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OUTLINE

= Introduction to Argonne National Laboratory

= Background of Wind Energy

* Premature Bearing Failures (white-etching cracks)
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Argonne was established in 1946 as a science and
technology laboratory to develop peaceful uses for
a revolutionary new source of energy: nuclear power.
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INTERFACIAL MECHANICS & MATERIALS

Characterization of surface
material structure,
chemistry and material
degradation

In situ characterization of
material processes
Characterization of root
cause analysis for failures

in field components “ L 9 Design & Synthesis &
~Z .. <" EMCharacterizationll Manufacture

¥y + Discovery, patenting, and licensing of
new hard material coatings, surface
treatments, and lubricant additives

e Testing &
Analysis of mechanical, rheological, -~ ' - Appllcatlon
tribological, and thermal material 3 o :
properties

Custom design of test rigs to fit
application specific issues
Development of benchtop standardized
tests for emerging material failures
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WIND ENERGY BACKGROUND
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WIND ENERGY- INSTALLED CAPACITY

Annual Capacity
(2020, MW)
China 52,000
United States 16,836
Brazil 2,297
Netherlands 1,979
Germany 1,668
Norway 1,532
Spain 1,400
France 1,318
Turkey 1,224
India 1,119
Rest of World 11,538
TOTAL 92,910

Sources: GWEC, ACP

oF Ag e National Labor
(B ENERGY Jrswimytua

Cumulative Capacity
(end of 2020, MW)

China 288,320
United States 121,955
Germany 62,850
India 38,625
Spain 27,250
United Kingdom 23,937
France 17,948
Brazil 17,750
Canada 13,578
Italy 10,543
Rest of World 119,572

TOTAL 742,327

|

U.S. Land-Based Wind Energy’

Annual Regional Capacity (GW)

20
= Noncontiguous
Southeast (non-1SO)
» ISO-NE
15 m NYISO
®m CAISO
PUM Total
= West (non-ISO) I
= MISO
0 uspp
m ERCOT
5
0

Cumulative Total Capacity (GW)

160

120

80

40

0

1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

Source: ACP

https://www.energy.gov/eere/wind/articles/land-based-wind-market-
7 report-2021-edition-released

NATIONAL LABORATORY 1946-2021



OFFSHORE WIND ENERGY

Actual and Estimated Cumulative Offshore Wind
Energy Capacity’
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1 - https://lwww.energy.gov/eere/wind/articles/offshore-wind-market-report-2021-edition-released
2 - https://www.whitehouse.gov/briefing-room/statements-releases/2021/03/29/fact-sheet-biden-
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https://www.energy.gov/eere/wind/articles/offshore-wind-market-report-2021-edition-released
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WIND TURBINE SIZE TRENDS
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https://www.energy.gov/eere/wind/articles/offshore-wind-market-report-2021-edition-released

TURBINE COMPONENT RELIABILITY

= Operations and maintenance (O&M) costs are an important part of cost of energy!
— Account for 25% to 35% of levelized cost of energy (LCOE), representing $5
billion annual market in the United States
— O&M costs are higher than expected; estimated opportunity for reduction in
LCOE can account for 10% (land-based) to 50% (fixed offshore)

e — —
R. Errichello, S. Sheng, J. Keller, A. Greco. Wind Turbine Tribology
Seminar- A Recap. 2012. U.S. Dept of Energy

B I ~ 3 R f Wind and Water Power Program -
Photo by Dennis Sehrogder, NREL . - =, £ (image provided by Jurgen Gegner of SKF) 20 mm
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TRIBOLOGICAL COMPONENTS

Gearbox

:qi.r; Shaft Bearing

@\ lllustration by NREL
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https://www.energy.gov/eere/inside-wind-turbine
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Illustration by NREL
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WIND TURBINE DRIVETRAIN RELIABILITY R&D FOCUS
@ ARGONNE & NREL

Main

= White-etching crack/axial crack (gearbox bearing, Bearing

main bearing)
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= Main bearing wear (micropitting)

» Pitch bearing fretting wear = ol
D. Brake. WTG SRB Main Bearing Failures.

n J OU rnaI/pIal n bea rl ng Wea r Presented at the 2013 UVIG Wind Turbine/Plant

Operations & Maintenance Users Group Meeting.

= Advanced lubricant technology

| Laboratory is a
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WHITE ETCHING CRACK BEARING FAILURE

h U.S. DEPARTMENT OF  Argonne National Laboratory is a
ENERGY U.5. Department of Energy laboratory
managed by UChicago Argonne, LLC.
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AXIAL CRACKS / WHITE-ETCHING CRACKS

White-etching cracks (WECs) cause premature bearing failure through spalls or cracks and are characterized
by irregular microstructural alteration in the subsurface material.

« Failure at 1%—-10% of rolling contact fatigue L, design life

 Exact cause is unknown
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Gould, Benjamin, and Aaron Greco. “The Influence of Sliding and Contact Severity on the Generation of White Etching Cracks.” doi:10.1007/s11249-015-0602-6.
14 Argonne & 75
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MAIN BEARING WEC FAILURES

White Etching Cracks (WECs) observed in subsurface analysis of main bearings, with similar characteristics
to WECs observed in high-speed shaft gearbox bearings.

Evidence of WECs initiating at inclusion in the steel, indicating that steel cleanliness could be a factor
Electrical current was also measured up-tower across main bearing contact for this example bearing

Fractured Edge

3 1—’ ‘Circumferential

Depth

500 um |

15 | Argonne & | 75

uuuuuuuuuuuuuuuuuuuuuuuuu




POSSIBLE PATHWAYS TO PREMATURE WEC BEARING FAILURE

System Component Contact Sub-Surface
|dli Slip
ng Lubricant Chemistry Material Compromise
Emergency stop Vibration Elr;abtrggfeer;ent
Grid loading Bending load
Wind transient Impact load Mechanical stress
- Surface shear (slip)
Misalignment Stray e Load
current
Torque reversals
Water
Incomplete grounding CMEIIEE Electrical current Localized over strain
Plasticity
Lightening strike Tribo-
chemistry

< %
Pheto from NREL
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Gould, Benjamin, et al. “An analysis of premature cracking
associated with microstructural alteration in an AISI 52100
failed wind turbine bearing using X-ray tomography”
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ACCELERATED BENCHTOP TESTING
= Enables the study of WEC drivers independently (load, slip, lubricant chemistry, stray electrical currents, etc.)
= Accelerated, low-cost method for testing mitigation technologies (lubricants, coatings, advanced materials)

Ring Vibration

U.8. DEPARTMENT OF Argonns National Laboratory is a
ENERGY U.5, Department of Energy laboratory
managed by UChicago Argonne, LLC.




LUBRICANT ADDITIVE CHEMISTRY

Reverse-engineered the “bad reference oil”

2 Afton

C H E Mm 1 C A L

|dentified that a common anti-wear additive, zinc dialkyldithiophosphate (ZnDDP), accelerated WEC failures

Qils containing only ZnDDP also have the highest friction, resulting in higher frictional heating

WEC Fatigue Life
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Gould, Benjamin, Nicholaos G. Demas, Grant Pollard, Jakub Jelita Rydel,
Marc Ingram, and Aaron C. Greco. “The Effect of Lubricant Composition on

19 White Etching Crack Failures.” Tribology Letters 67, no. 1 (November
2018): 7. https://doi.org/10.1007/s11249-018-1106-y.
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WIND TURBINE GEAR OILS WITH WIND TURBINE BEARING STEEL

009 Measured friction of tested oils

0.08

0.07

» WEC tests were performed using test samples
extracted from wind turbine bearings " i

0.06

0.05

= Several commercial wind turbine gear oils showe
WECs, which under the same test conditions usiny
clean steel would not show WECs

0.04

Friction Coef.

0.03

= A correlation was observed between friction and
WEC formation:

Higher friction oils => higher probability of WEC formation ° ° D
Contact Cycles (1x1069)
Commercial Qil 1 Commercial Oil 3

F:’ig,

B ERERGY (o i, oo Gould, B., etal. Materials Science and Engineerin;
e By Hcsge Mseme e 28, 2019): 237-45. https://doi.org/10.1016/j.msea.2019.02.084
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https://doi.org/10.1016/j.msea.2019.02.084

MOTIVATION FOR TESTING ELECTRICAL CURRENT

= The National Renewable
Energy Laboratory, in
collaboration with SKF, fully
instrumented the main
bearing and the high-speed
shaft of the gearbox within a
wind turbine.

High levels of slip as well as
shaft current were

documented

— The main bearing showed
current levels as high as
800 mA stemming from the
rotor

— The HSS bearings showed
currents over 1 A stemming
from the generator.
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Keller, Guo, and Sethuraman, Uptower Investigations of High-Speed-Shaft Bearing Reliability (2
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ELECTRICALLY INDUCED DAMAGE MECHANISMS

= Fluting
— Material vaporization and
microstructural alterations caused by
high-voltage differentials, and fully
lubricated/separated surfaces

(@) diffuse layer ) S
+ :G) @ @ @ O]HP _ Kotzalas and Doll, Tribological Advancement for reliable wind turbine performance (2014) 20|Jm
ok <! e i diffuse . .
E O%@)@ 0® ! loyr = Triboelectrochemistry
2 +EHO g o® . e — Effects on polar additives
oD ®(+) ©) ! — Effects on redox reactions (oxidation/reduction)
DO " @ | - « Including water within lubricant
e ,\G) . — Effect on accelerated lubricant degradation
inner s
Helmholtz  outer Helmholtz plane Flectred : .
plane Spikes, Triboelectrochemistry: Influence of applied electrical L e e e, it ¥
potentials on friction and wear of lubricated contacts (2020) Bt : v;_wf A ‘?’z‘-"f‘{; ks
",;tfg% L Uy
. . L - ey g 3 5
= White-Etching Cracks MO > :

— Hydrogen embrittlement
— Joule Heating
— Electrically accelerated local plasticity




TEST RIG MODIFICATIONS TO APPLY ELECTRICAL
CURRENT

= Benchtop rig was modified to enable application of controlled
electric current across contact

= Accommodates testing in both oil and grease

p— B
(o) / \ connectjon with the circuit
connection with the circuit / ring —, \ ' Ring Shaft 0

A Slip Ring

~ greased bearing

ceramic bearih | - lubricated contact
; E |

slipring

electric isolation

Gould, Benjamin, Nicholas Demas, Robert Erck, Maria Cinta Lorenzo-Martin, Oyelayo Ajayi, and Aaron Greco.
“The Effect of Electrical Current on Premature Failures and Microstructural Degradation in Bearing Steel.”
International Journal of Fatigue 145 (April 1, 2021): 106078. https://doi.org/10.1016/j.ijfatigue.2020.106078.
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https://doi.org/10.1016/j.ijfatigue.2020.106078

WEC (F:ORMATION IN DC ELECTRICAL CURRENT
e-WE

» WECSs are significantly accelerated for wind turbine gear oils when electrical current is applied

= QObserve a strong dependence of e-WEC on current level in wind turbine gear oils, >75mA

DC current effect on e-WEC life

7 300 | O
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Gould, B., et al, International Journal of Fatigue 145 (April 1, 2021): 106078.
https://doi.org/10.1016/j.iiffatigue.2020.106078.
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ELECTRICAL CURRENT EFFECT ON LUBRICANT Tribofilm formation

= Applying electrical current changes how wind turbine gear oils behave/perform
Observed to impede tribofilm formation on surface, other oil chemistries show
increased activation with applied electrical current

Measured friction reduction with increased current, likely due to tribofilm
Applying electrical current adds additional energy input, contributing to total energy

0.07 Friction at contact during e-WEC testing
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o0
o0
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0.05 o
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0.045

0.04
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Gould, B., et al, International Journal of Fatigue 145 (April 1, 2021): 106078.
https://doi.org/10.1016/].ijfatigue.2020.106078.

ne MNational Laboratory is
1

U.8, DEPARTMENT OF  Arcon ati a
ENERGY U2 Dopartmartt of Energy Iboratory 25
managed by UChicago Argonne, LLC.



https://doi.org/10.1016/j.ijfatigue.2020.106078

E-WEC PERFORMANCE OF WIND TURBINE GEAR OILS
= Six tested gear oils all showed e-WECs within run-out limit e-WEC density under test track

» Propensity of e-WECs are higher than other WEC drivers

= Qils 1-5 are commercial wind turbine gear oils, 6 is a PFPE oil
that does not contain hydrogen (hydrogen is not required to
form WECS)

Oils 1-4 have the same base oil but different additive chemistry

Initial results show coatings are effective but not preventative

950 e-WEC fatigue life of commercial lubricants e-WEC fatigue life of coatings
. 120 ° o
% 200 B PAO Fluid (o] 8 3
9 B PAG Fluid G 100
%150 o ¥ PFPE Fluid g %0
% ;": 60 (o]
: 100 (o) : .
o £ 40
E 50 8 o 8 i S
O 20

o
o

Lubricant 1 Lubricant 2 Lubricant 3 Lubricant 4 Lubricant 5 Lubricant 6 Non-Coated Black Oxide DLC

Gould, B., et al, International Journal of Fatigue 145 (April 1,
2021): 106078. https://doi.org/10.1016/j.ijfatigue.2020.106078.
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PARAMETRIC STUDY OF E-WEC FAILURES

Commercial ashless wind turbine gear oil, 0.5 lambda, 100C
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Presented at STLE Annual Meeting 2022, journal article in preparation
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GREASE E-WEC TESTING

= Similar to oils, greases also show a
strong dependence in time-to-failure
rates on formulation.

= |Lubricants that are designed to mitigate
fluting may show no improvements for
electrically accelerated fatigue.

Effect of 250mA DC current on greased bearing life
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