS have similar levels of non-VRE (fossil, nuclear, geothermal, 
biomass) capacity across both the Ref and 95by2035 cases. 

 
 
15 The maximum cost adjustment is based on the levelized capital cost of a gas combustion turbine (as the least- 
capital cost option for firm capacity), with the logistic function nearing maximum backup costs at about 25% 
generation share for solar PV and 45% for onshore wind. These parameterizations are informed by literature on 
integration costs of VRE, for example Ueckerdt et al. (2013). 
16 Note that ReEDS considers these operational impacts while making investment decisions. In GCAM-USA 
dispatch, operational outcomes inform the need for capacity investment, but technology utilization in the system 
operation phase does not impact expectations about technology capacity factors in the investment phase. 
17 A comparison of GCAM-USA’s solar and wind resource curves before and after updating to ReEDS data is 
available in the supplementary data for Iyer et al. (2019). 
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Figure 8. U.S. power sector capacity by aggregate technology and scenario 

 
Figure 9. U.S. power sector capacity by aggregate technology and scenario: Difference from 

ReEDS-HighDemand scenario 

GCAM-USA Dispatch tends to have greater VRE capacity than the ReEDS cases with similar 
electricity demand levels. Per Section 3.3.1 (page 20), GCAM-USA Dispatch and ReEDS have 
fairly similar VRE generation shares. This suggests a lower capacity factor (utilization rate) for 
VRE technologies in GCAM-USA Dispatch; these capacity factors are presented in Figure 10. 
Indeed, solar power and onshore wind have consistently lower utilization rates in GCAM-USA 
Dispatch than in ReEDS. One explanation for this dynamic is that ReEDS represents electricity 
storage, while GCAM-USA Dispatch does not (this is an active area of development for GCAM-
USA Dispatch). ReEDS’ scenarios entail 160–370 GW of electricity storage by 2050, which 
could help maximize the utilization and avoid curtailment of VRE technologies. 
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Figure 10. U.S. (national average) modeled capacity utilization factors by electricity technology 

and scenario 

GCAM-USA Dispatch and ReEDS display similar capacity utilization for certain non-VRE 
technologies but not others. GCAM-USA Dispatch tends to operate coal without CCS somewhat 
more in the Ref case, although utilization by 2050 is similar in the models. In the 95by2035 case, 
GCAM-USA Dispatch retires all coal without CCS by 2035, while ReEDS keeps available some 
capacity around with a low (~6%) utilization rate. GCAM-USA Dispatch assumes a minimum 
capacity factor of 20% is required for coal capacity to remain operational; if utilization falls 
below this level, it is assumed revenues will be insufficient to cover fixed operation and 
maintenance costs and capacity will retire ahead of its technical lifetime as a result. ReEDS 
reflects more value streams (including dynamic capacity prices), which makes it economical for 
a small amount of coal to remain operational, even at very low utilization rates. 

GCAM-USA Dispatch and ReEDS have very similar capacity factors for gas without CCS in 
both the Ref and the 95by2035 scenarios. For nuclear power, ReEDS consistently uses nuclear 
capacity at about 91%, while GCAM-USA Dispatch has lower utilization rates toward mid-
century in the Ref case and earlier in the 95by2035 case. In GCAM-USA Dispatch, this result 
indicates some subannual time segments have sufficient capacity with lower generation costs 
than nuclear (e.g., solar, wind, hydropower, and geothermal) that nuclear power does not need 
to be fully utilized. GCAM-USA Dispatch does not capture operational constraints related to 
nuclear power (e.g., start-up times), which reflects that assumptions about nuclear power’s future 
flexible operations may be different than those in ReEDS. To the extent that these operational 
constraints may lead nuclear plants to continue operating to avoid shutdowns and restarts, 
GCAM-USA Dispatch’s representation may underestimate nuclear power’s utilization rate. 
Additionally, the representation of electricity storage and direct air capture (DAC) in ReEDS 
(neither of which are included in the GCAM-USA Dispatch model used in this comparison) help 
shift the load profile in ways to utilize excess generation from low variable cost technologies 
(including VRE and nuclear), allowing nuclear capacity factors to remain high in ReEDS. 
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3.3.3 Fuel Consumption and CO2 Emissions 
Figure 11 presents power sector natural gas consumption by scenario. As observed in the 
electricity generation results in Section 3.3.1 (page 20), the GCAM models tend to have higher 
gas generation (and thus consumption) across scenarios in 2050 than in ReEDS. Significant 
differences in gas generation across models are present in 2020, which is simulated in all GCAM 
models but constrained to historical data in ReEDS. GCAM-USA Dispatch has the lowest gas 
consumption of all GCAM models in the Ref case, largely due to its explicit representation of 
power sector operation, where gas is often at or above the marginal generation cost for some 
subannual time-slices. All models display a reduction of power sector natural gas consumption in 
the 95by2035 case; GCAM has the lowest gas consumption of the GCAM models, largely due to 
its greater deployment of coal with CCS and nuclear. 

 
Figure 11. U.S. power sector natural gas consumption by scenario 

These gas consumption results are generally correlated with CO2 emissions (Figure 12). Each 
GCAM model has higher gas generation and CO2 emissions in the Ref case relative to ReEDS. 
Figure 13 presents U.S. power sector CO2 emissions by technology and scenario. The GCAM 
models tend to have greater emissions from coal than ReEDS in the near-to-medium term, but 
coal fired CO2 emissions in 2050 are comparable across models. In the 95by2035 case, emissions 
are exogenously prescribed as part of the scenario design and thus are identical or nearly 
identical from 2035 onward. The clear exception is GCAM-USA Dispatch, which has lower 
emissions than the other models (and the exogenously prescribed emissions constraint) in 2025 
and 2030 (both models constrain emissions to linearly decrease from current levels to the 95% 
reduction target in 2035). For each GCAM model, the 95by2035 case includes an economy-wide 
carbon price to ensure emissions across all sectors and regions are priced to avoid market 
distortions from inconsistent emissions pricing. In GCAM-USA Dispatch, which has greater 
power plant operation flexibility than GCAM and GCAM-USA, the economy-wide carbon price 
alone is sufficient to drive emission reductions below the power-sector emissions target in 2025 
and 2030. Beyond 2030, the power sector emissions reduction target (95%+ emission reduction) 
is stringent enough that the sectoral emissions constraint becomes binding.  
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Figure 12. U.S. power CO2 emissions by scenario 

 
Figure 13. U.S. power sector CO2 emissions by technology and scenario 

The final emissions dynamic to point out is related to negative emissions. In the 95by2035 case, 
each model requires some negative emissions in the power sector to offset the remaining positive 
emissions from uncaptured fossil fuel generators or residual emissions from fossil fuel plants 
with CCS (which have capture rates less than 100%). Overall, the models require levels of 
negative emissions that range from 140 to 210 MT CO2 in 2050 to meet the net-zero power 
sector CO2 emissions target. The source of residual (positive) and negative emissions varies by 
model. Most remaining emissions from GCAM and GCAM-USA are residual emissions from 
fossil fuels with CCS, while GCAM-USA Dispatch and ReEDS have less CCS and more 
emissions from gas without CCS. This is because GCAM-USA Dispatch and ReEDS reflect the 
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fact that fossil fuel capacity may be operated at a low capacity factor, in which case paying the 
emissions penalty is more cost-effective than investing additional capital in CCS when the plant 
will often stand idle.  

For CO2 removal, the GCAM models rely on bioenergy with CCS to offset remaining emissions. 
In contrast, in ReEDS, DAC produces most of the negative emissions. This is due to a 
combination of model structure and input assumptions. All GCAM models include a DAC 
capability, although it is not included in the default GCAM configuration. Additionally, DAC is 
not directly tied to the power sector in GCAM; DAC can be powered primarily by natural gas or 
electricity, and it provides a general emissions removal service that is not explicitly tied to the 
power sector (whereas bioenergy with CCS is a technology that both generates electricity and 
has negative emissions). Consistent with GCAM’s default configuration, and because DAC in 
GCAM is not structured to provide emissions offsets for the power sector alone, DAC is not 
included in the GCAM scenarios in this study. 

3.4 Conclusions, Key Takeaways, and Recommendations for 
Future Research 

This section summarizes the core insights from our power sector model comparison and 
highlights opportunities for future research and joint model improvement. 

3.4.1 Key Model Differences 
GCAM and ReEDS are very different types of models. GCAM is a global, integrated multisector 
model while ReEDS represents the power sector in the contiguous United States. Despite 
fundamental differences in geographic scope, sectoral scope, temporal and geographic 
resolution, power sector process detail, and solution approach, the models’ results are similar in 
several ways. In the Ref case, all three GCAM models and ReEDS simulate diminishing coal 
generation, increasing renewable generation, and decreasing power sector CO2 emissions over 
the next three decades. In the 95by2035 case, all models increase their renewable energy 
generation relative to Ref, decrease use of fossil fuel power without CCS, and deploy a negative 
emissions technology to offset residual emissions from the power sector. 

Despite similarities between ReEDS and GCAM, there are also important differences in the 
behavior of the models that are driven by their differing structure, resolution, and input 
assumptions. Because they do not capture operational dynamics in the power sector, GCAM and 
GCAM-USA both have greater fossil fuel generation than ReEDS, which leads to higher 
emissions in the Ref case and greater CCS deployment in the 95by2035 case. GCAM-USA and 
GCAM-USA Dispatch have less nuclear than ReEDS due to assumptions related to operating 
lifetime and where new nuclear can deploy. GCAM has the highest nuclear deployment; the 
model’s coarser spatial scale fails to capture regional preferences or moratoria against nuclear 
power, as well as regional differences in renewable resource quality and potential, and in fuel 
prices that can diminish nuclear power’s economic competitiveness in regions where other fuels 
are abundant and cheap. ReEDS has greater VRE generation shares than GCAM and GCAM-
USA, due in large part to their different representations of VRE value or integration costs 
(described in the following section) and the more detailed representation of electricity storage in 
ReEDS; GCAM-USA Dispatch has somewhat lower VRE generation than ReEDS but the 
models are more similar in this regard. 
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A few key differences in model structure drive these differences in behavior. One important 
difference is solution approach. GCAM’s logit choice function tends to distribute shares more 
broadly across technology options, while ReEDS’ cost minimization objective is more likely to 
concentrate investments in least-cost technologies. The broader technology distribution leads to 
more diverse generation mixes in GCAM and GCAM-USA, including more natural gas 
generation and slower deployment of low cost VRE technologies. However, solar and onshore 
wind still experience the greatest increases in market share from 2020 to 2050 of all technologies 
across all the GCAM models. GCAM-USA Dispatch blends the logit investment and cost 
minimization approaches: investments are distributed using GCAM’s standard logit choice 
function, but once invested, technologies are operated based on least variable cost. This approach 
results in lower utilization of technologies with higher variable costs (e.g., fossil-fueled 
generators), and therefore higher generation from VRE technologies relative to GCAM and 
GCAM-USA. 

Solution approach also helps explain the greater nuclear generation in GCAM, which is less 
spatially resolved and thus does not reflect the geographic constraints on new nuclear 
installations employed in GCAM-USA and GCAM-USA Dispatch (where new nuclear is only 
permitted in states that have built nuclear previously). Some of the differences in nuclear 
generation across models are attributable to scenario assumptions; for example, GCAM-USA 
and GCAM-USA-dispatch assume no extension of existing nuclear operating licenses (in 
addition to the aforementioned geographic constraints on new nuclear installations), while 
ReEDS assumes existing nuclear plants extend their licenses for 80 years from their original 
operating date. Future extensions of nuclear power plant operating licenses are uncertain, but 
assumptions about these extensions could be aligned in future studies to reduce differences in 
nuclear generation. 

The way GCAM and GCAM-USA represent integration costs for VRE technologies also 
contributes to their lower VRE generation shares, as discussed in Section 3.3.1 (page 20). In 
short, the integration cost added to VRE technologies in GCAM and GCAM-USA is a stylized 
and coarse but computationally tractable way to reflect the challenges associated with the 
variability of VRE technologies in GCAM’s integrated, multisector modeling context. 
Conversely, ReEDS and GCAM-USA Dispatch include greater subannual temporal detail, which 
captures operational performance of VRE technologies and thus does not employ such a VRE 
integration cost adder. The next section describes this difference in detail. 

3.4.2 Variable Renewable Energy Integration 
It can be challenging for more aggregate models to capture the impact of increasing VRE shares 
on the grid, because these impacts are driven by dynamics that play out at finer temporal scales, 
such as how the availability of wind and solar power corresponds to demand for electricity from 
end-use sectors seasonally and diurnally. This challenge can be met in different ways. One 
approach is to incorporate greater temporal and operational detail in integrated assessment 
modes’ power sector modules; this is the approach taken in GCAM-USA Dispatch, which 
contains subannual detail on power sector operations. This model comparison study showed that 
GCAM-USA Dispatch behaves more similarly to ReEDS with respect to key metrics like VRE 
generation share, compared to GCAM versions with less-detailed power sector modules. 
However, this approach requires significant model development and increases model complexity, 
data and memory requirements, and computational time. This additional detail provides value for 
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some multisector modeling studies, such as those focused on the evolution of the power sector, 
low cost/high deployment of VRE technologies, or deep electrification of end-use sectors. This 
additional complexity may prove to be a barrier for studies focused on other sectors, energy-
land-water dynamics, global interactions, or other situations where the power sector and VRE are 
lower priority than other topics. 

An alternative approach is to derive relationships between technology value and market share 
from the outputs of more detailed power sector models (e.g., ReEDS) and incorporate them into 
more aggregate models as a cost adjustment. ReEDS developers have conceived a new metric 
called PLCOE (profitability-adjusted levelized cost of energy) that can be used as a single metric 
of competitiveness in simple models of the power sector. PLCOE scales a traditional levelized 
cost of energy (LCOE) metric by a “value factor” derived from ReEDS (although in theory this 
value factor could also be derived from other detailed power sector models). Value factor is 
defined as the levelized value of electricity (LVOE) of the technology (value per unit energy, 
where value is equal to revenue in a perfect market) divided by a benchmark value of the system 
(e.g., average electricity price). As a first approximation, the value factor of a technology can be 
assumed to be a linear function of its market share, and all technologies (not just wind and solar) 
require consideration of these value factor versus market share relationships. The value factor 
reflects the spatiotemporal and technology dynamics (including storage and transmission) of the 
detailed model. Details on PLCOE and value factor is available in Mowers et al. (2023) and 
Mowers and Mai (2021). 

Figure 14 presents two different approaches to representing VRE value: the cost-adjustment 
currently used in GCAM and GCAM-USA (but not GCAM-USA Dispatch) and a cost-
adjustment derived from the ReEDS value factor versus market share relationships as described 
in Mowers et al. (2023). Though the two approaches yield similar cost-adjustments for onshore 
wind, GCAM’s cost adjustment for solar PV is significantly higher than the ReEDS-derived 
value for generation shares between 10% and 50%. This suggests GCAM’s simplified VRE 
integration cost adjustment may be overly-penalizing for solar PV and depressing PV 
deployment, and that incorporating ReEDS-derived cost-adjustments could better reflect VRE 
value in GCAM and increase consistency with more detailed power sector models. 
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Figure 14. Comparison of VRE cost adjustment approaches 

The solid lines represent the approach used in GCAM and GCAM-USA, and the dotted lines represent a cost 
adjustment consistent with the PLCOE metric derived from ReEDS, assuming 2030 technology costs. 

3.4.3 Other Opportunities for Future Research 
In addition to implementing simplified value-based (PLCOE) approaches to VRE integration 
costs in GCAM and GCAM-USA, a few other opportunities for additional alignment and 
integration of GCAM and ReEDS have emerged from this model comparison effort. One 
opportunity is to develop a more formalized set of boundary conditions that could be passed 
from GCAM to ReEDS. This could possibly include a standard set of GCAM scenarios regularly 
developed to provide these boundary conditions. The ReEDS’ Standard Scenarios currently take 
boundary conditions from the AEO, which is produced using NEMS. However, while a publicly 
available archive version of NEMS can be used to replicate the AEO results, NEMS relies on 
several pay-for-license software components. Having a robust pipeline for translating GCAM 
scenarios to ReEDS boundary conditions could provide a valuable option for crafting additional 
scenarios with ReEDS using a fully open-source model to explore varying boundary conditions. 

Finally, there is a need for continued dialogue among technology experts and model developers 
to improve the representation of key emerging technologies in the power sector, including 
electricity storage, negative emissions technologies, and hydrogen. As VRE gains increasing 
market share, electricity storage becomes increasingly important. Electricity storage has 
important implications for VRE (and other) technologies, and it provides important services such 
as frequency regulation, energy arbitrage, curtailment mitigation, and grid reliability; 
representing key dynamics related to energy storage is a complex challenge that merits continued 
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model improvement. Negative emissions technologies such as bioenergy with CCS and DAC are 
increasingly important in the context of long-term deep decarbonization and ambitious power 
sector decarbonization targets. Opportunities and challenges for wide-scale deployment of these 
technologies (e.g., availability of bioenergy feedstock, geographic distribution of carbon storage 
sites, and economy-wide demands for CO2 removal services) should continue to be explored. 
Hydrogen has the potential to help decarbonize sectors that are hard to electrify while also 
providing peaking and electricity storage services in the power sector. Multisector demands for 
hydrogen, energy arbitrage opportunities and economics for hydrogen production technologies, 
and other key dynamics related to hydrogen could be fruitful areas for future work. 
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4 Transportation Sector 
Decarbonization of the transportation sector may require shifts in transportation demand, mode 
choice, and technology adoption within modes. We summarize differences in modeling approach 
for each of these aspects for GCAM and an NREL transportation model, the Transportation 
Energy & Mobility Pathway Options model (Muratori et al. 2021), and we consider their 
potential implications for sector-wide decarbonization results. Moreover, we consider two sets of 
scenarios: one exploring model response to varying levels of carbon prices and another exploring 
light-duty vehicle (LDV) stock turnover and its implications for sector-wide decarbonization. 
Other sectors’ sections have different structure and content due to differences in scenario 
construction for electricity, transportation, and buildings. 

4.1 Model Structure and Exogenous Drivers 

4.1.1 The TEMPO Model 
The Transportation Energy & Mobility Pathway Options (TEMPO) model (Muratori et al. 2021) 
is a transportation energy system model developed by NREL. Like GCAM, TEMPO’s scope 
includes the entire transportation sector, including both passenger and freight modes, but it 
excludes upstream energy supply sectors such as electricity generation and refining. TEMPO 
computes mode and technology choice, sales of personal LDVs and commercial medium- and 
heavy-duty vehicles (MHDVs), vehicle stock, energy consumption, and emissions on an annual 
time-step. Determinants of mode and technology choice include cost (capital and operating 
costs), time, and infrastructure characteristics. TEMPO has been used in mode-specific and 
sector-wide studies, including an analysis of the decarbonization potential of MHDVs (Ledna et 
al. 2022) and an analysis of influential factors impacting decarbonization on a sector-wide scale 
(Hoehne et al. Forthcoming).  

4.1.2 Model Structure and Comparison 
GCAM and TEMPO’s transportation sectors are organized similarly. Table 4 summarizes the 
models’ scope and key exogenous drivers. Both models make mode and technology choice 
decisions using a logit formulation, which selects the market share of each mode and the share of 
individual technologies within modes based on the cost and time intensity of different options. 
The largest structural difference between models is their scope: GCAM is an economy-wide 
model, integrating with other sectors including electricity, buildings, and refining while TEMPO 
considers only the transportation sector. Cross-sectoral interactions, such as feedbacks between 
electricity prices and demand for electrified transportation, can be represented in GCAM but not 
in TEMPO, which requires exogenous assumptions or integration with other sector-specific 
models to represent the same dynamics. GCAM computes fuel prices and fuel carbon intensity 
(including carbon intensity of electricity and biomass share of liquid fuels) endogenously based 
on cumulative sector-wide demand, whereas TEMPO takes these factors as exogenous inputs.  
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Table 4. GCAM and TEMPO Scope and Key Drivers 

Feature GCAM TEMPO 

Solution concept • Fuel prices determined via 
market equilibrium 

• Mode and technology choice 
based on nested logit 
formulation 

• Mode and technology choice 
based on logit formulation 

Model scope • Economy-wide (all energy 
supply, transformation, and 
end-use sectors, as well as 
land and water systems) 

• Transportation only 

Spatial scope and detail • Global coverage with the 
world divided into 32 energy-
economy regions 

• United States as a single 
region (Only the United States 
was considered in this 
analysis.)  

• United States-national or 
county-level (National scope 
was used in this analysis.) 

Temporal resolution • 5-year time-step  • Annual time-step 

Exogenous drivers • Population and GDP • Population (passenger) 
• Exogenous demand 

trajectories (freight) 

Cross-sectoral feedbacks • Fuel prices endogenously 
determined based on energy 
supply characteristics and 
total demand from final 
energy sectors 

• Biofuel share of liquid fuels 
determined based on 
technology competition within 
refining and demand for liquid 
fuels and biomass across all 
sectors 

• N/A 

Passenger sector unit 
of resolution 

• National • Household (sampled based 
on National Household Travel 
Survey [NHTS]) 

Freight sector unit of resolution • National • Shipment distance bin  

Both models are exogenously driven by population growth (Figure A-2 in the appendix, page 
108), which drives demand for passenger travel. Population in GCAM’s U.S. region increases 
from 337 million people in 2020 to 403 million people in 2050, while in TEMPO the number of 
households grows from 122 million to 149 million (corresponding to total populations of 333 
million and 389 million people). GCAM also considers regional GDP per capita (Figure A-3 in 
the appendix, page 109), which is used to compute both passenger and freight demand. In both 
models, total passenger demand endogenously responds to changes in the cost of transportation 
using cost elasticities. In GCAM, freight demand is represented as a function of economy-wide 
GDP and an index of the aggregate price of freight service using GDP and price elasticities, 
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similar to passenger demand. In TEMPO, total freight demand is determined exogenously based 
on the Freight Analysis Framework (Federal Highway Administration 2019). 

Mode-and technology-level divisions are fairly similar in the passenger sector (Table 5, page 8). 
Differences between the models include the representation of LDV size classes (four in and two 
in GCAM), the inclusion of battery-electric and hydrogen fuel cell technology options in 
GCAM’s aviation mode, and the inclusion of the passenger marine ship mode in TEMPO. The 
models differ more substantially in their market segmentation. GCAM computes regional 
passenger demand as a function of regional GDP per capita, an index representing the aggregated 
price of transportation, regional population, and income and price elasticities (Mishra et al. 
2013). In TEMPO, passenger demand at the national level in the United States is aggregated 
from sampled households drawn from 60 distinct bins, which divide the consumer market based 
on composition (size and number of drivers), income, and urbanity (Muratori et al. 2021). 
Household travel demand is estimated from distributions drawn from the 2017 National 
Household Travel Survey (NHTS) (Federal Highway Administration 2018), which describe trip 
distance and trip count distributions by household bin. TEMPO’s household-level resolution 
allows for representation of intrahousehold dynamics, such as vehicle use among the household 
vehicle fleet, and for enhanced market segmentation (e.g., exploring distinctions in residential 
charging availability and mode availability among different household bins). 

In the freight sector (Table 6, page 39), there are additional differences in resolution. While 
mode and technology-level resolution are fairly similar across the models, TEMPO adds 
resolution by shipment distance bin within each mode. Eight shipment distance bins, derived 
from the Freight Analysis Framework, are used to divide each freight mode, and there are 
differing levels of freight activity in each bin. This allows the model to represent varying use 
cases for freight modes, such as short-distance and long-distance applications for on-road 
MHDVs, and there are implications for technology choice across distance bins. It is implicitly 
assumed in TEMPO that freight vehicles will operate within their assigned distance bins rather 
than across multiple bins. 

Neither model endogenously represents non-income or non-cost-based determinants of total 
transportation demand, including drivers such as new business models, telework, urbanization, 
or convenience/time intensity (though time intensity is an important determinant of allocation of 
demand across modes). These scenarios can be represented as exogenous inputs in both models. 

A final distinction worth noting is the models’ calibration years and temporal resolution. GCAM 
is calibrated to 2015 and models the energy system in 5-year time-steps, while TEMPO is 
calibrated to 2017 and uses a 1-year time-step. Differences in calibration years may result in 
somewhat different modeling of recent history (e.g., 2015 or 2017–2021) due to differing data 
sources and calibration assumptions. 
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Table 5. TEMPO and GCAM Passenger Mode and Technology Representation 

Mode GCAM TEMPO 

Personal LDV and mobility as 
a service (MaaS) 

• Two size classes: car and 
large car, and truck 

• Four technologies: 
conventional liquids, hybrid 
liquids, BEV, and hydrogen 
fuel cell electric vehicle 
(FCEV) 

 

• Four size classes: compact, 
midsize, sport utility vehicle, 
and pickup 

• Six technologies: 
conventional gasoline, hybrid, 
natural gas, BEV, FCEV, 
plug-in hybrid electric vehicle 
(PHEV) 

• Long and short electric range 
options for BEVs and PHEVs 

• MaaS contains midsize 
vehicles only and excludes 
PHEV and short-range BEV  

Motorcycle/two-wheeler • BEV and conventional liquid 
fuel technologies 

• Conventional gasoline only 

Bus • Conventional liquid, hybrid 
liquids, natural gas, BEV, and 
FCEV technologies 

• Conventional and hybrid 
diesel, natural gas, BEV, and 
FCEV technologies 

Passenger rail • High speed rail (all electric) 
• Passenger rail (electric and 

liquid fuel technologies) 

• Metropolitan rail and regional 
rail options (electric, 
conventional liquid and hybrid 
liquid technologies)  

Passenger aviation • Separation of international 
and domestic aviation 

• Conventional liquid, electric 
and hydrogen technologies 

• Conventional liquid 
technology only 

• Only domestic aviation 
represented 

Passenger ship (marine) • No passenger ship • Conventional liquid and 
natural gas technologies 

Non-energy • Separate walking and 
cycling modes 

• One mode, implicitly 
encompasses walking and 
biking 
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Table 6. TEMPO and GCAM Freight Mode and Technology Representation 

Mode GCAM TEMPO 

MHDV • Three truck classes: light 
(under 6,000 lbs; assumed to 
be 15% of Class 1 trucks), 
medium (Class 2–6) and 
heavy (Class 7–8) 

• Four technologies: 
conventional liquids, hybrid 
liquids, BEV, and FCEV 

• Three truck classes: light-
medium (Class 3), medium 
(Class 4–6), and heavy (Class 
7–8) 

• Technologies: conventional 
diesel, hybrid, natural gas, 
BEV, and FCEV. Short, 
medium- and long-range 
options for BEVs. 

• 8 shipment distance bins 
within each class, dividing 
activity based on Freight 
Analysis Framework shipment 
distance (0–99 miles to 2000+ 
miles) 

Freight aviation • No freight aviation • Conventional liquids only 
(jet fuel) 

• 8 shipment distance bins, 
dividing activity based on 
Freight Analysis Framework 
shipment distance (0–99 
miles to 2000+ miles) 

Freight rail • Electric, hydrogen, hybrid 
liquids and conventional 
liquids technologies 

• Conventional and hybrid 
liquids technologies 

• 8 shipment distance bins, 
dividing activity based on 
Freight Analysis Framework 
shipment distance (0–99 
miles to 2000+ miles) 

Freight shipping (marine) • Electric, hydrogen, hybrid 
liquids and conventional 
liquids technologies 

• Domestic and international 
shipping represented (but 
only domestic considered for 
this study) 

• Conventional liquid and 
natural gas technology 
options available 

• Only domestic shipping is 
represented 

• 8 shipment distance bins, 
dividing activity based on 
Freight Analysis Framework 
shipment distance (0–99 
miles to 2000+ miles) 

4.2 Input Assumptions, Model Alignment, and Scenarios 
We selectively aligned GCAM and TEMPO for this study to improve comparability across 
scenarios and better identify the importance of structural differences between the models. Figure 
15 summarizes this process. 
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Figure 15. Overview of GCAM and TEMPO model alignment 

Vehicle cost and fuel economy assumptions for on-road vehicles (passenger LDVs and freight 
MHDVs) were processed from vehicle simulations developed by Argonne National Laboratory 
to the relevant vehicle classes for each model (Islam et al. Forthcoming). For all scenarios, 
GCAM was run first to provide fuel price (inclusive any carbon price) and the biofuel share of 
liquid fuels as exogenous inputs to TEMPO. Fuel prices included electricity and hydrogen prices, 
which impact the estimation of technology shares for the respective technologies. TEMPO’s fuel 
resolution was simplified for this study to align with GCAM’s simpler representation of liquid 
fuels; for example, the gasoline, diesel, and jet fuel fuels in TEMPO were all given the same 
liquid fuel price from GCAM. Biofuel share was assumed to be constant across all modes as a 
result of GCAM’s modeling of refined liquids, which assumes liquid fuels are composed of the 
same mix of biofuels and fossil fuels in all transportation modes. Figure A-4 through Figure A-9 
(pages 114-115) plot the aligned fuel costs, biofuel shares, and vehicle cost and fuel economy 
assumptions used for this study. The models were then compared on the metrics of transportation 
demand, on-road vehicle stock, energy consumption and emissions. Seven scenarios were run: a 
reference scenario assuming no sector or economy-wide policies (including a carbon price), five 
carbon price scenarios exploring carbon prices of varying stringencies, and an LDV policy 
scenario simulating the impact achieving a 100% EV sales target for passenger LDVs. These 
scenarios are further described in Figure 16 and Table 7. 

 
Figure 16. Carbon price trajectories (dollars per metric ton of CO2) 
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Table 7. Overview of Scenarios and Key Assumptions 

Scenario Carbon Price Sector Policies 

Reference None None 

$10/tCO2 Begins at $10/tCO2 in 2025 None 

$20/tCO2 Begins at $20/tCO2 in 2025 None 

$30/tCO2 Begins at $30/tCO2 in 2025 None 

$40/tCO2 Begins at $40/tCO2 in 2025 None 

2.6 W/m2 Consistent with 2.6 W/m2; 
begins at $70/tCO2 in 2025 

None 

100% EV None 100% EV sales by 2035 
Carbon prices are measured in dollars per metric ton of CO2. 

Table 8 and Table 9 describe calibration sources in the passenger and freight sectors for both 
GCAM and TEMPO. Differences in base year calibration and assumptions about future growth 
may in part drive differences between models. GCAM is calibrated to a 2015 base year, with 
overall transportation energy demand (road, rail, air, ship) based on International Energy Agency 
energy balance data (International Energy Agency 2019). These data are then downscaled to 
more specific modes and vehicle size classes (e.g., from rail to passenger rail and freight rail, and 
from road to freight truck, LDV, and bus) using the variety of data sets listed in Table 8 and  
Table 9, principally Mishra et al. (2013).18 Future years’ transportation demands are modeled 
based on assumed population and GDP growth as a function of demand elasticities. TEMPO is 
calibrated to 2017 and relies on various sources, including the AEO2019 (EIA 2019), the NHTS 
(Federal Highway Administration 2018), and the Freight Analysis Framework (Federal Highway 
Administration 2019) to estimate current mode shares and future demand growth. The key 
sources used in both models are described below.  

 
 
18 The data sets used to disaggregate overall transportation energy demand to finer modes and vehicle size classes 
in GCAM are from data compiled in 2013, for a 2005 model base year. In part, this data selection reflects the 
challenges of gathering and maintaining data for a global model; detailed, globally comprehensive data on 
transportation energy use by sector, mode, vehicle class, and fuel are difficult to find, and the global transportation 
data set put together by Mishra et al. (2013) is still considered the standard in the field of global integrated 
assessment modeling. While GCAM’s overall energy balances are calibrated to 2015 (the same base year as all other 
sectors and systems in the model), to the extent that mode or vehicle size class choices have shifted substantially 
since publication of Mishra et al. (2013) , this could lead to distortions in mode or vehicle class energy allocation 
(relative to newer data). Updating these data (for the regions like the United States where data are available) is an 
opportunity for future model improvement. 
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Table 8. Passenger Sector Data Sources 

Mode GCAM TEMPO 

Passenger aviation • Bureau of Transportation 
Statistics (2012) 

• U.S. Department of 
Transportation (2012) 

• Other sources summarized by 
Mishra et al. (2013)  

• Mode choice calibrated based 
on NHTS (Federal Highway 
Administration 2018) 

• Future demand based on 
population projections from 
the AEO2019 (U.S. Energy 
Information Administration 
2019) 

• Occupancy assumptions from 
NHTS and the National 
Transit Database (U.S. DOT 
2019) 

Bus • U.S. Department of 
Transportation (2012) 

• APTA (2011) 

Personal LDV and MaaS • Transportation Energy Data 
Book (Davis, Diegel, and 
Boundy 2011) 

• U.S. Department of 
Transportation (2012) 

Passenger rail • International Energy Agency 
energy statistics 

• Region-specific literature 
(Mishra et al. 2013) 

Non-energy • Regional transportation 
survey listed in Mishra et al. 
(2013) 

Passenger ship (marine) • N/A 

Table 9. Freight Sector Data Sources  

Mode GCAM TEMPO 

MHDV • Transportation Energy Data 
Book (Davis, Diegel, and 
Boundy 2011) 

• VIUS (U.S. Census Bureau 
2004) 

• Ton-miles: Freight Analysis 
Framework (Federal Highway 
Administration 2019) 

• Truck vehicle miles traveled 
(VMT) and load factors: AEO 
(U.S. Energy Information 
Administration 2019) and 
VIUS (U.S. Census Bureau 
2004) 

• Growth projections: AEO2019 
(U.S. Energy Information 
Administration 2019)   

Freight shipping (marine 
and domestic) 

• International Energy Agency 
energy statistics 

• Region-specific literature 
(Mishra et al. 2013) 

Freight rail 

Freight aviation • N/A 
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4.2.1 The Reference Scenario 
We first evaluated the Reference scenario to identify differences in model calibration and growth 
assumptions and to establish a baseline for model behavior against which subsequent scenarios 
could be compared. In both models, the Reference scenario assumes no supportive policies, such 
as a carbon price. All emissions reductions come from changes in technology cost and efficiency 
within and between modes. As in all scenarios, the models were aligned for on-road technology 
attributes, fuel prices, and biofuel shares.  

Figure 17–Figure 19 (pages 44–45) compare the passenger sector between 2020 and 2050 across 
the metrics of transportation demand growth, energy consumption, and vehicle stock. The 
passenger sector is generally well-aligned between TEMPO and GCAM. Some differences are 
observed in demand growth; passenger miles traveled (PMT) are 9% lower in 2020 in TEMPO 
than in GCAM, and grow by 30% in 2050 (versus 36% in GCAM). LDV vehicle miles traveled 
(VMT) is closely aligned (Figure 17), suggesting that differences are driven in part by occupancy 
assumptions (Table A-3, page 107, in the appendix). Historical data show that PMT grew by 
61% between 1990 and 2019, and VMT grew by 47% over the same period (BTS 2021). Both 
models project lower passenger travel growth than the historical record, potentially due to more 
conservative population growth forecasts.  

We compared energy consumption is between GCAM and TEMPO, and to historical data from 
the Transportation Energy Data Book in 2019 (Davis and Boundy 2022) (Figure 18, page 44). 
We present results for tank-to-wheels energy consumption, excluding energy consumed during 
upstream processes. Compared to 2019 historical data (used as a comparison because the impacts 
of COVID-19 are not considered in this study), modeled 2020 energy consumption is similar in 
the two models. GCAM has lower LDV energy consumption than TEMPO or the Transportation 
Energy Data Book by about 2 EJ, likely because of differences in initial fuel economy, which is 
higher on average in GCAM. Aviation energy consumption is higher in GCAM than in the 
Transportation Energy Data Book or TEMPO by about 0.5 EJ, likely as a result of mode choice 
calibration. Total energy consumption is well-aligned between models from 2020 to 2050. 
GCAM has higher LDV hybrid adoption in all years, which lowers the average carbon intensity 
of the LDV mode relative to TEMPO. Tailpipe CO2 emissions in 2020 are 1,134 MMT in 
GCAM and 1,181 MMT in TEMPO. Emissions reductions in 2050 are 608 MMT in GCAM 
(54% of 2020) and 597 MMT in TEMPO (51% of 2020), showing close alignment in model 
response to technology progress trajectories. 

A key difference of the models is total LDV stock growth (Figure 19). In TEMPO, total vehicle 
stock is calibrated to AEO2019 (U.S. Energy Information Administration 2019) and grows at the 
rate of vehicle-owning households. Increases in demand for LDV passenger travel do not result 
in increases in household vehicle ownership rates, only the miles driven in each vehicle. In 
GCAM, total vehicle stock is not explicitly tracked but is post-calculated from total PMT 
demanded for LDVs using LDV occupancy factors. Demand for LDVs is a function of the cost 
of LDV service relative to other passenger modes. These differences imply GCAM may use 
more vehicles to represent the same amount of passenger travel as TEMPO. 
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Figure 17. Reference scenario demand growth, passenger sector, 2020–2050 (GCAM and TEMPO) 

 
Figure 18. Reference scenario energy consumption by mode, passenger sector (GCAM and 
TEMPO) compared to historical data from the Transportation Energy Data Book (Davis and 

Boundy 2022) 
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Figure 19. LDV stock in the Reference scenario, 2020–2050 (GCAM and TEMPO) 

Vehicle stock in GCAM is not modeled explicitly; it is computed using a constant PMT/vehicle ratio. Vehicle stock is 
modeled explicitly in TEMPO, and PMT/vehicle is modeled dynamically. 

Figure 20–Figure 22 (pages 46–47) present the same analysis for the freight sector. Unlike the 
passenger sector, the freight sector has substantially different calibration and demand growth 
assumptions. Initial and projected demand for ship and rail modes is substantially different, due 
to differences in calibration assumptions and data sources (Table 9, page 42). GCAM assumes 
greater initial and projected demand for freight marine shipping (domestic only) than TEMPO, 
while TEMPO has greater initial and projected demand for freight rail than GCAM. Also, 
GCAM models the deployment of zero-emission rail technologies, and TEMPO does not include 
these technologies as available options. Freight aviation (also referred to as freight air) is present 
in TEMPO but not in GCAM, but it is not a substantial source of variation.  

More differences are found in MHDVs (Figure 21, page 47). Though initial and projected total 
VMT are similar for models for heavy trucks, GCAM projects substantially different VMT for 
medium and light-medium trucks. Differences in light-medium and medium truck VMT are 
primarily due to definitional differences between TEMPO and GCAM. GCAM defines light-
medium trucks as Class 1 vehicles used for commercial purposes (assumed to be 15% of Class 1 
trucks, based on data from the 2002 Vehicle Inventory and Use Survey [VIUS]). TEMPO 
includes only Class 3 vehicles in its definition of light-medium trucks. Class 1 vehicles are 
modeled with other LDVs in the passenger sector. Medium trucks in GCAM encompass Classes 
2–6, whereas TEMPO includes only Class 4–6, with Class 2b vehicles (commercial light trucks) 
not represented. Additional differences may stem from calibration assumptions. Mode-level 
freight demand in TEMPO is calibrated to the AEO using a base year of 2017, while freight 
demand in GCAM is modeled using a base year of 2015 based on population and GDP growth. 
GCAM also models higher adoption of hybrid electric vehicles than TEMPO in initial and future 
years, while adoption of BEVs (as a share of total VMT) is similar in TEMPO and GCAM.  
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Figure 22 shows overall energy consumption and comparisons to historical data from the 
Transportation Energy Data Book (Davis and Boundy 2022). Due to differences in demand and 
technology choice, total energy and energy share by mode differs substantially across models in 
both the base year (2020) and future years. We also find some differences between modeled 
2020 energy consumption and 2019 historical data. The Transportation Energy Data Book has 
higher heavy truck energy consumption than either GCAM or TEMPO (by 0.6–0.9 EJ). The 
Transportation Energy Data Book also has substantially higher freight marine shipping energy 
consumption than either model, possibly due to differences in distinctions between domestic and 
international shipping. Combined light-medium and medium truck energy consumption is similar 
in the Transportation Energy Data Book and in TEMPO, while GCAM’s estimates are 
substantially higher (as they correspond to higher VMT estimates for this sector). Finally, freight 
rail energy consumption is aligned in the models. Freight sector CO2 emissions in 2020 are 611 
MMT in GCAM and 471 MMT in TEMPO, falling to 446 MMT in 2050 in GCAM (a decrease 
of 27%) and 366 MMT in 2050 in TEMPO (a decrease of 22%). This suggests the freight sector 
is more responsive to technology improvement assumptions in GCAM than in TEMPO in the 
Reference scenario.  

 
Figure 20. Freight sector Reference scenario growth trajectories, non-road modes 

(GCAM and TEMPO) 
Axes scales are different for different modes. GCAM does not model the freight air mode. TEMPO does not model 

electric or hydrogen options for freight rail and ship modes.  
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Figure 21. MHDV technology choice as a share of VMT in the Reference scenario 

(GCAM and TEMPO) 
GCAM’s light-medium and medium truck definitions differ from those for TEMPO, which accounts for differences 

in VMT. 

 

 
Figure 22. Freight sector Reference scenario energy consumption (GCAM and TEMPO) compared 

to historical data from the Transportation Energy Data Book (Davis and Boundy 2022) 
TEDB = Transportation Energy Data Book 
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4.2.2 Carbon Price Scenarios 
We next considered model responses to a carbon price compared to the Reference scenario. 
Model responsiveness to changes in fuel prices has substantial implications for policy analysis, 
including analyses of economy-wide carbon prices and sector-specific policies (e.g., road taxes 
or gasoline taxes). We evaluated GCAM and TEMPO’s response to a set of carbon price 
scenarios across models to understand the following questions:  

• How similarly do models respond to changes in fuel price? 
• Which sectors are most responsive to a carbon price? Which sectors are less sensitive?  
• Which pathways are used to achieve decarbonization goals in each model? 
• How do insights differ across models, and why?  

Unless otherwise stated, the CO2 emissions presented in our main findings are for tailpipe 
emissions (from tank to wheels). Indirect emissions from electricity and hydrogen production 
and emissions from other upstream processes are not presented in the main transportation sector 
findings, as they are accounted for in other sectors. Figure A-1 (appendix, page 107) shows 
direct and indirect emissions in the transportation sector. 

Figure 23–Figure 25 (pages 50–51) summarize our findings. Figure 23 plots sensitivity to 
increases in the price of liquid fuels in the passenger and freight sectors. TEMPO and GCAM 
behave similarly in the passenger sector, with a 10% increase in the cost of liquid fuels 
producing a 2.7% decrease in CO2 emissions in GCAM (a fuel price elasticity of -0.27) and a 
2.8% decrease in emissions in TEMPO (a fuel price elasticity of -0.28) (computed using the 
2.6 W/m2 scenario). Historical data suggest the long-run price elasticity of gasoline demand for 
passenger LDVs ranges between -0.3 and -0.1 (Winebrake et al. 2015b), which suggests GCAM 
and TEMPO’s model behavior is within historical ranges, as passenger tailpipe emissions 
reductions generally come from the reduction of gasoline consumption. 

In the freight sector, GCAM is somewhat more responsive than TEMPO to fuel price increases. 
A 10% increase in the cost of liquid fuels produces a 4.6% decrease in CO2 emissions on average 
in GCAM and a 3.2% decrease on average in TEMPO. Compared to the historical record, the 
response to fuel price changes in the freight sector is greater in both models. Winebrake et al. 
(2015b; 2015a) find little to no decrease in energy consumption in response to fuel price 
increases in the U.S. single-unit and combination trucking sectors. The increased sensitivity of 
both models may be due to the inclusion of advanced vehicle powertrains (including BEVs and 
FCEVs), which allow for more substitution of non-diesel fuels than has been historically 
available. Both models are roughly linear in their response to price changes in both the passenger 
and freight sectors, with TEMPO displaying more nonlinearity in passenger sector reductions. 
TEMPO’s nonlinearity stems from its sampling feature, which introduces some stochasticity in 
total passenger demand from scenario to scenario. 

We evaluated the role of different decarbonization pathways, including demand and mode 
shifting, biofuel substitution in liquid fuels, and technology shifting, in achieving emissions 
reductions in each model. These factors were decomposed successively, and we evaluated the 
role of each changed factor while holding other factors constant. Emissions reductions from 
demand reduction were identified by holding mode share and emissions intensity constant at 
Reference scenario shares and computing emissions using total demand from the relevant carbon 
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price scenario. Emissions reductions from mode shifting were identified by holding emissions 
intensity constant across modes and computing emissions using mode shares and demand from 
the carbon price scenario. Emissions reductions from biofuels were computed by holding 
technology shares constant at the Reference scenario and computing emissions from an increased 
share of liquid fuels. Finally, remaining emissions reductions were attributed to changes in 
technology shares. Because technology improvement assumptions are identical across scenarios, 
there are no emissions reductions from endogenous technology improvement without technology 
switching. In some cases, emissions attributed to mode shifting resulted in emissions increases 
rather than reductions, as they were considered independently of simultaneous technology shifts 
within modes. In these cases, mode shifting was aggregated with technology shifting, as it did 
not contribute an independent role to emissions reductions.  

Figure 24 (page 50) and Figure 25 (page 51) show the results of this analysis, and in subsequent 
sections, we evaluate the role of each factor in detail. In the passenger sector, TEMPO has 
greater emissions reductions from demand reduction and technology shifting than GCAM, while 
mode shifting plays no role independent of technology shifting. TEMPO is more responsive than 
GCAM at lower carbon prices, although this sensitivity diminishes as carbon prices increase. In 
the freight sector (Figure 25), demand reductions and mode shifting mechanisms are present only 
in GCAM. In GCAM, technology shifting and demand reduction contribute the most to 
emissions reductions, and technology shifting plays a greater role at higher carbon prices. Mode 
shifting alone without simultaneous changes in technology choice within modes does not 
produce emissions reductions. In TEMPO, technology shifting is the primary mechanism by 
which emissions reduction are achieved. The lack of a demand reduction mechanism is a key 
reason for lower freight responsiveness to carbon prices in TEMPO compared to GCAM. In all 
scenarios and in both the passenger and freight sectors, biofuel substitution is intentionally 
constrained to improve model alignment. Emissions reductions from biofuel substitution 
decrease between the $40/tCO2 and 2.6 W/m2 scenarios because biofuels in GCAM are allocated 
to other energy sectors (i.e., for use in electricity generation rather than in transportation) at 
higher carbon prices.  

In the most aggressive carbon price scenario (the 2.6 W/m2 scenario), 2050 passenger-sector 
tailpipe CO2 emissions are reduced by 88 MMT in GCAM and 103 MMT in TEMPO relative to 
the Reference scenario. In the freight sector, CO2 emissions are reduced by 129 MMT in GCAM 
and 74 MMT in TEMPO. Subsequent sections detail differences between models and the role of 
each decarbonization pathway in each sector, with a focus on the 2.6 W/m2 scenario. 
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 Figure 23. Decrease in tailpipe CO2 emissions by sector for an increase in liquid fuel price (GCAM 

and TEMPO) 

 

 
Figure 24. Decarbonization pathways for the passenger sector, 2050 (GCAM and TEMPO) 
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Figure 25. Decarbonization pathways for the freight sector, 2050 (GCAM and TEMPO) 

TEMPO does not include demand reduction and mode shifting mechanisms in the freight sector. 

Demand Reduction and Mode Shifting  
Demand reduction and mode shifting play different roles in TEMPO and GCAM due to 
differences in model design. In GCAM under the 2.6 W/m2 scenario in 2050, demand is reduced 
by 0.2 trillion PMT (2.4%) in the passenger sector and 0.6 trillion ton-miles (12%) in the freight 
sector. This accounts for 12 MMT (14%) of passenger-sector emissions reductions and 53 MMT 
(41%) of freight-sector emissions reductions. Mode shifting reduces emissions by an additional 
15 MMT (17%) in the passenger sector, but by itself does not reduce emissions in the freight 
sector (reductions are achieved only when technology shifts are simultaneously considered). 
In TEMPO, only passenger sector demand reduction plays a role in decarbonization. Demand 
in 2050 is reduced by 0.3 trillion PMT (4.3%) and accounts for 25 MMT (24%) of emissions 
reductions. Differences in demand reduction stem from differences in model design. GCAM uses 
both price elasticities and income elasticities to compute the change in total passenger 
transportation demand based on the change in the cost of transportation service. TEMPO uses 
only price elasticities to compute the change in passenger transportation demand and translates 
these elasticities into changes in average trip distance and the number of trips. These differences, 
as well as potential differences in the fuel price share of total transportation price, produce 
different sensitivities to an identical carbon price. 
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TEMPO’s demand reduction ranges between 1%–3% at lower carbon prices, with some 
nonlinear fluctuations occurring as a result of model stochasticity. Mode shifting does not reduce 
emissions in the absence of technology substitution. In GCAM, model behavior is more linear, 
with demand reduction and mode shifting playing a role in decarbonization across all carbon 
price scenarios. 

Figure 26 (page 53) plots mode shifting and demand reduction by mode in GCAM and TEMPO. 
Mode shifting differs across models due to differences in model design. In TEMPO, mode choice 
is determined primarily by the time intensity of each mode rather than the cost intensity and 
produces no emissions reductions. Mode shifting observed in TEMPO is likely a result of 
stochastic model behavior. Overall, some demand shifts away from air travel, buses, and rail and 
toward LDV and passenger shipping due to stochastic sampling of passenger demand and system 
constraints. In GCAM, mode choice is more strongly influenced by cost (although mode speed 
and time value are considered), resulting in substantial shifts away from carbon-intensive air 
travel and toward less carbon-intensive modes such as bus and LDV travel.  

Historical data on aviation demand suggest aviation is responsive to price, with studies on the 
impact of airfare taxes finding that short-distance and nonbusiness travel are more elastic than 
long-distance and business travel (Fukui and Miyoshi 2017; Larsson et al. 2019). Fuel price 
elasticities of energy consumption range from -0.17 to -0.35 (Fukui and Miyoshi 2017), implying 
that a 60% increase in fuel prices (as in the 2.6 W/m2 scenario) might decrease jet fuel 
consumption and CO2 emissions by 10%–21%. In GCAM under the 2.6 W/m2 scenario, we find 
aviation emissions decline by 24 MMT due to demand reduction and mode switching, which 
represents a reduction of 14% relative to the Reference scenario, which is in line with these 
estimates. Studies on passenger mode substitution suggest aviation demand might substitute with 
high-speed rail in countries where it is present, particularly for short-haul domestic flights 
(Clewlow, Sussman, and Balakrishnan 2014; Wang, O’Sullivan, and Schafer 2019). However, 
there is little data exploring substitution between aviation and personal LDV travel in the United 
States. In GCAM, demand reduction from aviation occurs only for short-haul flights and is 
transferred to buses and LDVs. We exclude international aviation modeled in GCAM from 
aviation totals to ensure comparability of models. Additional research is needed to explore the 
empirical basis for passenger aviation substitution in the U.S. context. 
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Figure 26. Passenger demand and mode shifting in 2.6 W/m2 scenario relative to the Reference 

scenario, 2050 (GCAM and TEMPO) 

In the freight sector, endogenous demand reduction and mode shifting are present in GCAM but 
not in TEMPO. In TEMPO, this feature was excluded due to inadequate data. Demand reduction 
is a substantial driver of freight emissions reductions in GCAM, and the lack of an endogenous 
freight demand reduction mechanism in TEMPO accounts for nearly all the difference in freight 
sector emissions reductions between GCAM and TEMPO in the 2.6 W/m2 scenario. Historical 
data suggest freight demand is fairly inelastic to fuel price increases and is strongly correlated to 
changes in GDP (Kaack et al. 2018; Winebrake et al. 2015a; 2015b; Muratori et al. 2017). 
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GCAM’s results suggest freight demand may be more elastic to fuel price changes than has 
historically occurred; a 63% increase in the price of liquid fuels results in a 12% decrease in total 
freight demand, or a fuel price elasticity of demand of -0.19. Historical data on freight mode 
choice suggest mode choice decisions consider shipment rates (costs), reliability, distance, and 
size among other factors (Holguin-Veras et al. 2021; ITF 2022). Substitution of rail for modes 
such as road transport faces issues relating to reliability and flexibility. In GCAM, freight mode 
choice occurs primarily from shipping to the rail and light and medium road sectors (Figure 27). 
Future investigation could improve the empirical basis for assumptions about mode shifting in 
freight and could focus on the extent to which specific modes such as shipping are substitutable 
with other modes.  

 

 
Figure 27. Freight demand and mode shifting in the 2.6 W/m2 scenario relative to the Reference 

scenario, 2050 (GCAM) 

Biofuels  
The role of biofuels was harmonized for this assessment, resulting in similar shares across 
models. In GCAM, the biofuel share of liquid fuels was computed endogenously, with total 
biomass use constrained. Biofuels (input as the share of liquid fuel by energy) were set 
exogenously in TEMPO using the resulting values from GCAM. Increases in biofuel shares 
result in emissions reductions of 3–4 MMT in the passenger sector and 3 MMT in the freight 
sector in the 2.6 W/m2 scenario in both models, comprising 2%–4% of sectoral emissions 
reductions relative to the Reference scenario in GCAM and 4% in TEMPO. Reductions are 
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proportional to the share of liquid fuels within each mode, as it is assumed biofuels will be 
distributed evenly across all liquid fuels. 

Technology Choice and Electrification  
In the passenger sector, greater emissions reductions are induced by changes in technology 
choice in TEMPO than in GCAM. In the 2.6 W/m2 scenario, the share of zero-emission 
(electricity and hydrogen) miles increases from 46% in GCAM (3.9 trillion PMT) to 53% (4.3 
trillion PMT), and it increases from 34% (2.5 trillion PMT) to 44% (3 trillion PMT) in TEMPO. 
These increases result in 58 MMT of CO2 reductions in GCAM and 73 MMT in TEMPO. 
TEMPO’s emissions reductions from technology shifting are net of emissions increases from 
mode shifting, as noted in previous sections. 

Mode-level zero-emission technology choice differs somewhat by model (Figure 28). For non-
LDV modes (passenger air, bus, ship, and rail), we did not harmonize technology options or cost 
trajectories in TEMPO or GCAM. This results in differences in initial mode-level technology 
shares in the Reference scenario. In addition, GCAM includes BEV and FCEV technologies for 
domestic air travel, which are not present in TEMPO. These technologies increase from 16% of 
air PMT in the Reference scenario to 26% in the 2.6 W/m2 scenario, and they decarbonized 69 
billion PMT and reduce emissions by 19 MMT in 2050 relative to the Reference scenario. The 
remaining 39 MMT of reductions in GCAM come primarily from LDV emissions reductions, as 
the share of zero-emission PMT increases from 51% to 57% (3.3 trillion PMT to 3.7 trillion 
PMT). Meanwhile in TEMPO, the share of zero-emission LDV PMT increases from 42% to 53% 
(2.4 trillion to 2.9 trillion PMT), accounting for nearly all the reduction in emissions. (Note that 
GCAM electrifies a higher share of hybrid gasoline vehicles, thus producing lower emissions 
reductions per electrified passenger-mile). Differences in representation of LDVs, including 
representation of household-level travel patterns and infrastructure availability in TEMPO, may 
account for these differences in technology choice sensitivity. TEMPO also differs from GCAM 
in FCEV technology choice. FCEVs do not play a role in TEMPO due to assumed inadequacy of 
infrastructure , which prevent them from achieving widespread adoption in LDV and bus modes, 
where these technologies are represented.  
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Figure 28. Passenger travel electrification (share of PMT) by scenario and mode, 2050  

(GCAM and TEMPO) 

In the freight sector, we observe some differences in the sensitivity of technology choice to 
changes in fuel prices, and these impact the sector’s decarbonization potential. Overall, the share 
of zero-emission freight service increases from 29% to 43% (1.3 trillion ton-miles to 1.7 trillion 
ton-miles) in GCAM, and from 9% to 21% (0.5 trillion ton-miles to 1.1 trillion ton-miles) in 
TEMPO, resulting in 93 MMT of CO2 emissions reductions in GCAM (73 MMT net of 
emissions changes from mode shifting) and 72 MMT in TEMPO in the 2.6 W/m2 scenario. 
Because the models have different load factors and VMT assumptions across freight modes, 
total ton-miles are different across models.  

Table 10 shows changes in the share of zero-emission miles and emissions reductions from 
technology switching by mode in the 2.6 W/m2 scenario relative to the Reference scenario. 
Differences in emissions reductions are primarily concentrated in on-road trucking modes (light-
medium, medium, and heavy trucks). The inclusion of additional zero-emission technologies 
in GCAM’s rail and shipping sectors play a relatively small role (17% of the difference in 
emissions reductions versus 83% due to differences in the on-road trucking sectors). Light-
medium and medium trucks are more responsive to a carbon price in GCAM than in TEMPO, 
while heavy trucks are more responsive in TEMPO (Figure 29, page 59). In GCAM, medium 
trucks are a larger share of the total freight mode than in TEMPO, resulting in greater emissions 
reductions when combined with greater carbon price sensitivity. The increased carbon price 
responsiveness of heavy trucks in TEMPO somewhat counterbalances these emissions 
reductions.  
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Table 10. Freight Sector Technology Switching by Mode, 2.6 W/m2 Scenario Relative to the 
Reference Scenario, 2050 

 GCAM TEMPO 

Mode 

Change in Zero-
Emission Vehicle 
Ton-Miles as a 
Share of Mode 
(Percentage 
Points) 

Emissions 
Reductions from 
Technology 
Switching 
(MMT CO2) 

Change in Zero-
Emission Vehicle 
Ton-Miles as a 
Share of Mode 
(Percentage 
Points) 

Emissions 
Reductions from 
Technology 
Switching 
(MMT CO2) 

Air N/A N/A 0.0 0.0 

Rail 2.0 0.9 0.0 0.0 

Ship 16.0 2.7 0.0 0.0 

Light-Medium 
Truck 

14.0 10.0 9.0 5.7 

Medium Truck 23.0 47.0 14.0 9.6 

Heavy Truck 12.0 32.1 24.0 56.6 

Total (All 
Freight Sector) 14.0 92.7 12 71.9 

The larger change (GCAM or TEMPO) appears in bold. GCAM results do not include emissions increases from mode 
shifting, which reduce net emissions reductions by 20 MMT.  

Differences in truck mode carbon price responsiveness are potentially due to differences in 
model design and resolution. More investigation is needed to identify the exact drivers of these 
differences. Key differences between models include:  

• Discount Rate, Financial Horizon, and Vehicle Use: TEMPO considers a time horizon 
of 3–5 years when balancing upfront capital cost and fuel cost savings for new vehicle 
purchases, using a discount rate of 7%. Meanwhile, GCAM uses a discount rate of 10% 
and a 15-year financial horizon. As a point of comparison, a previous NREL TCO 
analysis for MHDVs considers discount rates of 3 and 7% and use financial horizons that 
span the lifetime of the vehicle (Hunter et al. 2021). Both models multiply upfront capital 
costs by a capital recovery factor computed from these parameters to levelized capital 
costs over the lifetime of the vehicle. In general, these differences imply that GCAM’s 
model resolution places lower weight on upfront capital cost and greater weight on future 
operational costs, all else equal. Differences in vehicle use assumptions (i.e., annual 
VMT) can also drive differences in outcomes. Even when identical technology 
assumptions are used, differences in VMT and financial criteria can produce substantially 
different cost calculations and change the trade-offs between fuel cost savings and 
upfront capital costs when comparing vehicle technologies. Table 11 summarizes these 
parameters.  
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Table 11. Financial and Vehicle Use Assumptions, GCAM and TEMPO MHDVs 

 Light-Medium Medium Heavy 

Metric GCAM TEMPO GCAM TEMPO GCAM TEMPO 

Discount 
Rate (%) 

10 7 10 7 10 7 

Financial 
Horizon 
(years) 

15 3 15 4 15 5 

VMT/year 25,000 12,000 45,000 11,000 45,000 10,000–
200,000 

• Model Resolution and Charging Infrastructure Representation: TEMPO models 
MHDVs at a higher resolution than GCAM, dividing vehicle classes into up to eight 
distance bins. Each distance bin has different amounts of annual and daily VMT. To the 
extent that BEV range exceeds daily VMT (primarily in longer distance bins), a charging 
time penalty is applied at a rate of $75/hour, representing an additional cost for BEV 
trucks in those operating ranges. Distance bins also differ in their representation of 
infrastructure, with shorter distance bins having greater access to overnight charging.  

For light-medium and medium trucks, GCAM’s increased carbon price responsiveness is likely 
due to its higher VMT assumptions. Light-medium and medium trucks are assumed to be driven 
less in TEMPO, which produces lower fuel cost savings for zero-emission powertrains. TEMPO 
also has more conservative financial criteria that place a greater emphasis on upfront cost and 
more heavily penalize vehicles with a greater capital cost.  

For heavy trucks, TEMPO’s increased carbon price sensitivity may be due to its increased 
market segmentation. Market segments with greater fuel cost savings from electrification (due to 
greater annual VMT) or lower charging barriers (due to lower daily driving distance) may 
produce more opportunities for electrification than implied by an aggregated approach. TEMPO 
implicitly assumes fleet management evolves such that vehicles do not operate in multiple 
market segments. We observe that TEMPO’s heavy truck emissions reductions occur due to 
electrification in both short and long-distance bins (Figure 30). 38 MMT is reduced from trucks 
operating at longer distances, while 19 MMT is reduced from trucks operating at shorter 
distances. In both models, the share of FCEVs remains smaller than other powertrains due to the 
high price of hydrogen.  
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Figure 29. VMT share by technology, light-medium, medium and heavy trucks in the 

Reference and 2.6 W/m2 scenarios, 2050 
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Figure 30. TEMPO heavy truck energy consumption and emissions by distance bin in the 

Reference and 2.6 W/m2 scenarios, 2050 

4.2.3 LDV Stock Turnover and Rapid Electrification 
We also investigated the implications of a rapid LDV electrification scenario for vehicle stock, 
emissions, and electricity consumption outcomes. The models were run with an identical 
exogenous sales trajectory in which passenger LDV sales (personal LDV, fleet vehicles, and 
MaaS) reached 50% EV by 2030 and 100% EV by 2035. In TEMPO, EVs were defined as BEV-
300s and PHEV-50s. In GCAM, EVs included only BEVs. We ran one scenario in GCAM and 
two scenarios in TEMPO (the 100% EV scenario). In TEMPO, scenarios explored variations in 
the availability of home recharging infrastructure and its implications for energy consumption 
and emissions outcomes (the Central scenario and the High Resid. Sensitivity). We observed 
substantial differences between models due to the following factors:  

• Input Assumptions: TEMPO and GCAM differ on future vehicle stock growth 
assumptions (calibrated to AEO in TEMPO and determined endogenously from LDV 
service demand in GCAM) and vehicle retirement assumptions. Differences in vehicle 
retirement substantially determine residual emissions from ICEVs.  

• Model Design: TEMPO’s household-level modeling of vehicle usage allows VMT to 
vary with vehicle age and marginal cost of driving relative to other household vehicles. 
As a result, TEMPO’s energy consumption results respond to factors that affect marginal 
cost of driving, including the availability of home and workplace recharging 
infrastructure. 
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Figure 31 presents vehicle stock results from TEMPO and GCAM for the 100% EV scenario 
(using TEMPO’s Central scenario). In TEMPO, vehicle stock grows from 255 million vehicles 
in 2020 to 294 million vehicles in 2050, 250 million (85%) of which are BEVs, 12 million (4%) 
of which are PHEVs, and 32 million (11%) of which are ICEVs. In GCAM, differences in future 
vehicle stock growth assumptions result in growth from 266 million vehicles in 2020 to 361 
million vehicles in 2050, 344 million (95%) of which are BEVs and 17 million (5%) of which 
are ICEVs. Differences in total stock stem differences in the way the models estimate vehicle 
stock, which is further described in Section 4.2.1 of this report (page 45).  

 
Figure 31. LDV vehicle stock (TEMPO and GCAM) 

A second key difference is in vehicle retirement assumptions. TEMPO uses annual vehicle 
survival rates from Jacobsen and Van Benthem (2015) for vehicles aged 0–19 years. Annual 
survival rates for older vehicles are compiled from VISION and MOVES (ANL 2021; EPA 
2021). As a result, roughly 10% of vehicles in the stock are greater than 20 years old, a figure 
that matches sources such as NHTS (Federal Highway Administration 2018) (Figure A-10 in the 
appendix, page 112). Meanwhile, GCAM assumes vehicles completely exit the stock by age 20 
(for light trucks) or 25 (for cars). 

Vehicle activity in TEMPO is determined at the household level, as households are allowed to 
select the vehicles they own for each trip. Households balance vehicle age (proxying for factors 
such as maintenance costs and reliability) and fuel cost (including the monetized value of time 
spent charging) when making vehicle use decisions. Households with access to residential 
charging infrastructure have a lower marginal cost of driving for their BEVs, as they do not have 
to rely on more expensive public infrastructure, resulting in BEVs being driven more. Vehicle 
activity in GCAM is not modeled in this way. In GCAM, vehicles are not explicitly modeled, but 
are converted from PMT using a PMT per vehicle factor. Attrition curves dictate PMT by age 
and vehicle retirement. It is therefore implicitly assumed each vehicle is driven equally 
independent of age or cost.  
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Figure 32 (page 62) plots the share of VMT by age in TEMPO and GCAM in 2050, showing the 
combined effects of vehicle survival and use assumptions, compared to VMT by age from the 
2017 NHTS. Two scenarios are considered in TEMPO. The Central scenario uses moderate 
assumptions about residential charging, while the High Resid scenario assumes all households 
have access to residential charging (and thus a lower marginal cost of driving BEVs). The 
TEMPO Central scenario has higher rates of usage for older ICEVs than both the TEMPO High 
Resid scenario and the GCAM scenarios, resulting in higher emissions (Figure 33, page 63). 
Table 12 presents GCAM and TEMPO’s ICEV VMT and total emissions in 2050, and emissions 
reductions relative to 2019. GCAM and TEMPO’s High Resid scenario have similar mileage for 
ICEVs aged 16–25 years (0.2 trillion miles). However, the inclusion of vehicles over 25 years in 
TEMPO adds an additional 0.1 trillion miles and disproportionately more emissions, as these 
older vehicles have lower fuel economy.  

Table 12. VMT and CO2 Emissions by Technology, 100% EV Scenario 
Emissions totals may not match breakdown due to rounding. 

Metric GCAM TEMPO-
Central 

TEMPO-High 
Resid 

Total CO2 emissions, 2050 (MMT) 41 93 70 

Percentage reduction in CO2 emissions in 
2050 relative to 2019 

96 91 93 

CO2 emissions from ICEVs, 2050 (MMT) 41 87 65 

VMT from ICEVs, 2050 (trillion miles) 0.2 0.4 0.3 

CO2 emissions from PHEVs, 2050 (MMT) N/A 7 5 
 

 
Figure 32. LDV share of VMT by vehicle age, 2050 
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Figure 33. LDV VMT per vehicle by powertrain, model, and scenario, 2050 

4.3 Conclusions, Key Takeaways, and Recommendations for 
Future Research 

Based on the scenarios evaluated, we identified several insights regarding key sources of 
differences between models. We summarize the greatest differences in this section.  

4.3.1 Input Assumptions, Demand Drivers, and Calibration 
Differences in input assumptions, exogenous demand trajectories, and model calibration sources 
explain Reference scenario differences, including differences in activity levels across sectors, 
total sectoral growth, and projected changes in technology share from 2020 to 2050. These 
differences are most substantial in the freight sector, which has substantially different initial 
demand assumptions across modes (due to calibration differences) and substantially different 
growth trajectories (due to differences in exogenous and endogenous growth drivers), 
particularly for trucks. The passenger sector is more similar in initial calibration, projected 
growth, and mode share, making insights more comparable across models. However, models 
differ substantially on future LDV stock estimates due to differences in how vehicle stock 
is modeled.  

In general, differences in input assumptions and calibration are most relevant when looking at 
absolute estimates given by each model (i.e., total energy consumption, demand, and stock), as 
opposed to differences in model response to a given scenario. Differences in model response are 
more strongly dictated by factors such as model structure (i.e., cost elasticities) and mode-level 
resolution. However, two key input assumptions may also influence relative scenario responses:  

1. Infrastructure Representation: Differences in infrastructure representation affect 
technology choice and cost. In TEMPO, the assumption that hydrogen infrastructure does 
not rapidly grow results in no FCEV adoption for LDVs, with decarbonization occurring 
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through BEV adoption instead. GCAM includes FCEVs as part of the LDV and bus 
technology mix, although no substantial changes in shares are observed in response to a 
carbon price. TEMPO’s EV infrastructure assumptions also affect vehicle use and energy 
consumption by altering the marginal cost of driving, producing up to a 25% difference 
in emissions between central and high infrastructure availability in the 100% EV 
scenario.  

2. Stock Turnover: Alignment of stock turnover assumptions, which was not in-scope 
for this study, is relevant for analyses of LDV electrification. GCAM has fewer older 
vehicles (over 20 years) than TEMPO, resulting in TEMPO having almost twice as much 
ICEV stock in a scenario with 100% EV sales by 2035 (17 million vehicles in GCAM 
versus 32 million in TEMPO).  

Alignment and sensitivity analysis on these factors should be considered in future inter-
comparison exercises, and assumptions should be identified when comparing results across 
studies.  

4.3.2 Model Structure and Resolution 
Model structure and resolution are primarily responsible for the differences observed in fuel 
price responsiveness across models. We identified three primary structural differences with key 
impacts on model results:  

1. Mode choice within the passenger sector can lead to differences in carbon price response 
across models. GCAM’s greater cost responsiveness to mode choice resulted in 
substantially greater reductions in passenger air travel than TEMPO: 24 MMT of 
emissions reductions in the highest carbon price scenario. TEMPO’s mode choice 
algorithm is more sensitive to changes in time intensity than cost intensity, resulting no 
emissions reductions from mode shifting. Historical data supports the greater price 
sensitivity of passenger aviation modeled in GCAM (Fukui and Miyoshi 2017), offering 
opportunities to improve model sensitivity in TEMPO.  

2. Demand reduction in the freight sector produces 41% of the emissions reductions 
observed in GCAM, but it is absent in TEMPO due to inadequate data. This mechanism 
can produce substantial differences in model responsiveness in scenarios that explore 
increases in costs of transportation service, such as carbon prices. Historical data on 
freight demand reduction suggest GCAM may be somewhat more sensitive to fuel price 
increases than has been observed in U.S. contexts. The degree of mode shifting feasible 
between freight modes is also highly uncertain and has historically been influenced by 
several factors, including price, time, and infrastructure constraints. Further research 
could inform future estimates of the potential for demand reduction and mode shifting to 
reduce emissions within the freight sector. 

3. Technology adoption algorithms differ for TEMPO and GCAM in the on-road freight 
sector (light-medium, medium, and heavy-duty trucks) and influence technology choice 
sensitivity to a carbon price, particularly for medium- and heavy-duty trucks. TEMPO 
uses different financial criteria and vehicle operation assumptions (VMT driven by 
different vehicle segments) than GCAM, resulting in differences in responsiveness to 
carbon prices for LDVs and medium and heavy trucks. In addition, TEMPO’s enhanced 
sectoral resolution (variation in VMT assumptions considered for different applications 
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within the heavy-duty truck sector) interacts with its representation of monetized 
charging time to impact electrification opportunities for medium- and heavy-duty trucks. 
These mechanisms are not represented in GCAM. As the market for alternative-fuel 
vehicle evolves, TEMPO’s market segmentation may be further refined to more precisely 
model electrification opportunities for MHDVs. This enhanced resolution might also be 
used to inform GCAM’s representation of the sector. 

On the other hand, some structural differences are less relevant to scenarios. Differences in mode 
availability (i.e., ship passenger travel and air freight travel in TEMPO) have little impact on 
scenarios. Additional zero-emission technology resolution in the freight rail and shipping sectors 
in GCAM has only a small impact on overall results. Overall, despite some differences in 
decarbonization pathways, the passenger sector is similar in its responsiveness to a change in 
carbon price across a range of carbon prices—this a key insight of this study.  

4.3.3 Model Strengths and Areas for Future Research  
Over the course of this study, we identified multiple areas for future research and model 
development. First, biofuels quantities were approximately harmonized for this study, but they 
could be modeled at a greater resolution in both models. In GCAM, biofuels are shared across all 
passenger and freight modes in proportion to their share of liquid fuel consumption, with no 
differences in the biofuel share of liquid fuel between modes. This assumption could be refined 
to consider factors such as the role of sustainable aviation fuel in aviation and identify mode-
specific biofuel potential. Doing so may affect the relative decarbonization potential across 
modes. In TEMPO, further enhancements could allow competition between biofuel and liquid 
fuel technologies within modes, thus allowing for endogenous determination of adoption based 
on price.  

Second, the Reference scenario could be enhanced in both models to add detail to what a 
business-as-usual scenario implies for emissions reductions. Both models could be enhanced by 
representing state-level policies (e.g., California’s zero emission vehicle sales mandate), federal 
fuel economy standards, and other federal and regional policies. This enhancement would 
improve understandings of which emissions reductions are achievable absent additional 
interventions, and where gaps may remain.  

Mode shifting and substitutability of modes could be further explored in both models, 
particularly in the freight sector. Identification of the degree of realistic mode shifting across 
freight modes (e.g., trucks versus rail, or the elasticity of shipping demand) and the capacity 
of each mode to accommodate additional demand without infrastructure expansion should be 
considered to improve the realism of scenarios in GCAM, and to implement mode shifting as 
a feature in TEMPO.  

Finally, future research might examine long-term shifts in transportation behavior due to the 
impacts of the COVID-19 pandemic. Neither model includes short-term changes induced by the 
pandemic; however, the implications of potential long-term trends, such as increases in remote 
work, may be relevant to future decarbonization policies.  
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We also identified relative model strengths for different types of research. GCAM’s strengths lie 
in its integration with other sectors, including electricity and refining, which allows the model to 
capture multisectoral feedback loops, including dynamics such as the interplay of transportation 
sector electrification and electricity generation, or between a carbon price and demand for 
biofuels. TEMPO lacks these mechanisms, thus requiring assumptions from other models 
regarding behavior in other sectors (e.g., the biofuel harmonization that occurred for this study). 
Meanwhile, TEMPO has more detailed representation of some passenger and freight sector 
market segments, particularly with respect to EV infrastructure, passenger travel demand, and 
heterogeneity in on-road medium- and heavy-duty activity. This level of detail is useful for 
focused, sector-specific studies, and it provides enhanced resolution that can distinguish the 
difficulty of decarbonizing specific subsectors and explain where and why zero emission vehicle 
adoption is most likely.  
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5 Buildings Sector 
The buildings sector is a large and heterogenous energy consumer, encompassing a wide variety 
of building types and technologies that provide a diverse set of energy services. Broadly, 
buildings are categorized as either residential or commercial. Residential buildings encompass 
single and multifamily homes, and the technologies within providing services such as space 
heating and cooling, lighting, water heating, cooking, and a wide array of appliances and 
electronics. A wider range of buildings falls under the commercial category, from office 
buildings and schools to grocery stores and hospitals. Commercial buildings require many of the 
same energy services as residential buildings, yet the technologies that provide them can be very 
different to meet demands for these varied (and often large) buildings. 

In this section, we compare the modeling approaches for GCAM-USA and the Scout building 
model to highlight their similarities and differences in modeling approaches, input assumptions, 
and outcomes across several scenarios. 

5.1 Model Scope and Structures 

5.1.1 GCAM-USA 
GCAM-USA models energy consumption in the building sector for the 50 U.S. states and 
Washington D.C. across two aggregated building types: residential and commercial. Energy use in 
these buildings is further disaggregated into the 14 energy services listed in Table 13, including 
heating, cooling, water heating, and lighting. Within each building service category, multiple fuel 
types (e.g., electricity, natural gas, liquid fuels, and solid biomass) compete to supply these 
services; fuel types also entail a competition between different conversion technologies (typically 
a standard-efficiency and high-efficiency technology option). Technologies are vintaged and, once 
they are installed, they continue operating through the end of their technical lifetimes. Demand for 
building floorspace is driven by exogenously defined population and economic growth by state, 
but it can also vary with the average price of building energy services; exogenously specifying 
building floorspace is also possible. Building floorspace in turn sets the scale for demand of 
corresponding building services, which also varies in response to the (endogenous) price of the 
service, which varies in response to technology prices, fuel costs, and policy measures.  

Table 13. GCAM-USA building types and energy services 

Building Type Building Service 

Residential heating, cooling, lighting, hot water, cooking, refrigerators, freezers, clothes 
washers, clothes dryers, dishwashers, furnace fans, televisions, computers, other 

Commercial heating, cooling, lighting, hot water, cooking, refrigeration, ventilation, office, other, 
non-building (e.g., streetlights) 

 
We chose GCAM-USA for the building sector component of this model comparison study 
because it has a significantly more detailed building sector than GCAM. GCAM also divides the 
building sector into residential and commercial buildings, but it distinguishes building services 
into only space heating, space cooling, and other energy use. Also, GCAM does not include 
competition between multiple technology types within each service category and fuel type. For 
this study, we ran GCAM-USA from 2015 (final historical year) to 2050 to explore the future 
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evolution of building energy use in residential and commercial buildings across multiple energy 
services, including energy consumption by fuel type and associated emissions. 

5.1.2 Scout  
Scout is a stock-and-flow model of the U.S. building sector that simulates the impacts of energy 
conservation measures (ECMs) on building energy use in the United States annually from the 
present year through 2050 (Langevin, Harris, and Reyna 2019; Langevin et al. 2021). Scout is 
used to estimate the energy use and CO2 emissions impacts19 of ECMs, and it facilitates the 
comparison of ECM impacts across end uses (e.g., heating, lighting, and envelope). Scout has 
flexible geographic resolution and can operate at the level of U.S. states (50), NEMS Electricity 
Market Module regions (25),20 or American Institute of Architects’ climate zones (5).21  

Scout can evaluate a portfolio of ECMs competitively, ensuring that ECM savings impacts are 
not double-counted. Multiple ECMs that apply to the same market segment compete for shares 
of the segment based on models that represent consumer acceptance of capital costs versus 
operating costs. For residential buildings, a logit model is used; commercial buildings use a 
discrete choice model using time preference premiums. These models and their parameters are 
derived from the technology choice models used in NEMS (NREL 2022).  

Scout includes substantial building type and technology detail (Table 14). The baseline 
technology options in Scout are mostly consistent with those used in NEMS, as users can 
introduce alternative technology options as ECMs, ranging in efficiency and availability from 
currently available ENERGY STAR-qualified technologies to advanced energy efficiency 
technologies (hereafter referred to as prospective technologies) that represent possible future 
improvements in technology performance that are well beyond the current state of the art. 

As a forward projection model, Scout has not been formally calibrated using traditional methods. 
The baseline Scout obtains from AEO-NEMS is calibrated to other EIA data, such as the 
Residential Energy Consumption Survey and Commercial Buildings Energy Consumption 
Survey; these calibrations primarily ensure present and prior year data in NEMS are consistent 
with applicable historical EIA data. When conducting specific analyses with Scout, the model 
results are compared against other models configured with similar targets, as in this study, to 
assess whether Scout’s estimates of future energy use and CO2 emissions impacts in various 
scenarios are broadly consistent with models that include a representation of the buildings sector. 
For example, Langevin, Harris, and Reyna (2019) include comparisons to the U.S. Mid-Century 
Strategy, which was developed using GCAM and NEMS, among other models, and Langevin et 
al. (2021) include a discussion of results compared to a range of similar efforts in the literature. 
Of note, the primary application of Scout results is to illuminate one or more possible future 
scenarios and how changes in technology development, energy and technology prices, grid 

 
 
19 Scout results include other variables outside the scope of this study, including utility bill savings and public 
health impacts. 
20 A map of  Electricity Market Module 2020 geographic boundaries is available at “Electricity Market Module 
Regions,” EIA, https://www.eia.gov/outlooks/aeo/pdf/nerc_map.pdf.  
21 A map of AIA climate zones is available at “Residential Energy Consumption Survey (RECS): Maps,” 
https://www.eia.gov/consumption/residential/maps.php. 

https://www.eia.gov/outlooks/aeo/pdf/nerc_map.pdf
https://www.eia.gov/consumption/residential/maps.php


69 
This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

conditions, and other factors might change long-term energy use and CO2 emissions—the 
absolute projected values are not intended to be predictions of future conditions.  

5.1.3 Comparison of Modeling Approach 
GCAM-USA and Scout employ vastly different approaches to representing the evolution of the 
U.S. building sector. Key elements of the models’ respective approaches are summarized in 
Table 14. In terms of overall solution approach, Scout is a stock-and-flow model of buildings 
and equipment while GCAM-USA is a market equilibrium model in which supply and demand 
are balanced by endogenously solving for market clearing prices in each region, market, and 
model period. Both models use a logit model for technology choice within the buildings sector, 
although the logit models differ in important ways. For example, GCAM-USA uses a nested 
logit structure where fuels compete to meet demand within a given energy service and 
technologies compete within each fuel type. This structure allows endogenous fuel switching 
across scenarios. In contrast, Scout’s technology choice model competes a much broader set of 
technologies; users must specify which technology or technologies an ECM is eligible to replace, 
as well as which fuel switching options are enabled (assuming fuel switching is rarely done in 
the absence of mandates or incentives).  

Table 14. Comparison of Key Building Sector Model Features for Scout and GCAM-USA 

Feature Scout GCAM-USA 

Solution concept 

• Stock-and-flow 
• Technology choice based on 

logit model (residential), time 
preference premiums 
(commercial) 

• Market equilibrium 
• Technology choice based on 

nonlinear logit formulation 

Sectoral scope • Building sector • Energy-water-land-emissions 

Spatial scope and resolution 

• United States with flexible 
subnational region 
specification (U.S. states, 
NEMS Electricity Market 
Module regions, or American 
Institute of Architects’ 
climate zones 

• Global coverage with the 
world divided into 32 energy-
economy regions 

• U.S. disaggregated to 50 
states and Washington D.C. 

Demand driver 
• Building and technology 

stock driven 
• Service demand driven (in 

turn, driven by population and 
economic growth) 

Demand growth 
• Exogenously specified 

projection (AEO) 
• Building floorspace and 

service demands represented 
endogenously  

Building types 

• Residential: single-family 
home, multifamily home, 
mobile home 

• Commercial: assembly, 
education, food sales, food 
service, health care, lodging, 

• Residential, commercial 
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Feature Scout GCAM-USA 
• Large office, small office, 

mercantile/service, 
warehouse, other 

Discrete end uses 

• Residential: heating and 
secondary heating, cooling, 
furnace fans and boiler 
pumps, lighting, water 
heating, cooking, 
refrigerators, freezers, 
appliances (e.g., 
dishwashers, clothes 
washers, and clothes dryers), 
televisions and related 
electronics, computers and 
related electronics, and other 

• Commercial: heating, 
cooling, ventilation, lighting, 
water heating, cooking, 
refrigeration, office 
computers, office electronics, 
other 

• Residential: heating, cooling, 
furnace fans, lighting, water 
heating, cooking, 
refrigerators, freezers, 
dishwashers, clothes 
washers, clothes dryers, 
televisions, computers, other 

• Commercial: heating, 
cooling, ventilation, lighting, 
water heating, cooking, 
refrigeration, office, other, 
non-building (e.g., 
streetlights) 

Technology representation 

• Varies 
• One or more within each end 

use and fuel type (if 
applicable) combination  

• Fuel-level competition, 
typically one standard and 
one high-efficiency 
technology option for each 
building service or fuel 

In terms of model scope, GCAM-USA is a global model with state-level detail in the United 
States, and it covers all energy sectors as well as land and water. Scout represents only the U.S. 
building sector, but it can be flexibly configured with different subnational and regional 
definitions. Demand for building floorspace, equipment, and services are exogenously specified 
in Scout and endogenously calculated in GCAM-USA. Scout represents significantly greater 
building type detail (multiple residential and commercial building types) than GCAM-USA. 
Scout also represents more end-use categories than GCAM-USA, although the additional 
categories represented in Scout account for a small fraction of total building energy use. Finally, 
while GCAM-USA tends to include two technology options per building type, end use, and fuel 
type—representative standard-efficiency and high-efficiency technologies that capture the trade-
off of higher upfront equipment costs and lower recurring fuel costs—Scout can model many 
competing technology options within each building type, end use, and fuel type. 

5.2 Input Assumptions, Model Alignment, and Scenarios 

5.2.1 Harmonization in Model Comparison 
Both GCAM-USA and Scout require input assumptions about future technology costs, 
efficiencies, and lifetimes. Both models generally derive these inputs from the AEO for default 
or baseline technologies. However, Scout updates its input assumptions more frequently than 
GCAM-USA and thus Scout uses more recent AEO data.  
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To harmonize the two models, we updated GCAM-USA’s historical building technology stock 
shares to be consistent with Scout, which affects GCAM-USA’s share weight calibration and 
thus the future evolution of the building energy consumption. Additionally, we updated GCAM-
USA’s building technology cost, efficiency, and lifetime assumptions to match Scout’s inputs. 
Because the two models employ different technology options, we mapped each technology in 
GCAM-USA to a single Scout’s technology deemed to be representative of a standard, high 
efficiency option for that building type, end use, and scenario (Table A-3 in the appendix, page 
107). GCAM-USA was also updated to use the same residential and commercial floorspace 
growth trajectories as Scout. 

We also modified Scout in a several ways to facilitate a more direct comparison with GCAM. 
Scout energy prices and fuel carbon intensities were updated to match GCAM-USA’s 
endogenously solved fuel prices and carbon intensities. By default, Scout takes these inputs from 
the AEO. In addition, fuel switching options must be explicitly defined in Scout; fuel switching 
is only available to the extent that corresponding ECMs are included in a given scenario and end 
use. Because GCAM’s logit choice model allows for fuel switching across all end uses as the 
economics dictate, fuel switching ECMs were included in all Scout scenarios to be consistent 
with GCAM-USA. However, Scout’s fuel switching measures were configured to allow 
electrification only—no pathway was offered for switching from electricity to fossil fuels. For 
the scenarios considered in this study, switching from electricity to fossil fuels was not generally 
favorable; thus, the exclusion of these options in Scout does not affect comparisons of results for 
Scout and GCAM in these scenarios. Finally, as a first-order attempt at aligning envelope 
efficiency of the models, envelope ECMs in Scout were mostly removed from the choice set. 
GCAM-USA includes an aggregate measure of stock-average building envelope efficiency, with 
minimal default efficiency improvements. (Future opportunities for improving GCAM-USA’s 
representation of building envelope efficiency are discussed in Section 5.4.) 

5.2.2 Scenarios 
To explore the evolution of building sector under various technology and policy futures, we 
compared four scenarios (Table 15) that combine alternative emissions policy and ECM cases. 
With respect to emissions policy, the Reference case includes no policy while the 
Decarbonization case includes a carbon price pathway consistent with a 2.6 W/m2 trajectory 
(the same carbon price pathway used in the electricity and transportation sector comparisons; 
see Section 4.2, page 39).  

Table 15. Scenario Matrix for Building Sector  

Scenario Policy ECMs 

Ref Reference (no explicit emissions policy) Reference (mostly default 
technology options) 

Decarb Decarbonization (economy-wide carbon price 
consistent with 2.6 W/m2 forcing in 2100) 

Reference 

Ref_EEE Reference Market_EEE (advanced energy 
efficient technologies) 

Decarb_EEE Decarb Market_EEE 

Reference and electrification and energy efficiency ECMs are defined in Table A-6, page 115, in the appendix.   
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From an ECM perspective, the Reference case entails current minimum efficiency and ENERGY 
STAR efficiency equipment with no future efficiency or cost improvements. (In Scout, a 
scenario with no ECMs will simply replicate the AEO scenario to which it is initialized.) The 
Market-EEE case explores a market-driven electrification and energy efficiency (EEE) scenario 
that is characterized by the introduction of advanced energy efficient technologies from 2030 
onward. The Market-EEE scenario does not make other adjustments (besides technology cost 
and performance) to incentivize or reduce barriers to adoption for electric or energy efficient 
technologies. Our four building sector scenarios explore each combination of these two policy 
and ECM cases. 

5.3 Results 
In this section, we present the results of our building sector model comparison. Other sectors’ 
results sections have different structure and content due to differences in scenario construction 
for electricity, transportation, and buildings. The figures present results for each of the four 
scenarios; we also present difference plots that show the change from each models’ Ref scenario 
for each of the other three scenarios (Decarb, Ref_EEE, and Decarb_EEE). These difference 
plots help illuminate the response of each model to the same policy and technology drivers; this 
is helpful because there are in some cases significant baseline differences between the models 
(discussed in detail below). 

The key metrics compared across models include final energy consumption, stock shares, and 
CO2 emissions. The stock share variable is a combination of technology output (GCAM) and 
technology capacity (Scout). GCAM-USA does not explicitly track building equipment 
(technologies are tracked in terms of the service output they provide), while Scout tracks 
equipment stock but not necessarily service output. To bridge this gap, fuel-level shares are 
calculated for service output in GCAM-USA and units of equipment in Scout, providing a more 
apples-to-apples comparison of technology stock composition between models. Emissions 
figures include indirect emissions from electricity generation, which is an important contribution 
to the emissions footprint of the buildings sector. Because Scout was updated to use fuel carbon 
intensities from GCAM-USA, emissions differences are solely the result of differences in energy 
consumption. 

We begin by comparing aggregate building sector results from GCAM-USA and Scout (across 
building types and end uses) under the four scenarios. We then explore results for residential and 
commercial buildings across end uses. Finally, we compare model results for selected end uses 
(e.g., heating, cooling, and water heating) in both residential and commercial buildings in further 
depth. Though GCAM-USA and Scout contain more than a dozen detailed end-use categories, it 
is not practical to present results for every category in the main text of this report. To keep the 
results discussion manageable, end uses are aggregated into the categories listed below, and 
results for some of the aggregate categories are presented only in the appendix. 

• Cooling 
• Heating 
• Water Heating 
• Lighting 
• Kitchen: cooking, refrigeration, freezers, dishwashers 



73 
This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

• Laundry: clothes washers, clothes dryers (residential only) 
• Miscellaneous:  

o Residential: fans and pumps, ceiling fan, TVs, computers, and other 
o Commercial: ventilation, PCs, non-PC office equipment, and miscellaneous electric 

loads 
An important caveat is that GCAM-USA includes a commercial “other” category that contains 
energy demand beyond the categories aggregated in the miscellaneous category above 
(ventilation, office). This commercial buildings “other” category was significantly different for 
GCAM-USA and Scout. In short, according to AEO2020 (EIA 2020), about 9.1 EJ of energy 
were delivered to commercial buildings in 2020. Because Scout did not include much of the 
ancillary commercial building energy consumption, it reflects only 7.0 EJ of commercial 
building energy in 2020.22 GCAM-USA simulates 9.2 EJ of commercial building energy in 2020 
when its commercial buildings “other” category is included; when this category is excluded, 
GCAM-USA simulates 7.0 EJ of commercial building energy in 2020. The scenarios considered 
in this study do not include equipment upgrades in the “other” category; however, to facilitate a 
more apples-to-apples comparison of the baselines of GCAM-USA and Scout, GCAM-USA’s 
commercial buildings “other” category is excluded from the results and figures presented below. 

5.3.1 Aggregated Building Sector Trends 
Figure 34 (page 74) and Figure 35 (page 75) show total building sector final energy by fuel in 
2020, 2030, 2040, and 2050 for each model and scenario, as well as the change from Ref for 
each model. In aggregate, 2020 building sector energy consumption is generally well-aligned 
between the models, with GCAM-USA simulating about 2% lower energy consumption than 
Scout. The models also have similar fuel mixes, although GCAM-USA has slightly higher 
electricity consumption than Scout in 2020 (55% of building final energy in GCAM-USA and 
49% in Scout) and lower natural gas consumption (39% of building final energy in GCAM-USA 
and 43% in Scout). These differences exist because 2020 is a simulated period for GCAM-USA 
while Scout is calibrated to historical data for 2020. 

As the models simulate farther into the future, greater differences in results emerge. In the Ref 
case, GCAM-USA simulates 11% higher total energy consumption than Scout by 2050 (23.1 EJ 
versus 20.7 EJ), with the largest differences coming from natural gas (3.3 EJ higher in GCAM-
USA) and electricity (0.5 EJ higher in Scout). Both models simulate an increase in electricity 
consumption from 2020 to 2050; GCAM-USA also simulates growing natural gas consumption 
to 2050, while gas use decreases over time in Scout.  

In the Decarb scenario, both models simulate a reduction in building final energy relative to Ref 
(21.5 EJ in GCAM-USA and 20.5 EJ in Scout in 2050), with GCAM-USA still simulating higher 
overall energy consumption and gas and making up most of the difference between models. In 
the Ref_EEE scenario, Scout’s total building energy consumption in 2050 falls below 2020 
levels (to 18.9 EJ), with most of the reduction coming from electricity. GCAM-USA has a larger 
reduction in total building energy consumption (3.3 versus 1.9 EJ in Scout), with the gas 

 
 
22 Beginning with v0.7.3, Scout includes commercial building “other” energy use consistent with the AEO. 
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accounting for about two-thirds of the difference (and electricity most of the remainder). 
However, GCAM-USA’s total building energy consumption in 2050 still exceeds that of Scout 
by about 1 EJ. Finally, in the Decarb_EEE scenario, both models produce significant reductions 
in both gas and electricity consumption by 2050 relative to their respective Ref cases. The 
scenario’s policy and technology efficiency measures lead total building energy consumption 
to fall below 2020 levels in 2050 in both models. Overall, Scout and GCAM-USA both show 
less response to changes in fuel prices in the Decarb policy case than in the EEE scenarios, in 
which changes in technology cost and performance in are found to drive much larger changes 
in the building sector. 

Overall, for the building sector in aggregate, GCAM-USA simulates larger building energy 
growth to 2050 in the Ref scenario compared to Scout, but it also tends to be more responsive 
to the policies and ECMs in our alternative scenarios. 

  
Figure 34. Total building energy consumption by fuel, year, model, and scenario, 2020–2050 

(GCAM-USA and Scout) 
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Figure 35. Change in total building energy consumption by fuel compared to each model’s 

reference scenario, 2020–2050 (GCAM-USA and Scout) 

Figure 36 (page 76) and Figure 37 (page 76) present building sector emissions for GCAM-USA 
and Scout across all four scenarios, including both direct emissions and indirect emissions 
associated with electricity consumed in the building sector. Note that the inclusion of indirect 
emissions differs from the presentation of emissions in the transportation sector (Section 4), 
where only direct emissions were presented, as indirect emissions represent a significant part of 
the historical emissions picture for buildings. (Figure A-13 and Figure A-14 in the appendix, 
page 119,  present only direct building sector emissions.) In terms of total building sector 
emissions, GCAM-USA has roughly 9% higher emissions than Scout in 2020, due to its roughly 
11% higher electricity consumption in 2020. Both models show small increases in emissions 
between 2020 and 2025 in the Ref and Ref_EEE cases, with emissions then modestly declining 
from 2025 to 2050. In the Decarb and Decarb_EEE scenarios, emissions reductions begin 
declining immediately, with the fastest rate of reductions occurring over the next decade. These 
near-term reductions are driven largely by decreases in electricity emissions intensity rather than 
changes in the building sector. Electricity emissions intensity is endogenous in GCAM-USA; 
these GCAM-USA emissions intensities are then passed to Scout. For both the Ref and Decarb 
policy cases, introduction of the EEE technologies produces noticeable but smaller emission 
reductions than the Decarb policy. This is consistent with results from Langevin, Harris, and 
Reyna (2019), who compared more and less energy efficiency and electrification of the building 
sector with and without grid decarbonization. 
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Figure 36. Total building CO2 emissions by model and scenario, 2020–2050 (GCAM-USA 

and Scout) 
Emissions include both direct emissions and indirect emissions from electricity generation 

 
Figure 37. Total building CO2 emissions by fuel, model, and scenario, including direct emissions 

and indirect emissions from electricity generation, 2020–2050 (GCAM-USA and Scout) 

5.3.2 Residential and Commercial Building Sector Trends 
Residential building energy results demonstrate similar trends to total building energy. Figure 38 
and Figure 39 show residential building energy consumption. In 2020, total residential building 
energy in GCAM-USA and Scout are nearly identical, although GCAM-USA has 18% more 
electricity consumption and 12% less natural gas consumption. As the models simulate into the 
future, GCAM-USA’s total residential energy consumption grows faster than Scout’s. In the Ref 
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case, GCAM-USA simulates 13% higher residential energy consumption than Scout in 2050; 
this difference is 6% in the Decarb scenario, 13% in the Ref_EEE scenario, and 7% in the 
Decarb_EEE scenario. In terms of fuel mix, GCAM-USA and Scout are very similar in 2050: in 
GCAM-USA, electricity meets 58% of residential building energy consumption in 2050 in the 
Ref scenario (59% for Scout), 61% in the Decarb scenario (62% for Scout), 59% in the Ref_EEE 
scenario (57% for Scout), and 64% in the Decarb_EEE scenario (62% for Scout).  

 
Figure 38. Residential building energy consumption by fuel, year, model, and scenario, 2020–2050 

(GCAM-USA and Scout) 

  
Figure 39. Change in residential building energy consumption by fuel compared to each model’s 

reference scenario, 2020–2050 (GCAM-USA and Scout) 
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In terms of change from Ref, the models are again quite similar. In the Ref_EEE and 
Decarb_EEE scenarios, the models simulate similar changes from the Ref scenario, resulting in 
reduced consumption of all fuels. GCAM-USA simulates 11% and 23% reductions relative to its 
Ref scenario in the Ref_EEE and Decarb_EEE scenarios respectively; for Scout, these reductions 
are 10% and 19% respectively. In Scout, the greatest reductions come from electricity (first) and 
gas (second); GCAM-USA has similar reductions for electricity and gas in the Ref_EEE scenario 
(relative to Ref) and greater reductions from gas in Decarb_EEE. The Decarb scenario behaves 
slightly differently, with GCAM-USA simulating reductions in gas and electricity (mainly driven 
by residential space heating; see Section 5.3.3) while Scout simulates a reduction in gas 
consumption and a slight increase in electricity consumption. 

Though commercial building energy consumption is similar in GCAM-USA and Scout in 2020, 
the models diverge significantly in future periods (Figure 40 and Figure 41). GCAM-USA 
simulates more growth in commercial building energy consumption in the Ref case (8.8 EJ in 
GCAM-USA and 8.1 EJ in Scout in 2050). In terms of fuel mix, GCAM-USA and Scout are very 
similar in 2020: GCAM-USA simulates that electricity meets 57% of commercial building 
energy consumption in 2020 (compared to 55% for Scout) and gas serves 39% of commercial 
building energy demand (versus 41% in Scout). In the Ref scenario in 2050, GCAM-USA’s 
commercial building fuel mix tilts slightly more toward gas (48% electricity versus 50% gas), 
while Scout’s commercial buildings electrify significantly (69% electricity and 29% gas). As 
discussed in Section 5.3.4, commercial space heating is the main driver of this difference, with 
commercial space heating energy increasing in significantly in GCAM’s Ref scenario but 
modestly decreasing in Scout (by 2050 relative to 2020) due to differences in assumptions about 
heating degree days (HDD) and cooling degree days (CDD). 

 
Figure 40. Commercial building energy consumption by fuel, year, model, and scenario, 2020–

2050 (GCAM-USA and Scout) 
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Figure 41. Change in commercial building energy consumption by fuel compared to each model’s 

reference scenario, 2020–2050 (GCAM-USA and Scout) 

GCAM-USA and Scout also behave differently in response to the policy and technology drivers 
in our scenario set. In the Decarb scenario, GCAM-USA simulates a 10% decrease in natural gas 
by 2050 relative to Ref, and Scout produces no meaningful change compared to Ref in response 
to the carbon price in Decarb alone, likely due primarily to the commercial building technology 
choice parameters heavily favoring low capital costs, which reduces the adoption of more 
efficient technologies that have even modestly higher capital costs. In the Ref_EEE scenario, 
both models simulate reductions in natural gas and electricity consumption, with the magnitude 
of the reductions in GCAM-USA values being larger than those in Scout. However, the more 
pronounced response in GCAM-USA than in Scout is in part a function of the greater increase 
in commercial building energy in the Ref case. In terms of percentage changes in natural gas 
consumption in the Ref_EEE scenario, GCAM-USA and Scout are more similar, with GCAM 
simulating a 33% reduction and Scout a 22% reduction. GCAM-USA simulates greater 
reductions in electricity in the Ref_EEE scenario with 7% reductions relative to Ref in 2050, 
while Scout’s electricity reductions amount to only 1% reduction relative to Ref. 

For the Decarb_EEE scenario, the changes observed in Scout (relative to Ref) are very similar to 
those observed in the Ref_EEE case. This is consistent with results in the Decarb scenario, in 
which Scout displays no meaningful response to the price of CO2 emissions; the emissions price 
in the Decarb_EEE scenario entail little to no additional changes in commercial energy 
consumption relative to the Ref_EEE case. GCAM-USA simulates roughly 1.1 EJ additional 
energy savings in the Decarb_EEE scenario relative to Ref_EEE in 2050, with most of the 
additional reductions coming from natural gas and slightly less reductions from electricity.  

As mentioned above, emissions trends for the models are consistent with the energy consumption 
results, because Scout was updated to use fuel carbon intensities from GCAM-USA. Emissions 
by scenario, fuel, and year for residential and commercial buildings are available in Figure 15 
and Figure 16, respectively, in the appendix (page 120). 
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5.3.3 Residential Building Sector Trends for Selected End Uses 
In this section, we examine two key end uses that account for more than half of residential 
energy use in 2020: space heating and space cooling. 

Figure 42–Figure 44 (pages 81–82) present residential building energy consumption for space 
heating. GCAM-USA and Scout have similar levels of total energy for residential space heating 
in 2020, with Scout allocating about 9% more energy to residential heating in 2020. GCAM-
USA allocates significantly more electricity and less gas and other fuels (mostly biomass) to 
residential space heating in 2020 than Scout. Over time, the models display different trends, with 
GCAM-USA simulating increasing energy for space heating in the Ref and Decarb scenarios, 
while Scout projects decreasing residential space heating energy in all scenarios. One important 
reason for this difference is differing assumptions about HDD and CDD, which, along with 
floorspace, drive demand for thermal building services. HDD/CDD drivers were not harmonized 
for this comparison. By default, GCAM does not include climate impacts in any sector, including 
future changes in HDD and CDD due to changing climate. Scout is driven by demand levels 
from AEO’s Reference case, which includes some future climate change-driven increase in CDD 
and decrease in HDD. AEO2021 includes a national average 25% increase in CDD between 
2020 and 2050, while HDD decrease by 6% over the same period. 

In terms of change from the Ref case, there are some similarities and some differences between 
GCAM-USA and Scout. Both models show the smallest response relative to Ref in the Decarb 
case, with GCAM-USA having a larger response (13% reduction in GCAM-USA and 1% in 
Scout). Nearly all the residential space heating energy savings in GCAM-USA’s Decarb scenario 
come from reduced gas consumption. In the Ref_EEE scenario, Scout’s response is again small 
while GCAM-USA’s response is larger than in the Decarb scenario: 38% and 17% reductions in 
electricity and gas consumption respectively.  

Figure 44 shows the aggregated technology shares for GCAM-USA and Scout. For GCAM-
USA, these shares represent the fraction of service output provided (e.g., heat produced); for 
Scout, these shares represent the fraction of units installed for that end use (e.g., space heating 
units). The figure shows that the changes observed in the GCAM-USA Ref_EEE scenario are 
largely driven by an expansion in the prevalence of electric heat pumps for residential space 
heating. Electric heat pumps account for 18% of residential heating service in the GCAM-USA 
Ref scenario in 2050, but this increases to 32% in Decarb, 38% in Ref_EEE, and 58% in 
Decarb_EEE. Particularly in the EEE cases, where electric heat pumps for residential space 
heating become 10% less expensive and more than twice as efficient (Table A-6, page 115,  in 
the appendix), electric technologies come to comprise over 50% of residential space heating 
service in GCAM-USA in 2050. However, electricity consumption for residential space heating 
declines in these cases, due to the massive efficiency benefit of electric heat pumps23 relative to 
gas or electric resistance heat. 

 
 
23 Throughout this report, the terms electric heat pumps and heat pumps refer to air source heat pumps (ASHP). 
The heat pumps represented in GCAM-USA and Scout are based on ASHP technologies; though Scout can model 
ground source heat pumps, the pricing and efficiency of the heat pumps modeled correspond to ASHPs. 



81 
This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

Scout has near-constant shares (23%) of electric heat pumps in residential heating across 
scenarios and slightly greater deployment in the Decarb_EEE scenario (28%). There are a few 
reasons for this. Scout includes an additional cost for heat pumps installed in cold climates, 
making them about 15% more expensive in terms of installed costs than heat pumps installed 
in warmer climates; this cold climate distinction is not reflected in GCAM-USA. Additionally, 
Scout’s choice model for residential space heating is parameterized to favor low equipment 
capital cost. While air source heat pumps (ASHPs) are competitive on a total lifetime cost of 
service basis because of their tremendous efficiency, their initial cost is still about three times 
that of a standard natural gas furnace, even in the Market_EEE cases. GCAM-USA’s choice 
model, which considers LCOE service, finds electric heat pumps more appealing than Scout, 
which treats the high installed costs as a greater barrier to adoption. 

 
Figure 42. Residential building energy consumption for space heating by fuel, year, model, and 

scenario, 2020–2050 (GCAM-USA and Scout) 
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Figure 43. Change in residential building energy consumption for space heating by fuel compared 

to each model’s reference scenario, 2020–2050 (GCAM-USA and Scout) 

 
Figure 44. Residential building space heating technology shares by fuel, 2020–2050 (GCAM-USA 

and Scout) 

Figure 45 and Figure 46 (page 83) present residential building energy consumption for space 
cooling. As with space heating, GCAM-USA and Scout have similar levels of total energy for 
residential cooling in 2020, with GCAM-USA allocating about 17% more energy to residential 
cooling in 2020. GCAM-USA has 100% of residential cooling energy supplied by electricity, 
while gas powers 7% of residential cooling in Scout. 
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Figure 45. Residential building energy consumption for cooling by fuel, year, model, and scenario, 

2020–2050 (GCAM-USA and Scout) 

 
Figure 46. Change in residential building energy consumption for cooling by fuel compared to 

each model’s reference scenario, 2020–2050 (GCAM-USA and Scout) 

Both models simulate increasing cooling energy demand in the Ref scenario, with Scout 
simulating greater growth than GCAM-USA (68% versus 35% growth from 2020 to 2050) due 
to the inclusion of increasing CDD in the AEO baseline. The models have nearly identical 
residential cooling energy consumption in the Decarb scenario in 2050 and the Ref scenario. 
However, the models diverge significantly in the Ref_EEE and Decarb_EEE scenarios. GCAM-
USA simulates 10% and 15% reductions in cooling energy consumption in those scenarios, 
respectively relative to Ref. In GCAM-USA, the higher-efficiency air conditioning technology 



84 
This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

option (ASHP) is more expensive than the lower efficiency central AC option on a levelized cost 
of service basis across all scenarios, even considering the lower equipment cost and higher 
efficiency of this technology in the EEE case (relative to Ref). Thus, ASHPs for air conditioning 
gain only 4% and 5% shares in the Ref and Decarb scenarios respectively (relative to 2020); with 
the improved EEE technology performance, this jumps to 17% and 22% in the Ref_EEE and 
Decarb_EEE scenarios respectively. 

Scout simulates significantly greater residential cooling energy savings than GCAM-USA in the 
Market_EEE cases, with 52% and 67% reductions in the Ref_EEE and Decarb_EEE scenarios 
relative to Ref. This is driven by greater deployment of the ASHP technology in Scout, which 
occurs for a few reasons. As a stock-and-flow model, Scout tracks specific units of equipment 
within buildings. With respect to residential cooling, Scout’s choice function for ASHP 
deployment considers not only the technology’s competitiveness in terms of providing cooling 
services (as in GCAM) but also the combined value of the heating and cooling services that 
ASHPs provide, compared to separate heating and cooling units. Thus, when ASHPs are 
deployed for residential space heating, these more efficient units also provide residential space 
cooling services. In GCAM-USA, ASHP technologies within the heating and cooling end uses 
are distinct, and their deployment is a function of their cost competitiveness for providing a 
single service without considering their ability to provide both heating and cooling. As 
mentioned above, ASHPs are not very attractive for residential cooling in GCAM, and their 
significant deployment for residential space heating does not impact the technology’s share in 
residential cooling.  

5.3.4 Commercial Building Sector Trends for Selected End Uses 
As with residential buildings, in this section, we explore two end uses within commercial 
buildings—space heating and space cooling—that account for roughly 40% of commercial 
building energy use. 

Figure 47–Figure 49 (pages 85–86) present commercial space heating energy consumption. 
GCAM-USA allocates 18% more energy to commercial space heating in 2020 than Scout, with 
most of the difference coming from gas and electricity. By 2050, the models diverge 
significantly: GCAM-USA simulates a nearly 40% increase in commercial building space 
heating energy consumption in the Ref scenario, and Scout simulates an 18% reduction in energy 
for commercial space heating in the Ref scenario (with greater reductions in alternate scenarios). 
The models have similar technology shares in 2050, with gas accounting for 89% of commercial 
space heating in both models (Figure 49) (and technology efficiency assumptions aligned for this 
comparison). Thus, the differences in commercial space heating energy in the Ref case are driven 
mainly by differences in demand growth.  

The difference in commercial space heating demand growth is not attributable to building 
floorspace, which is aligned for the models; commercial building space grows by roughly one-
third between 2020 and 2050 (Figures A-11 and A-12 in the appendix, page 118). Assumptions 
related to future climate are certainly a factor, with HDD being flat in GCAM-USA between 
2020 and 2050 and decreasing in Scout over the same period. However, GCAM-USA’s 
commercial space heating demand grows by 44% from 2020 to 2050 in the Ref scenario (faster 
than the 33% expansion in commercial building floorspace), which implies an increase in heating 
demand per unit floorspace. GCAM’s thermal service demands are a function of floorspace, 
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climate (HDD and CDD), building shell characteristics, per capita income, and the price of the 
energy service, subject to satiation levels that capture the disutility of overheating or overcooling 
a space. Thus, GCAM-USA’s Ref case (and alternate scenarios) entail a small positive increase 
in commercial space heating demand per unit of floorspace driven by future economic growth 
and lower heating service costs. The parameterization of thermal services in GCAM-USA 
reflects that heating (and cooling) demands are not completely met at present; some building 
owners would heat (or cool) their buildings a bit more if they had more income or if the services 
were less costly. This is in contrast to Scout, which takes end-use service demands as exogenous 
inputs (from AEO) that are fixed across scenarios. 

 
Figure 47. Commercial building energy consumption for space heating by fuel, year, model, and 

scenario, 2020–2050 (GCAM-USA and Scout) 
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Figure 48. Change in commercial building energy consumption for space heating by fuel 

compared to each model’s reference scenario, 2020–2050 (GCAM-USA and Scout) 

 
Figure 49. Commercial building space heating equipment stock by fuel, 2020–2050 (GCAM-USA 

and Scout) 

The models also differ in their response to the technology and policy drivers in our alternate 
scenarios. Across the board, commercial building space heating GCAM-USA is more responsive 
than Scout to these policy and technology drivers. This is in part because the heating service 
demand growth embedded in GCAM-USA’s Ref scenario creates more opportunity for new 
equipment to be installed in alternative scenarios, allowing them more opportunity to diverge 
from the Ref scenario. GCAM-USA simulates an 8% reduction in heating energy demand in the 
Decarb scenario in 2050 (relative to Ref), while Scout’s space heating energy does not change in 
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response to the carbon price in the Decarb scenario. Bigger differences emerge in the EEE cases, 
where GCAM-USA simulates an expansion of heat pump space heating for commercial 
buildings, leading to decreasing gas use for commercial space heating and increased electricity 
consumption. 

As observed with residential space heating, the advanced heat pump technologies in the EEE 
case are less expensive (nearly two-thirds cheaper) and more efficient (75% more efficient) than 
those available in the Reference ECM case. In GCAM-USA, this makes electric heat pumps very 
economically appealing, and their deployment grows from 3% in the Ref scenario in 2050 (6% 
for Scout) to 9% in the Decarb scenario (6% for Scout), 27% in the Ref_EEE scenario (6% for 
Scout), and 52% in the Decarb_EEE scenario (7% for Scout). Because heat pumps are so 
efficient, electricity consumption for commercial space heating expands only modestly in the 
EEE cases in GCAM-USA, but gas consumption (and total energy consumption) declines 
significantly: gas energy consumption for commercial space heating is 25% lower in Ref_EEE 
and 60% lower in Decarb_EEE in 2050 than in GCAM-USA’s Ref scenario. 

As with residential space heating, a few factors contribute to these differences. As mentioned 
above, Scout distinguishes buildings in cold climates from those in non-cold climates, and it 
reflects higher costs for electric heat pumps suitable for cold climates. (GCAM-USA does not 
reflect this distinction in the scenarios in this study.) The commercial space heating technology 
choice parameters in Scout also favor low capital cost equipment. Finally, Scout represents 
several types of commercial buildings, which are all lumped into a single category in GCAM-
USA. Because of this aggregation, GCAM-USA implicitly assumes electric heat pumps can 
replace heating systems in all commercial building types; in reality, electric heat pumps may 
not be a suitable replacement for some types of commercial boiler systems. 

Figure 50 and Figure 51 (page 88) present energy consumption for commercial space cooling. 
The models differ somewhat in terms of total energy for space cooling in 2020, with GCAM-
USA allocating 24% more energy to this end use in 2020 than Scout. In terms of energy mix, 
the models are nearly identical, with 95% of commercial space cooling powered by electricity 
and the remainder by natural gas. As the models simulate into the future, both models project 
increasing energy consumption for space cooling in the Ref case, with 21% growth occurring 
in GCAM-USA and 27% growth in Scout. In the Decarb scenario, both models demonstrate 
essentially no change from their respective Reference scenarios. 

In the EEE cases, where higher efficiency commercial ASHP cooling units see installed cost 
decreases of 60% relative to the Reference technology case, both models simulate a contraction 
in commercial cooling energy use in 2050 relative to 2020. This contraction is more pronounced 
in GCAM-USA, which sees a 59% decrease in commercial cooling energy consumption in 2050 
in both the Ref_EEE and Decarb_EEE scenarios relative to Ref. As with the residential sector, 
heat pump technologies in the heating and cooling end uses are disconnected in GCAM-USA; 
their deployment for one end use is not impacted by (and does not impact) their deployment for 
the other. However, in commercial buildings, the advanced ASHP technologies in the 
Market_EEE cases are highly competitive at providing cooling services (more so than for 
residential cooling). Scout’s energy reductions are smaller in both absolute and relative terms, 
with energy savings of 24% and 31% in the Ref_EEE and Decarb_EEE scenarios, respectively, 
relative to Ref. As with space heating, Scout’s more detailed representation of commercial 
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building types may temper the deployment of low-cost ASHP units relative to the aggregate 
commercial building representation in GCAM-USA. 

 
Figure 50. Commercial building energy consumption for cooling by fuel, year, model, 

and scenario, 2020–2050 (GCAM-USA and Scout) 

 
Figure 51. Change in commercial building energy consumption for cooling by fuel compared to 

each model’s reference scenario, 2020–2050 (GCAM-USA and Scout) 



89 
This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

5.4 Conclusions, Key Takeaways, and Recommendations for 
Future Research 

This section summarizes the key insights related to model alignment and results comparisons 
from our building sector model comparison and articulates possible future research, including 
further alignment and other opportunities for joint model improvement. 

5.4.1 Harmonization Challenges 
In aggregate, building energy consumption in GCAM-USA and Scout are similar in 2020. 
However, as aggregate building results are disaggregated by building type and end use, larger 
differences between the models emerge. Scout is readily updated to data from the latest AEO, 
keeping its historical baseline up to date with recent historical data. GCAM-USA, on the other 
hand, currently uses 2015 as the final historical year to which the model is calibrated; 2020 is 
a simulated model period. Updating technology parameters (e.g., costs and efficiencies) is 
straightforward in GCAM; however, as a global, equilibrium model, advancing historical energy 
data to more recent years requires systematic updating across regions and sectors (as well as 
updates to agriculture, land, and water data). Consistent with its earlier base year, GCAM-USA 
uses older versions of the EIA’s Residential Energy Consumption Survey, Commercial Building 
Energy Consumption Survey, and AEO to disaggregate building energy use to the more detailed 
end-use categories represented in GCAM-USA (relative to the more aggregate representation 
in GCAM).  

In some cases, these historical (2020) differences contribute to significant differences in baseline 
(Reference) scenarios. Updating GCAM-USA’s historical energy calibration was beyond the 
scope of this comparison project, but future efforts to update these data could benefit from the 
sector and technology mapping work from this comparison and could help improve alignment of 
2020 results and Reference scenarios. Despite these challenges, this comparison made significant 
progress in aligning model baselines, including harmonization of floorspace growth; historical 
building technology stock shares; technology costs, performance, and lifetimes; fuel prices; and 
fuel emissions intensities. Technology harmonization was most challenging in the building sector 
for a couple of reasons: 

• The building sector comprises a much greater number and variety of end uses than 
electric power (which can be characterized by a single, homogenous sector output) and 
transportation (which has two services: passenger and freight). Although there are several 
modes within passenger and freight transportation (e.g., road, rail, ship, and aviation), all 
technologies move either people or things, while building technologies provide a wider 
variety of services (e.g., cooling, heating, hot water, cooking, lighting, and numerous 
appliances). Ensuring consistency between per-unit costs in Scout and levelized costs per 
unit of service in GCAM-USA required careful consideration. 

• Scout represents many technology options for each end use, while GCAM-USA tends to 
use representative standard efficiency and high-efficiency technologies to represent the 
trade-off between technologies with lower installation costs and higher fuel costs versus 
those with higher installation costs and lower energy costs. Selecting appropriate matches 
of Scout’s many ECMs and GCAM-USA’s representative technologies, for both a 
Reference and Market-EEE technology case, required careful consideration and iteration. 
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Important drivers that were not aligned as part of this comparison project are HDD and CDD. By 
default, GCAM does not include climate impacts in any sector, including future changes in HDD 
or CDD due to changing climate. Scout is driven by demand levels from AEO’s Reference case, 
which includes some future climate change-driven increase in CDD and decrease in HDD. These 
differences lead to differing trajectories for heating and cooling energy demands for the models. 

Building envelope efficiency was another area not harmonized in this study. Scout has detailed 
representation of building stock characteristics, including building stock demolition and new 
construction and many ECMs related to envelope efficiency (e.g., windows and insulation); 
GCAM-USA represents building envelope efficiency at an aggregate level for commercial and 
residential buildings. Future work could be undertaken to align GCAM-USA’s aggregate 
envelope efficiency with the impact of the ECMs implemented in Scout.  

5.4.2 Key Takeaways 
Because GCAM-USA and Scout’s baselines differ in some important ways, changes relative to 
each model’s Reference scenario often provided the cleanest comparison of model behavior in 
response to our policy and technology drivers. In terms of change relative to Ref, GCAM-USA 
and Scout behave quite similarly in aggregate. The absolute magnitude of changes in GCAM-
USA tends to be larger than those in Scout because of the greater growth in energy use in 
GCAM-USA’s Reference scenario (and thus more opportunity for changes in how the 
system evolves). 

Scout and GCAM-USA display similar responses to our alternate scenarios in residential 
buildings, while GCAM-USA is significantly more responsive in commercial buildings. As 
discussed previously, the building sector is highly heterogeneous; this is especially true for 
commercial buildings, which includes buildings used for assembly, education, health care, retail, 
lodging, offices, warehouses, and many other purposes. Scout represents a much greater level of 
detail with respect to these various commercial building types, their stock characteristics, and the 
technology options suitable for use in each. GCAM-USA consistently simulates greater 
deployment of electric heat pumps for heating and cooling in commercial buildings (relative to 
Scout). This is especially true in the Market-EEE technology case, in which electric heat pumps 
see significant cost reductions and efficiency improvements (relative to the corresponding 
technologies in the Reference case). Despite concerted efforts to map appropriate representative 
ECMs from Scout to GCAM-USA, the economics of electric heat pumps in commercial 
buildings are very compelling in GCAM; Scout’s more detailed representation of heterogenous 
commercial building types better reflects challenges to deployment of certain technologies (e.g., 
electric heat pumps) for some applications. Additionally, Scout’s detailed characterization of 
existing equipment stock within buildings allows it to consider additional costs of technology 
switching, such as electric panel upgrades or ductwork installation. 

5.4.3 Other Opportunities for Future Research 
In addition to the additional model harmonization opportunities discussed above—HDD/CDD 
and building envelope efficiency alignment—a few other opportunities for comparison and 
model improvement exist. As discussed above, Scout includes a detailed representation of the 
building stock and stock-related ECMs, while GCAM represents envelope efficiency in a very 
aggregate way. Similar to the VRE integration cost parameterization discussed in the electricity 
sector, it may be possible to create a response function in GCAM (parameterized using outputs 
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from Scout) to represent envelope efficiency potential in a simplified manner. Doing so could 
allow building envelope efficiency to evolve dynamically in GCAM—currently, any envelope 
efficiency improvements must be exogenously specified by the user—in a manner consistent 
with or informed by the detailed envelope ECMs represented in Scout. 

Additionally, future work could explore elasticities for technology or fuel switching for Scout 
and GCAM-USA, similar to the analysis in the transportation sector. One important observation 
from this comparison is that Scout and GCAM-USA both show less response to changes in fuel 
prices in the Decarb policy case than the EEE case; however, changes in technology cost and 
performance were found to drive much larger changes in the building sector. Historical data for 
an elasticity comparison may be more difficult to find for technology-driven response elasticity, 
as compared to fuel price changes in the transportation sector, which are more readily compared 
to historical fluctuations in oil prices. 
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6 Discussion and Conclusions 
In this project, we developed comparisons of a global, integrated multisector model (GCAM) 
and U.S., sector-specific models (ReEDS, TEMPO, and Scout). We harmonized selected inputs 
and structural elements, and we examined results and sought to explain remaining differences. 
Such comparisons can inform global climate change mitigation and energy transition scenarios 
with detailed perspectives on granular technology development and deployment issues while 
showing when and how cross-sectoral interactions and GHG mitigation substantially affect 
technology deployment. The project identifies circumstances where value can be derived through 
these complementary approaches.  

GCAM calculates fuel prices and carbon prices (for meeting emissions targets) that are internally 
consistent across global conditions for all sectors. This allows depiction of future economic 
conditions that are fundamentally different from the past because of GHG mitigation and other 
societal transitions. Integrated assessment models such as GCAM have been used for policy and 
strategy development because their comprehensive scope helps highlight key priorities and 
opportunities for meeting emission reduction goals. For example, the Long-Term Strategy of the 
United States: Pathways to Net-Zero Greenhouse Gas Emissions by 2050 (Long-Term 
Strategy)24—for which GCAM was used—shows combinations of energy efficiency, 
decarbonized electricity, transitions in energy carriers, non-CO2 GHG reduction, land sinks, and 
CO2 removal to reach net-zero GHG emissions, with substantial ranges across scenarios in GHG 
reductions by sector. The contribution of each mitigation measure was a model result consistent 
with scenario conditions, taking into account feedbacks, for example, between electricity demand 
and supply. This breadth of scope entails trade-offs with the depth of temporal, spatial, 
technological, and market granularity that is feasible to model.  

For the major sources of GHG mitigation that GCAM identifies, sector-specific modeling with 
greater detail may reveal dynamics that could alter or add nuance to aspects of the strategic 
response. The categories of mitigation from the Long-Term Strategy that are addressed in more 
detailed modeling in this study are GHG-free generation, electrification, efficiency in 
transportation, and efficiency in buildings. Within each of these three categories, comparisons of 
detailed GCAM results and results of sector-specific models help elucidate the techno-economic 
conditions and decisions that would contribute to the level of transformational change envisioned 
in the Long-Term Strategy, while the global, economy-wide context from GCAM sets consistent 
prices for key shared resources and GHG mitigation, illustrating the complementary role of these 
two categories of models. 

 
 
24 Long-Term Strategy of the United States: Pathways to Net-Zero Greenhouse Gas Emissions by 2050. Washington 
D.C.: U.S. Department of State and U.S. Executive Office of the President. November 2021. 
https://www.whitehouse.gov/wp-content/uploads/2021/10/US-Long-Term-Strategy.pdf.  

https://www.whitehouse.gov/wp-content/uploads/2021/10/US-Long-Term-Strategy.pdf
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6.1 Results: Reasons for Model Differences 
This project explored the similarities and differences between GCAM and sector-specific models 
in the mechanisms of sectoral decarbonization. In general, many of the results from the models 
were broadly consistent between GCAM and sector-specific models, such that results do not 
indicate dramatically diverging perspectives on energy transformation opportunities. Despite 
overall similarities at an aggregate sectoral level, results showed differences at the subsectoral 
level in magnitude and types of response to changes in carbon price. For example, results in the 
transportation sector indicated model differences in where the mitigation effects occurred, 
including different levels of demand reduction, mode shifting, biofuel substitution, and 
technological change. Similarly, buildings subsector results showed different responsiveness of 
each model to the availability of ECMs. Additional work to understand and potentially resolve 
subsectoral differences in results might improve both GCAM and sector-specific models. 

Across all sectors, the three primary reasons for differences in results are differences in: 

• Model algorithms 
• Spatial, temporal, technological, and market resolution 
• Adjustments to technology value (beyond cost and performance inputs). 

In an example of the first reason, GCAM’s algorithms seek a market equilibrium and select 
technologies based on a nonlinear logit formulation. In contrast, ReEDS selects electricity 
technologies based on cost minimization for investment and operation of the electricity system. 
The logit formulation spreads adoption among multiple technologies and includes parameters 
that can be tuned to allow greater or lesser technology adoption diversity. In this study, GCAM’s 
logit formulation tended to allow greater spread in adoption of technologies than ReEDS. In 
another example, Scout tracks system dynamics that approach equilibrium within stock and flow 
constraints. Although GCAM used equipment lifetimes from Scout for this project, the market 
equilibrium approach of GCAM may allow more rapid changes than the stock and flow approach 
of Scout because Scout represents more detailed building types and associated characteristics 
that may reduce the deployment of certain technologies (e.g., heat pumps) compared to the more 
aggregate representation in GCAM-USA. In general, if models constrain rates of change to 
historical levels, they may underestimate the potential for transformative changes, and if they do 
not, they may project rates of change that are unprecedented and potentially infeasible. 
Comparing results to historical changes and other feasibility metrics may inform assessment of 
the potential for change within the systems they represent. 

The second reason for differences across the models—differences in resolution or granularity—
includes differences both in the size of the categories and in content. Granularity relates to 
algorithm in that greater granularity means considering more specific characteristics of each 
category, whereas a logit-based algorithm seeks to reflect the distribution of these characteristics 
by spreading adoption across categories. The appropriateness and parametrization of logit choice 
models varies by application. For example, the commercial buildings or freight vehicles are 
generally characterized by least-cost competition, so other choice models, or parameters that 
narrow the logit distribution to reflect this least-cost competition, are appropriate. In contrast, 
residential buildings and passenger vehicles are subject to a wider variety of factors (e.g., 
consumer preferences), which makes the logit distribution a valuable tool. Similarly, large 
geographical areas represented as a single region (e.g., the whole United States) can be 
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characterized by significant variation in fuel prices and non-modeled factors impacting 
technology choice (e.g., climate, preferences, and infrastructure), making a broader logit 
distribution more appropriate; however, as geographic resolution increases, variation in many 
of these factors decreases substantially, making tighter cost-based competition models desirable. 
If categories are broader, in the absence of logits, the adoption of technologies would be lumpier, 
and a small change in scenario assumptions can cause a larger, more sudden change in results. 
This can make the direction of a difference between two models suddenly flip. In general, but not 
always, GCAM categories (of energy services, technologies, and markets) are broader than those 
of the sector-specific models. Differences due to misaligned categories occur when a category in 
one model straddles those in another such that it must either be split or assigned to one or the 
other category, where such assignment puts more energy service demands in one category and 
fewer in another. In this study, most such alignment issues have been resolved.  

For the third reason for differences—adjustments to technology value—several examples illustrate 
how these model differences lead to differences in results. Valuation relates to granularity in the 
sense that greater resolution can allow more precise valuation. One example is the difference 
between GCAM and TEMPO regarding the discount rate applied to calculate the present value of 
future fuel cost savings. Infrastructure cost and availability differences also explain different 
model results. For example, in the versions of the models used in this study, TEMPO generally 
assumes greater lag times in the development of hydrogen infrastructure than GCAM. 

Given the relationships among the reasons that explain model differences, some examples 
feature more than one of these reasons. For commercial water heating, granularity differs 
between models, with GCAM assuming electrification is similar financially in all situations, 
whereas Scout assumes a range of deployment costs in this subsector, leading to less deployment 
in some circumstances (such as heat pumps in cold climates). This could also be an example of 
an algorithm-based difference because the logit parameters in this version of GCAM-USA may 
spread technology adoption more broadly, resulting in more electrification than expected based 
on a least-cost formulation. These logit parameters could be tuned so that GCAM results would 
match more closely the results of sector-specific models or empirical data when it becomes 
available. In other examples of multiple reasons for differences between models, the contrast of 
GCAM and ReEDS in determining the value of VRE to the grid represents both a difference in 
valuation and a difference in granularity. ReEDS explicitly tracks the ability of technologies to 
meet load and reserve requirements at highly resolved spatial and temporal granularity, while 
GCAM and GCAM-USA include additional backup costs for VRE technologies to account for 
these issues within their less granular frameworks. Representation of VRE—including 
constraints in GCAM and GCAM-USA’s and temporally resolved load matching in GCAM-
dispatch—leads to differences across the models. The direction and magnitude of these 
differences varies depending on the scenario.  

As cities and states begin taking concrete steps to achieve their GHG emissions reduction goals, 
there is increased interest in electrification of buildings and transportation. Electrification in 
buildings might incur additional costs (beyond new equipment costs) to add new high current 
circuits, and in some buildings, upgrade electrical service and electrical panels. These costs could 
be a significant share of overall installation costs, particularly in residential buildings. 
Electrification could also introduce permitting requirements that further increase project costs. 
For this study, we harmonized GCAM and Scout to exclude additional costs associated with fuel 
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switching; in practice, however, these costs will likely present a barrier to electrification (in the 
absence of policy interventions). Moreover, as vehicles are electrified, at least some share of 
privately owned LDVs will charge principally at home. When home charging is added to the set 
of new high current electric loads that must be accommodated in homes, the combined effects of 
EV charging and building electrification together should be considered in our models. 
Electrifying multiple end uses (including LDVs and building heating via ASHPs) may also 
impact the temporal profile of electricity demand and have implications for power sector 
capacity needs; this possibility merits future research. GCAM is well positioned, in principle, to 
capture these interdependencies of home charging and building electrification, but the absence of 
a building-level load model impedes its ability to represent the threshold costs of electrification. 
Precise estimation of additional costs to include in any model faces the challenge of a dearth of 
empirical data on fuel switching project costs. In addition, the absence of data on the present-day 
electrical service for buildings makes model implementation of those costs difficult, even at the 
aggregated stock level. 

Although differences call for an explanation, similarities also need to be examined. Similar 
results can occur due to similar modeling approaches that may need improvement or may mask 
underlying differences that balance each other by differing in opposite directions. 

6.2 Applications 
Model selection and study design depends on the question being addressed; the metrics, level of 
detail, and other features of the results that are needed; and the availability of relevant data. 
Furthermore, advances in analysis are likely to occur iteratively, with successive approximations 
improving on previous work. Generally, models with less energy sector detail may be most useful 
to explore optimal future states with few constraints from historical precedents. If greater detail 
based on current and known future potential energy systems is desired, the models considered in 
this study become relevant. Broad, global integrated multisector models like GCAM are best used 
to understand overall global, economy-wide system change and feedbacks in response to a major 
shift, such as GHG mitigation. If an analysis needs to compare very different states of the global 
economy, such as with and without GHG mitigation, an integrated assessment model is likely to 
be useful to develop consistent conditions that quantify each scenario. Similarly, if an analysis 
addresses major interactions among sectors, such as allocation of scarce multisector resources, an 
economy-wide framework can contribute. Once global, economy-wide conditions are established, 
sector-specific models are best used to understand particular changes. If an analysis is exploring 
technology characteristics that are different from historical circumstances, or dynamics where 
small changes can make a big difference, sector-specific models with greater technology 
resolution are likely to be useful. Sector-specific models may provide granular detail on questions 
such as: 

• Where and when would technologies be used? 
• What would it take to scale up their use as rapidly as needed? 
• Which specific technologies appear most competitive, and in which specific market 

segments? 
• What types of investments or interventions might be most effective in advancing 

technology deployment?  
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6.3 Limitations 
Limitations of the comparison reported here arise from the imperfections of models as predictive 
tools as well as the exploratory scope of this project. Model validation is challenging at best for 
technological changes without much historical precedent. Model validation (as possible), full 
harmonization (including base year alignment), and comprehensive sensitivity analysis were 
beyond the scope of this project, but they have been addressed in other publications about each 
model: GCAM (JGCRI 2022), ReEDS (NREL n.d.), TEMPO (Muratori et al. 2021), and Scout 
(Langevin, Harris, and Reyna 2019; Langevin et al. 2021). In particular, when harmonizing 
historical energy use between GCAM and sector models, a key question must be answered: 
should GCAM values be used because of the complexity of the global energy balances, or should 
sector models be used, forcing adjustments to global energy balances in GCAM? This study 
accomplished selective harmonization and initial explorations of sensitivities across these 
models. 

Future work would benefit from first more fully harmonizing the models and performing 
extensive sensitivity analyses to understand which input factors and parameters are most 
influential. Although this study presents reference and GHG mitigation scenarios, the GHG 
mitigation scenarios were constructed in different ways for each sector: the ReEDS scenario used 
targets 95% CO2 reduction in the electricity by 2035; a set of new TEMPO scenarios constructed 
for this study explore multiple carbon price trajectories, while another scenario explores a 100% 
EV mandate; and the Scout scenarios use a carbon price trajectory consistent with 2.6 W/m2 
radiative forcing, with two different sets of ECMs. The power sector focused on an emissions 
reduction target; the buildings sector explored response to a carbon price under different 
scenarios of efficiency technology availability; the transportation sector considered variation in 
carbon price and response to a technology standard for zero-emission vehicles by 2035. Future 
analysis would be required to apply each of these approaches across all sectors in a detailed 
multimodel decarbonization analysis. Even if many of these limitations were overcome, there is 
no single answer to the question of which model should be used when, because they serve 
different purposes. For global, economy-wide analysis, GCAM is more appropriate than any 
single U.S. sector-specific model, and sector models can offer complementary U.S. detail. For 
sector-specific U.S. analysis, a sector model may be more appropriate, and a set of economy-
wide boundary conditions must be assumed, which could be informed by a model such as 
GCAM for scenarios that differ from baseline conditions. For analyses targeting detail in 
multiple sectors, combinations of multiple models may be most useful. 

Interpretation of our results and conclusions should consider the following limitations of 
this work: 

• Many of the technologies, demographics, and environmental conditions envisioned in 
future scenarios have no historical precedent, which poses fundamental challenges to 
analysis. Models cannot predict the future, and opportunities to validate their behavior 
and performance may face challenges—but still need to be pursued. 

• Model validation, full harmonization (including base year alignment), and comprehensive 
sensitivity analysis are key analytic steps that were beyond the scope of this study. Using 
multiple models, as we have done, can contribute to addressing uncertainty, but is not a 
substitute for these steps. 
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• This study accomplished selective harmonization and initial explorations. This was not a 
multimodel decarbonization analysis. It explored a small set of scenarios with a focus on 
comparing behavior of the models. 

• There is not a one-size-fits-all prescription of which model is better or which model 
should be used when. 

• Models are best used for what-if explorations and quantification of the consequences of 
scenarios. (What would need to happen, and when, for certain goals to be reached?) 
Sensitivity analysis, multimodel studies, and direct inclusion of uncertainty in modeling 
can improve the assessment of uncertainty and increase the robustness of insights that 
inform decision makers. 

• Global, integrated multisector models such as GCAM have broad geographic and sectoral 
scope, which necessarily entails trade-offs with the level of detail that can be represented 
for specific sectors and technologies. 

• Sector-specific models such as ReEDS, TEMPO, and Scout generally use scenarios to set 
input conditions of factors such as fuel prices, other sectors’ resource demands and costs 
of GHG mitigation, and technologies’ cost and performance. These model are not 
designed to capture interactions of sectors, but they can provide greater regional, 
temporal, technological, and process detail about dynamics within a sector that impact 
technology deployment.  

• Both types of models must continuously improve with regard to key technological, 
market, and policy assumptions and uncertainties. 

• Reasons for differences and similarities in model results were not fully resolved in 
this study. 

6.4 Outcomes and Recommendations 
This report shows the potential value of GCAM in establishing scenario conditions for sector-
specific models and the potential value of sector-specific models in exploring scenario specifics 
in greater detail. We used fuel prices from GCAM in sector-specific models in their reference 
scenarios and their GHG mitigation scenarios and compared differences in GCAM versus 
sectoral models’ responses. These comparisons may help identify priority topics for further 
analysis. In addition, sectoral explorations show opportunities for model improvement. Because 
clean electricity generation has long been identified as a major GHG reduction strategy, past 
work has compared estimates of renewable electricity capacity expansion for GCAM and 
ReEDS. The two modeling approaches that emerged from that work―adding detail to GCAM 
and using results from one model to inform another―could be considered for other mitigation 
categories as well. In transportation, many decisions are made at the household level. TEMPO 
seeks to represent such decisions, for example allowing modeling of changes in usage of 
different vehicles depending on factors important to households, such as convenience of 
recharging. Findings about households as agents, once validated, could be used to develop 
simplified representations for use in integrated assessment models such as GCAM. In buildings, 
greater segmentation of buildings markets in Scout could pinpoint technology opportunities and 
challenges. This greater level of detail could similarly support refined adoption functions in 
integrated assessment models.  
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We recommend future steps to facilitate input harmonization and output comparison, validate the 
models relative to empirical data for key parameters and results, and test key findings in multiple 
models. Overall, this work shows the value of complementary modeling approaches in 
developing robust conclusions to inform energy technology innovation and deployment to meet 
GHG mitigation goals. Productive future steps could include further harmonization across 
models, especially to address the challenge of discrepancies in historical energy use and increase 
consistency of scenario concepts (e.g., carbon price responsiveness, emissions targets, 
technology availability, technology standards) across all sectors. 
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Appendix. Supplementary Data and Information 
This appendix provides supplementary data and information for each of the three sectors—
electricity, transportation, and buildings. 

Electricity Sector 
Table A-1. GCAM Power Sector Technologies 

Fuel Technology 

coal coal (conv pul) 

coal coal (conv pul CCS) 

coal coal (IGCC) 

coal coal (IGCC CCS) 

gas gas (steam/CT) 

gas gas (combined cycle) 

gas gas (combined cycle CCS) 

refined liquids refined liquids (steam/CT) 

refined liquids refined liquids (CC) 

refined liquids refined liquids (combined cycle CCS) 

biomass biomass (conv) 

biomass biomass (conv CCS) 

biomass biomass (IGCC) 

biomass biomass (IGCC CCS) 

nuclear Gen_II_LWR 

nuclear Gen_III 

hydro hydro 

wind wind 

wind wind_storage 

solar PV 

solar PV_storage 

solar CSP 

solar CSP_storage 

geothermal geothermal 

rooftop_pv rooftop_pv 

wind wind_offshore 
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Table A-2. GCAM-USA Grid Regions 

Grid Region States 

Alaska grid Alaska 

California grid California 

Central East grid Indiana, Kentucky, Michigan, Ohio, West Virginia 

Central Northeast grid Illinois, Missouri, Wisconsin 

Central Northwest grid Iowa, Minnesota, North Dakota, Nebraska, South Dakota 

Central Southwest grid Kansas, Oklahoma 

Florida grid Florida 

Hawaii grid Hawaii 

Mid-Atlantic grid District of Columbia, Delaware, Maryland, New Jersey, Pennsylvania 

New England grid Connecticut, Massachusetts, Maine, New Hampshire, Rhode Island, Vermont 

New York grid New York 

Northwest grid Idaho, Montana, Nevada, Oregon, Utah, Washington 

Southeast grid Alabama, Arkansas, Georgia, Louisiana, Mississippi, North Carolina, South 
Caroline, Tennessee, Virginia 

Southwest grid Arizona, Colorado, New Mexico, Wyoming 

Texas grid Texas 

Transportation Sector 

Direct and Indirect Transportation Sector Emissions  
In the main body of this report, we show only direct (tailpipe) transportation sector CO2 
emissions, omitting indirect emissions produced from electricity generation and hydrogen 
production. Here, we plot both direct and indirect transportation sector emissions for the 
Reference and 2.6 W/m2 scenarios.  
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 Figure A-1. Direct and indirect transportation sector CO2 emissions in the Reference and 2.6 W/m2 

scenarios (TEMPO and GCAM) 

Other Assumptions 
Table A-3. Passenger Occupancy Assumptions (Passengers/Vehicle) 

Subsector TEMPO1 GCAM4 

Passenger Air 109.2 135.2 

Bus 23.3 18.4 

Passenger Rail 25–35 30–149 

LDV 1.22–1.63 1.58–1.65 

Motorcycle 1.05 1.1 

Passenger Ship 130 N/A 

1Non-LDV occupancy factors are from the National Transit Database (U.S. Department of Transportation 2019) 
2Applies to MaaS and LDV fleets 

3Computed endogenously based on NHTS (FHWA 2018) 
4Computed from Bureau of Transportation Statistics tables 1-40 and 1-35. 

https://www.bts.gov/archive/publications/national_transportation_statistics/table_01_40
https://www.bts.gov/archive/publications/national_transportation_statistics/table_01_35
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Table A-4. Freight Load Factor Assumptions (Tons/Vehicle) 

Subsector TEMPOa GCAM 

Freight Air 37 N/A 

Freight Rail 6,996 3,217 

Freight Ship 1,437 1,000 

Light-Medium Truck 1.2 0.3 

Medium Truck 2.4 2.1 

Heavy Truck 10.4 4.2 

a Truck load factors are computed from VIUS (U.S. Census Bureau 2004) and account for deadheading. 

  

 
Figure A-2. Exogenous population assumptions (TEMPO and GCAM)  
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Figure A-3. Exogenous GDP assumptions (GCAM)  

 
Figure A-4. Fuel cost assumptions 

Fuel costs in TEMPO are interpolated from default 2020 values to GCAM values in 2025.  
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Figure A-5. Biofuel shares by scenario (TEMPO and GCAM) 

 
Figure A-6. Technology costs, LDV, processed from vehicle simulations developed by Argonne 

National Laboratory (Islam et al. Forthcoming)  
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Figure A-7. Fuel economy, LDV, processed from vehicle simulations developed by Argonne 

National Laboratory (Islam et al. Forthcoming)  

 
Figure A-8. Technology capital costs, MHDV trucks, processed from vehicle simulations 

developed by Argonne National Laboratory (Islam et al. Forthcoming)   

 

 
Figure A-9. Fuel economy, MHDV trucks, processed from vehicle simulations developed by 

Argonne National Laboratory (Islam et al. Forthcoming)  
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Figure A-10. Vehicle population by age, TEMPO and NHTS (Federal Highway Administration 2018) 
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Buildings Sector 
Table A-5. Mapping of GCAM-USA and Scout Technologies 

Building Type End Use Fuel GCAM-USA 
Technology 

Mapped Scout Technology—
noEEE 

Mapped Scout Technology–
MarketEEE 

commercial cooking electricity electric range electric_range_oven_24x24_griddle electric_range_oven_24x24_griddle 

commercial cooking electricity electric range hi-eff electric_range_oven_24x24_griddle electric_range_oven_24x24_griddle 

commercial cooking gas gas range gas_range_oven_24x24_griddle gas_range_oven_24x24_griddle 

commercial cooking gas gas range hi-eff gas_range_oven_24x24_griddle gas_range_oven_24x24_griddle 

commercial cooling electricity air conditioning rooftop_AC rooftop_AC 

commercial cooling electricity air conditioning hi-eff ENERGY STAR Com. ASHP (LFL) Prospective Commercial ASHP 
(LFL)_cooling 

commercial cooling gas gas cooling gas_chiller gas_chiller 

commercial heating electricity electric furnace electric_res-heat electric_res-heat 

commercial heating electricity electric heat pump ENERGY STAR Com. ASHP (LFL) Prospective Commercial ASHP 
(LFL)_heating 

commercial heating gas gas furnace gas_furnace gas_furnace 

commercial heating gas gas furnace hi-eff gas_furnace gas_furnace 

commercial heating refined liquids fuel furnace oil_furnace oil_furnace 

commercial water heating electricity electric heat pump 
water heater 

HP water heater Prospective Commercial HPWH 

commercial water heating electricity electric resistance 
water heater 

elec_water_heater elec_water_heater 

commercial water heating gas gas water heater gas_water_heater gas_water_heater 

commercial water heating gas gas water heater hi-eff ENERGY STAR Commercial Gas 
WH v. 2.0 

ENERGY STAR Commercial Gas 
WH v. 2.0 

commercial water heating refined liquids fuel water heater oil_water_heater oil_water_heater 

commercial lighting electricity fluorescent T8 F28 T8 F28 

commercial lighting electricity incandescent 100 W equivalent CFL Bare Spiral 100 W Equivalent CFL Bare Spiral 

commercial lighting electricity solid state LED Integrated Luminaire LED Integrated Luminaire 

commercial office electricity office equipment PCs PCs 
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Building Type End Use Fuel GCAM-USA 
Technology 

Mapped Scout Technology—
noEEE 

Mapped Scout Technology–
MarketEEE 

commercial refrigeration electricity refrigeration Commercial Supermarket Display 
Cases 

Commercial Supermarket Display 
Cases 

commercial refrigeration electricity refrigeration hi-eff Commercial Supermarket Display 
Cases 

Prospective Commercial 
Refrigeration 

commercial ventilation electricity ventilation CAV_Vent CAV_Vent 

commercial ventilation electricity ventilation hi-eff VAV_Vent VAV_Vent 

residential clothes dryers electricity clothes dryer drying drying 

residential clothes dryers electricity clothes dryer hi-eff ENERGY STAR Electric Dryers Prospective Residential Dryer 

residential clothes dryers gas clothes dryer drying drying 

residential clothes washers electricity clothes washer clothes washing clothes washing 

residential clothes washers electricity clothes washer hi-eff clothes washing clothes washing 

residential computers electricity electricity desktop PC desktop PC 

residential cooking electricity electric oven cooking cooking 

residential cooking gas gas oven cooking cooking 

residential cooking gas gas oven hi-eff cooking cooking 

residential cooling electricity air conditioning central AC central AC 

residential cooling electricity air conditioning hi-eff ENERGY STAR Res. ASHP 
(LFL)_cooling 

Prospective Residential ASHP 
(LFL)_cooling 

residential dishwashers electricity dishwasher dishwasher dishwasher 

residential dishwashers electricity dishwasher hi-eff dishwasher dishwasher 

residential freezers electricity freezer freezers freezers 

residential freezers electricity freezer hi-eff freezers freezers 

residential furnace fans electricity electricity fans and pumps fans and pumps 

residential heating biomass wood furnace stove (wood) stove (wood) 

residential heating electricity electric furnace resistance heat resistance heat 

residential heating electricity electric heat pump ENERGY STAR Res. ASHP 
(LFL)_heating 

Prospective Residential ASHP 
(LFL)_heating 

residential heating gas gas furnace furnace (NG) furnace (NG) 
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Building Type End Use Fuel GCAM-USA 
Technology 

Mapped Scout Technology—
noEEE 

Mapped Scout Technology–
MarketEEE 

residential heating gas gas furnace hi-eff Res. Fossil Heating, 
ESTAR_furnace (NG) 

Res. Fossil Heating, 
ESTAR_furnace (NG) 

residential heating refined liquids fuel furnace furnace (distillate) furnace (distillate) 

residential heating refined liquids fuel furnace hi-eff Res. Fossil Heating, 
ESTAR_furnace (distillate) 

Res. Fossil Heating, 
ESTAR_furnace (distillate) 

residential water heating electricity electric heat pump 
water heater 

ENERGY STAR Res. HPWH Prospective Residential HPWH 

residential water heating electricity electric resistance 
water heater 

electric WH electric WH 

residential water heating electricity electric resistance 
water heater hi-eff 

ENERGY STAR Res. HPWH Prospective Residential HPWH 

residential water heating gas gas water heater water heating water heating 

residential water heating gas gas water heater hi-eff ENERGY STAR Gas Storage WH 
v. 4.0 

ENERGY STAR Gas Storage WH 
v. 4.0 

residential water heating refined liquids fuel water heater water heating water heating 

residential water heating refined liquids fuel water heater hi-eff water heating water heating 

residential lighting electricity fluorescent general service (CFL) general service (CFL) 

residential lighting electricity incandescent general service (incandescent) general service (incandescent) 

residential lighting electricity solid state general service (LED) general service (LED) 

residential other electricity electricity ceiling fan ceiling fan 

residential refrigerators electricity refrigerator refrigeration refrigeration 

residential refrigerators electricity refrigerator hi-eff ENERGY STAR Refrigerator Prospective Residential 
Refrigeration 

residential televisions electricity electricity TV TV 
 

Table A-6. Costs and Efficiencies for Select Heating and Hot Water Technologies 

Building Type End Use Fuel Technology Year Cost - Ref Cost - EEE Efficiency - Ref Efficiency - EEE 

Commercial heating electricity electric furnace 2020 2.589 2.589 1 1 

Commercial heating electricity electric furnace 2035 2.589 2.589 1 1 
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Building Type End Use Fuel Technology Year Cost - Ref Cost - EEE Efficiency - Ref Efficiency - EEE 

Commercial heating electricity electric furnace 2050 2.589 2.589 1 1 

Commercial heating electricity electric heat pump 2020           10.354           10.354 3.4 3.4 

Commercial heating electricity electric heat pump 2035           10.354 3.958 3.4 6 

Commercial heating electricity electric heat pump 2050           10.354 3.958 3.4 6 

Commercial heating gas gas furnace hi-eff 2020 1.235 1.235 0.794 0.794 

Commercial heating gas gas furnace hi-eff 2035 1.244 1.244 0.803 0.803 

Commercial heating gas gas furnace hi-eff 2050 1.247 1.247 0.805 0.805 

Commercial hot water electricity electric heat pump water heater 2020           12.163           12.163 3.9 3.9 

Commercial hot water electricity electric heat pump water heater 2035           12.163 1.653 3.9 3.9 

Commercial hot water electricity electric heat pump water heater 2050           12.163 1.653 3.9 3.9 

Commercial hot water electricity electric resistance water heater 2020 2.695 2.695 0.97 0.97 

Commercial hot water electricity electric resistance water heater 2035 2.695 2.695 0.97 0.97 

Commercial hot water electricity electric resistance water heater 2050 2.695 2.695 0.97 0.97 

Commercial hot water gas gas water heater hi-eff 2020 1.272 1.272 0.94 0.94 

Commercial hot water gas gas water heater hi-eff 2035 1.296 1.276 0.992 0.949 

Commercial hot water gas gas water heater hi-eff 2050 1.301 1.281 1.003 0.96 

Residential heating electricity electric furnace 2020 1.176 1.176 0.98 0.98 

Residential heating electricity electric furnace 2035 1.176 1.176 0.98 0.98 

Residential heating electricity electric furnace 2050 1.176 1.176 0.98 0.98 

Residential heating electricity electric heat pump 2020 6.524 6.524 2.7 2.7 

Residential heating electricity electric heat pump 2035 6.524 5.904 2.7 6 

Residential heating electricity electric heat pump 2050 6.524 5.904 2.7 6 

Residential heating gas gas furnace hi-eff 2020 2.853 2.853 0.93 0.93 

Residential heating gas gas furnace hi-eff 2035 2.853 2.853 0.93 0.93 

Residential heating gas gas furnace hi-eff 2050 2.853 2.853 0.93 0.93 

Residential hot water electricity electric heat pump water heater 2020           16.675           16.675 3.3 3.3 

Residential hot water electricity electric heat pump water heater 2035           16.675           18.212 3.3 3.55 

Residential hot water electricity electric heat pump water heater 2050           16.675           18.212 3.3 3.55 
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Building Type End Use Fuel Technology Year Cost - Ref Cost - EEE Efficiency - Ref Efficiency - EEE 

Residential hot water electricity electric resistance water heater 2020 6.831 6.831 0.93 0.93 

Residential hot water electricity electric resistance water heater 2035 6.831 6.831 0.93 0.93 

Residential hot water electricity electric resistance water heater 2050 6.831 6.831 0.93 0.93 

Residential hot water electricity electric resistance water heater hi-eff 2020           16.675           16.675 3.3 3.3 

Residential hot water electricity electric resistance water heater hi-eff 2035           16.675           18.212 3.3 3.55 

Residential hot water electricity electric resistance water heater hi-eff 2050           16.675           18.212 3.3 3.55 

Residential hot water gas gas water heater hi-eff 2020           17.969           17.969 0.68 0.68 

Residential hot water gas gas water heater hi-eff 2035           17.969            17.969 0.68 0.68 

Residential hot water gas gas water heater hi-eff 2050           17.969            17.969 0.68 0.68 
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Figure A-11. Building floorspace by model and building type 

 
Figure A-12. Building floorspace by model and building type 
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Figure A-13. Building sector CO2 emissions by model and scenario, including only direct 
emissions from fuel combustion in buildings. 

 
Figure A-14. Building sector CO2 emissions by fuel, model, and scenario, including only direct 

emissions from fuel combustion in buildings 
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Figure A-15. Residential building CO2 emissions by fuel, model, and scenario 

 
Figure A-16. Commercial building CO2 emissions by fuel, model, and scenario 
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