Evaluation of Bifacial Modules and PV Technologies with Combined-Accelerated Stress Testing

Peter Hacke¹, Akash Kumar², Ashwini Pavgi², Sergiu V. Spataru³, Kaushik Roy-Choudhury⁴, GovindaSamy TamizhMani²

1. National Renewable Energy Laboratory, Golden, CO, United States; École Polytechnique Fédérale de Lausanne, Neuchâtel, Switzerland
2. Photovoltaic Reliability Laboratory, Arizona State University, Mesa, AZ, United States
3. DTU Fotonik, Roskilde, Denmark
4. DuPont, Central Research and Development, Wilmington, USA
Bifacial modules taking increased market share

Need something transparent on the back

A-priori reliability concerns for bifacial module rear/substrate

<table>
<thead>
<tr>
<th>Glass</th>
<th>Polymeric</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delamination due to constrained outgassing</td>
<td>Discoloration and embrittlement→cracking</td>
</tr>
<tr>
<td>PID on back</td>
<td></td>
</tr>
<tr>
<td>Delamination due to adhesion loss (non-EVA)</td>
<td></td>
</tr>
<tr>
<td>Stress on cells & metallization</td>
<td>Stress on cells & metallization</td>
</tr>
</tbody>
</table>
Introduction to C-AST

"representation"

C-AST Chamber

Applies five factors of the natural environment:
- Heat
- Light (filtered Xenon), ~7.5% albedo
- Humidity
 - Condensing
 - Non-condensing
- Mechanical pressure
- System voltage

Stress levels & combination: per maximum in nature

In-situ Metrology: I-V, EL

Degradation

<table>
<thead>
<tr>
<th>Degradation</th>
<th>Mean Acceleration Factor (Tropical/Florida)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outer layer polymeric of backsheet (temperature/irradiance)</td>
<td>17.3</td>
</tr>
<tr>
<td>Backsheet inner PET (Temperature/humidity)</td>
<td>426</td>
</tr>
<tr>
<td>Electrochemical degradation (corrosion)</td>
<td>14.1</td>
</tr>
<tr>
<td>Thermomechanical fatigue (PbSn solder)</td>
<td>23.5</td>
</tr>
</tbody>
</table>

- Spataru, S.; Hacke, P.; Owen-Bellini, M., (WCPEC-7) 2018
- Owen-Bellini, M. et. al. Progress in Photovoltaics: Research and Applications 29 (1), 2021
- Hacke, P. et al; Advanced Micro-and Nanomaterials for Photovoltaics (Elsevier) 2019
C-AST Cycle and its climate sequences

Notes:
- Temperatures indicated as T_{chamber} (T_{module})
- -1200 V System voltage applied to cell circuit only when irradiation is applied
- DML = Cyclic Dynamic Loading 1000 Pa equivalent
- SL = Static loading 2400 Pa equivalent
C-AST Experiment 1: Monofacial PERC: 2 encapsulants x 3 substrates

<table>
<thead>
<tr>
<th>Cell type</th>
<th>No. samples</th>
<th>Encapsulant</th>
<th>Substrate</th>
<th>Cycles C-AST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monofacial Mono-Si PERC</td>
<td>1</td>
<td>POE</td>
<td>transparent PVF</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>POE</td>
<td>glass</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>POE</td>
<td>white PVF</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>EVA</td>
<td>glass</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>EVA</td>
<td>white PVF</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>EVA</td>
<td>transparent PVF</td>
<td>4</td>
</tr>
</tbody>
</table>

Substrate: transparent PVF, glass, white PVF
Sample set 1: Bifacial module constructions with monofacial PERC

Encapsulant type: Substrate type
Number of cycles in C-AST

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial EL (I_{sc})</td>
<td>4 cycles</td>
<td>4 cycles</td>
<td>4 cycles</td>
<td>2 cycles</td>
<td>2 cycles</td>
<td>2 cycles</td>
</tr>
<tr>
<td>Breaks</td>
<td>8</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>7</td>
<td>14</td>
</tr>
<tr>
<td>Final EL (I_{sc})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breaks</td>
<td>39</td>
<td>45</td>
<td>134</td>
<td>69</td>
<td>13</td>
<td>114</td>
</tr>
</tbody>
</table>

NREL | 5
Sample set 1: Bifacial module constructions with monofacial PERC

<table>
<thead>
<tr>
<th>Encapsulant type: Substrate type</th>
<th>Number of cycles in C-AST</th>
</tr>
</thead>
<tbody>
<tr>
<td>POE: T-PVF</td>
<td>4 cycles</td>
</tr>
<tr>
<td>POE: W-PVF</td>
<td>4 cycles</td>
</tr>
<tr>
<td>EVA: T-PVF</td>
<td>2 cycles</td>
</tr>
<tr>
<td>EVA: W-PVF</td>
<td>2 cycles</td>
</tr>
<tr>
<td>EVA: Glass</td>
<td>2 cycles</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Initial EL (I_{sc})</th>
<th>Breaks</th>
<th>Final EL (I_{sc})</th>
<th>Breaks</th>
<th>Breaks</th>
</tr>
</thead>
<tbody>
<tr>
<td>POE: T-PVF</td>
<td>8</td>
<td>POE: W-PVF</td>
<td>7</td>
<td>14</td>
</tr>
<tr>
<td>POE: W-PVF</td>
<td>39</td>
<td>EVA: T-PVF</td>
<td>13</td>
<td>114</td>
</tr>
<tr>
<td>EVA: T-PVF</td>
<td></td>
<td>EVA: W-PVF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EVA: Glass</td>
<td></td>
<td>EVA: Glass</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Negligible fill factor and power loss with the monofacial PERC)
Gridfinger breaks

X-Ray Topography, thin-plate theory and finite element analysis

Slauch, IM and coworkers 48th IEEE: PVSC 2021

Finite element analysis of stress-strain in copper interconnects in -40 °C/85 °C temperature cycling

Kraemer, F. and Wiese, Microelettr. Rel., 55 (5) 2015

glass-glass modules show higher stresses in Si and interconnects than in glass-backsheet modules – 3x the gridfinger breaks –

- Highest mechanical loads appear in the glass–glass assembly
- The maximum accumulated plastic strain of some elements in glass-glass reaches double that of glass back sheet assembly

- 2 mm glass/glass have 200 % to 300 % higher stress than 2mm Glass/Backsheet modules
- Glass/glass exhibit higher bending induced cell stresses during module fabrication

2 mm GGEVA
2 mm GGPOE
2 mm GBEVA
2 mm GBPOE

Top 0.1% 1st Principal Stress Values (MPa)

\[
\begin{array}{c|c|c|c}
\text{Glass/Glass} & \text{max} & \text{median} & \text{min} \\
\end{array}
\]
C-AST Experiment 2: Bifacial PERC: 2 encapsulants x 2 substrates

Four cell mini modules

<table>
<thead>
<tr>
<th>Cell type</th>
<th>No. samples</th>
<th>Encapsulant</th>
<th>Substrate</th>
<th>Cycles C-AST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bifacial Mono-Si PERC</td>
<td>1</td>
<td>EVA</td>
<td>transparent PVF</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>POE</td>
<td>transparent PVF</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>EVA</td>
<td>glass</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>POE</td>
<td>glass</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>POE</td>
<td>glass</td>
<td>n/a (ex-situ testing)</td>
</tr>
</tbody>
</table>

Substrate:
- transparent PVF
- glass
Overview of potential-induced degradation polarization (PID-p) on rear of bifacial PERC

When and where does it happen

- Rear of bifacial PERC (undoped, sensitive to dielectric charge state) \(^1\)
- Occurs most in EVA-glass back modules \(^1\)
- Negative system voltage (builds up + charge in dielectric) \(^2\)
- Generally correlated to high leakage current \(^1\)
- Degradation greater under low light or dark \(^3\)
- Recovery under light soak because of SiNx photoconductivity and annihilation of charge \(^2-4\)
- Recovery under opposite system voltage polarity \(^5\)

1 Luo, W and coworkers, Progress in Photovoltaics: Research and Applications 2018, 26 (10), 859-867.
5 Swanson and coworkers, proceedings 15th International PVSEC, 2005.
Standard test conditions flash testing

Glass/EVA back

Glass/EVA front

-40°C, 35% RH, DML x 6 (45 m), 18 h

Spring (2 d)

-40°C, 35% RH, DML x 6 (45 m), 18 h

Dead of winter (18 h)

High desert (7 d)

30 kWh/m²

40 kWh/m²
PID results

Glass back with EVA encapsulant sample shows most significant loss in I_{sc} and V_{oc} from the rear in bifacial PERC.

- Glass/EVA module construction
- -1200 V system voltage applied
- Seen with highest leakage current
- Degradation under low light conditions (Spring: 800 W/m² 35 °C)
- Recovery with elevated irradiation
- Recovery under opposite polarity
From IEC 61215:2021 series
PV Module design qualification and type approval

85 °C, 85 % relative humidity, 96 h ± Vsys (dark)

Standard calls for 2 kWh/m² on rear to eliminate “polarization artifacts”

PID-polarization seen in C-AST Spring, so polarization may not be an “artifact”
PID results

Glass back with EVA encapsulant sample shows most significant loss in I_{sc} and V_{oc} from the rear in bifacial PERC.

- Glass/EVA module construction
- -1200 V system voltage applied
- Seen with highest leakage current
- Degradation under low light conditions (Spring: 800 W/m² 35 °C)
- Recovery with elevated irradiation

Module type would be susceptible to PID in the field (Spring conditions)

IEC 61215:2021 has a 2 kWh/m² rear light soak that may hide PID-p in PERC.

Glass/EVA module construction

- $+1000 \text{ V} \ 60^\circ \text{C} \ 96 \text{ h (faces grounded)}$
 → PID recovery

Stage

- Standard test conditions flash testing

<table>
<thead>
<tr>
<th>Sample</th>
<th>Substrate</th>
<th>Encapsulant</th>
<th>Coulombs</th>
<th>Cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>39B</td>
<td>T-PVF</td>
<td>EVA</td>
<td>1.37</td>
<td></td>
</tr>
<tr>
<td>39F</td>
<td>T-PVF</td>
<td>EVA</td>
<td>0.35</td>
<td></td>
</tr>
<tr>
<td>40B</td>
<td>T-PVF</td>
<td>POE</td>
<td>2.15</td>
<td></td>
</tr>
<tr>
<td>40F</td>
<td>T-PVF</td>
<td>POE</td>
<td>0.19</td>
<td></td>
</tr>
<tr>
<td>41B</td>
<td>Glass</td>
<td>EVA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41F</td>
<td>Glass</td>
<td>EVA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42B</td>
<td>Glass</td>
<td>POE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42F</td>
<td>Glass</td>
<td>POE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NREL | 13
Light-induced degradation (B-O complex) basics

Herguth, A. 33rd EU PVSEC (2017)
Light-induced degradation (B-O complex) basics

A new POE/glass module under sun → dark heat → sun
A new POE/glass module under sun → dark heat → sun

State A ‘annealed’ (inactive)
- Destabilization
 - T: >200°C

State B ‘degraded’ (active)
- Redegradation
 - T: >200°C

State C ‘regenerated’ (inactive)
- Regeneration
 - T: >1000 W/m²

Standard test conditions flash testing

Sample	Substrate	Encapsulant	Coulombs cycle
39B T-PVF | EVA | 1.37
39F T-PVF | EVA | 0.35
40B T-PVF | POE | 2.15
40F T-PVF | POE | 0.19
41B Glass | EVA |
41F Glass | EVA |
42B Glass | POE |
42F Glass | POE |
A new POE/glass module under sun → dark heat → sun

State A: ‘annealed’ (inactive)
- Destabilization: T > 200°C
- Regeneration: T < 100°C

State B: ‘degraded’ (active)
- Degradation: T > 20°C
- Redegradation: T > 200°C

State C: ‘regenerated’ (inactive)
- Redegradation: T > 1000 W/m²

<table>
<thead>
<tr>
<th>Sample</th>
<th>Substrate</th>
<th>Encapsulant</th>
<th>Coulombs cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>39B</td>
<td>T-PVF</td>
<td>EVA</td>
<td>1.37</td>
</tr>
<tr>
<td>39F</td>
<td>T-PVF</td>
<td>EVA</td>
<td>0.35</td>
</tr>
<tr>
<td>40B</td>
<td>T-PVF</td>
<td>POE</td>
<td>2.15</td>
</tr>
<tr>
<td>40F</td>
<td>Glass</td>
<td>EVA</td>
<td>0.19</td>
</tr>
<tr>
<td>41B</td>
<td>Glass</td>
<td>POE</td>
<td></td>
</tr>
<tr>
<td>41F</td>
<td>Glass</td>
<td>EVA</td>
<td></td>
</tr>
<tr>
<td>42B</td>
<td>Glass</td>
<td>POE</td>
<td></td>
</tr>
<tr>
<td>42F</td>
<td>Glass</td>
<td>POE</td>
<td></td>
</tr>
</tbody>
</table>
A new POE/glass module under sun → dark heat → sun
Regeneration not stable

Lim, B
“prolonged illumination at elevated temperature always resulted in renewed degradation”
From IEC 61215:2021 series PV Module design qualification and type approval

Front-end characterization

12 Modules
- MQT 01: Visual inspection
- MQT 08.1: Performance at STC (Followed by Gate No. 1)
- MQT 19.1: Initial Stabilization

≥10 kWh/m² 50 ±10 °C

Higher temperature, longer light exposures as with C-AST Tropical and High Desert might lead to LID destabilization, which won’t be seen in IEC 61215
A new POE/glass module under sun → dark heat → sun

Module type would be susceptible to LID in the field in high temperature operation. Issue would not be seen in IEC 61215:2021
Summary of Results

Reliability concerns for bifacial module rear/substrate
- **Up to 4 rounds combined-accelerated stress**

<table>
<thead>
<tr>
<th>Glass</th>
<th>Polymeric</th>
</tr>
</thead>
<tbody>
<tr>
<td>No delamination due to constrained outgassing</td>
<td>No discoloration and embrittlement → cracking (with polyvinyl fluoride)</td>
</tr>
<tr>
<td>PID on back</td>
<td>No PID on back</td>
</tr>
<tr>
<td>No delamination due to adhesion loss (non-EVA)</td>
<td>No delamination due to adhesion loss (non-EVA)</td>
</tr>
<tr>
<td>Stress on cells & metallization</td>
<td>Stress on cells & metallization</td>
</tr>
</tbody>
</table>

- *also*

- **C-AST Spring showed PID-polarization**
 - The 2 kWh/m² after the PID test per the IEC 61215 qualification test masks it
 - Installed modules in the field do not necessarily get rear light soaks

- **C-AST found destabilization of LID-regenerated, inactive state cells leading to power loss in the Spring cycle and ex-situ light soaks;**
 - Likely not findable in IEC 61215
Thank you

US Dept of Energy Awards
08565 – Reliability Evaluation of Bifacial and Monofacial Glass/Glass Modules with EVA and non-EVA Encapsulants
38259 – DuraMAT
38263 – PV Reliability R&D to Ensure a Scientific Basis of Qualification Test and Standards

Hosted at: Swiss NSF/ École Polytechnique Fédérale de Lausanne

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.